
EWMISRAC1998-4

IAR Embedded Workbench®
MISRA C:1998
Reference Guide

EWMISRAC1998-4

EWMISRAC1998-4

COPYRIGHT NOTICE
Copyright © 2004–2011 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

MISRA and MISRA C are registered trademarks of MIRA Ltd, held on behalf of the
MISRA Consortium.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourth edition: January 2011

Part number: EWMISRAC1998-4

This guide describes version 1.0 of the IAR Systems implementation of The Motor
Industry Software Reliability Association’s legacy Guidelines for the Use of the C
Language in Critical Systems, also known as the MISRA C:1998 standard.

Internal reference: IJOA

Contents
Preface .. 5

Who should read this guide ... 5

What this guide contains ... 5

Other documentation ... 6

Document conventions .. 6

Introduction .. 9

Using MISRA C .. 9

Claiming compliance ... 9

Implementation and interpretation of the MISRA C rules .. 10

Checking the rules .. 10

Enabling MISRA C rules ... 11

General IDE options ... 13

MISRA C 1998 ... 13

Compiler IDE options .. 15

MISRA C 1998 ... 15

Command line options .. 17

Options summary ... 17

Descriptions of options .. 17

MISRA C:1998 rules reference .. 19

Summary of rules .. 19

Environment rules .. 27

Character sets .. 28

Comments ... 30

Identifiers ... 30

Types .. 31

Constants ... 33

Declarations and definitions .. 33

Initialization .. 36
EWMISRAC1998-4

3

4

Operators ... 37

Conversions ... 40

Expressions .. 41

Control flow .. 43

Functions .. 47

Preprocessing directives .. 51

Pointers and arrays .. 55

Structures and unions ... 57

Standard libraries ... 58
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Preface
Welcome to the IAR Embedded Workbench® MISRA C:1998 Reference
Guide. This guide includes gives reference information about the IAR Systems
implementation of The Motor Industry Software Reliability Association’s
legacy Guidelines for the Use of the C Language in Vehicle Based Software, also
known as the MISRA C:1998 standard.

Who should read this guide
You should read this guide if you are developing a software product using the MISRA
C:1998 rules. In addition, you should have a working knowledge of:

● The C programming language

● The MISRA C subset of the C language

● Application development for safety-critical embedded systems

● The architecture and instruction set of your microcontroller (refer to the chip
manufacturer's documentation)

● The operating system of your host machine.

Refer to the IAR C/EC++ Compiler Reference Guide or the IAR C/C++ Development
Guide, the IAR Assembler Reference Guide, and IAR Linker and Library Tools
Reference Guide for more information about the other development tools incorporated
in the IAR Embedded Workbench IDE.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

● Introduction explains the benefits of using MISRA C and gives an overview of the
IAR Systems implementation.

● General IDE options describes the general MISRA C options in the IAR Embedded
Workbench IDE.

● Compiler IDE options describes the MISRA C compiler options in the IAR
Embedded Workbench IDE.

● Command line options explains how to set the options from the command line.
EWMISRAC1998-4

5

6

Other documentation
● MISRA C:1998 rules reference describes how IAR Systems has interpreted and
implemented the rules given in Guidelines for the Use of the C Language in Vehicle
Based Software.

Other documentation
The complete set of IAR Systems development tools are described in a series of guides.
For information about:

● Using the IAR Embedded Workbench®, refer to the IAR Embedded Workbench®
IDE User Guide or the IAR Project management and Building Guide

● Using the IAR C-SPY® Debugger, refer to the IAR Embedded Workbench® IDE
User Guide or the C-SPY Debugging Guide

● Programming for the IAR C/C++ Compiler, refer to the IAR C/EC++ Compiler
Reference Guide or the IAR C/C++ Development Guide

● Programming for the IAR Assembler, refer to the IAR Assembler Reference Guide
● Using the IAR linker and library tools, refer to the IAR Linker and Library Tools

Reference Guide or the IAR C/C++ Development Guide
● Using the MISRA C 2004 rules, refer to the IAR Embedded Workbench®

MISRA C:2004 Reference Guide
● Using the runtime library, refer to the Library Reference information, available in

the IAR Embedded Workbench IDE online help system.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media.

Recommended websites:

● The MISRA website, www.misra.org.uk, contains information and news about the
MISRA C rules.

● The IAR website, www.iar.com, holds application notes and other product
information.

Document conventions
This book uses the following typographic conventions:

Style Used for

computer Text that you type or that appears on the screen.

Table 1: Typographic conventions used in this guide
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Preface
parameter A label representing the actual value you should type as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
EWMISRAC1998-4

7

8

Document conventions
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Introduction
The Motor Industry Software Reliability Association’s Guidelines for the Use of
the C Language in Vehicle Based Software describe a subset of C intended for
developing safety-critical systems, also called MISRA C:1998.

This chapter describes the IAR Systems implementation for checking that a
software project complies with the MISRA C:1998 rules. IAR Systems also
supports the later MISRA C 2004 standard.

Using MISRA C
C is arguably the most popular high-level programming language for embedded
systems, but when it comes to developing code for safety-critical systems, the language
has many drawbacks. There are several unspecified, implementation-defined, and
undefined aspects of the C language that make it unsuited for use when developing
safety-critical systems.

The MISRA C guidelines are intended to help you to overcome these weaknesses in the
C language.

CLAIMING COMPLIANCE

To claim compliance with the MISRA C guidelines for your product, you must
demonstrate that:

● A compliance matrix has been completed demonstrating how each rule is enforced.

● All C code in the product is compliant with the MISRA C rules or subject to
documented deviations.

● A list of all instances where rules are not being followed is maintained, and for each
instance there is an appropriately signed-off documented deviation.

● You have taken appropriate measures in the areas of training, style guide, compiler
selection and validation, checking tool validation, metrics, and test coverage, as
described in section 5.2 of Guidelines for the Use of the C Language in Vehicle
Based Software.
EWMISRAC1998-4

9

10

Implementation and interpretation of the MISRA C rules
Implementation and interpretation of the MISRA C rules
The implementation of the MISRA C rules does not affect code generation, and has no
significant effect on the performance of IAR Embedded Workbench. No changes have
been made to the IAR CLIB or DLIB runtime libraries.

Note: The rules apply to the source code of the applications that you write and not to
the code generated by the compiler. For example, rule 101 is interpreted to mean that
you as a programmer may not explicitly use pointer arithmetic, but the
compiler-generated arithmetic resulting from, e.g., a[3] is not considered to be a
deviation from the rule.

CHECKING THE RULES

The compiler and linker only generate error messages, they do not actually prevent you
from breaking the rules you are checking for. You can enable or disable individual rules
for the entire project or at file level. A log is produced at compile and link time, and
displayed in the Build Message window of the IAR Embedded Workbench IDE. This
log can be saved to a file, as described in the IAR Embedded Workbench User Guide.

A message is generated for every deviation from a required or advisory rule, unless you
have disabled it. Each message contains a reference to the MISRA C rule deviated from.
The format of the reference is as in the following error message:

Error[Pm088]: pointer arithmetics should not be used
(MISRA C 1998 rule 101)

Note: The numbering of the messages does not match the rule numbering.

For each file being checked with MISRA C enabled, you can generate a full report
containing a list of:

● All enabled MISRA C rules

● All MISRA C rules that are actually checked.

Manual checking

There are several rules that require manual checking. These are, for example, rules
requiring knowledge of your intentions as a programmer or rules that are impractical to
check statically, requiring excessive computations.

Note: The fact that rule 116 is not enforced means that standard header files in a project
are not checked for compliance. Moreover, any included IAR device header files and
the use of symbols defined in these files are not checked either.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Introduction
Documenting deviations

A deviation from a MISRA C rule is an instance where your application does not follow
the rule. If you document a deviation from a rule, you can disable the warning for
violations of that particular rule.

Note: Your source code can deviate from a rule as long as the reason is clearly
documented. Because breaking rules in a controlled fashion is permitted according to
the MISRA C guidelines, error messages can be explicitly disabled using the
#pragma diag_xxx directives.

In addition, each rule is checked in its own right; no assumptions are made regarding
what other rules are in effect, as these may have been disabled for this particular piece
of code.

Enabling MISRA C rules
In the IAR Embedded Workbench® IDE, you enable the MISRA C rules checking by
choosing Project>Options and using the options on the MISRA C 2004 page in the
General Options category.

From the command line, use the option --misrac1998 to enable the MISRA C rules
checking.
EWMISRAC1998-4

11

12

Enabling MISRA C rules
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

General IDE options
This chapter describes the general MISRA C 1998 options in the IAR
Embedded Workbench® IDE.

For information about how options can be set, see the IAR Embedded
Workbench® IDE User Guide.

MISRA C 1998
Use the options on the MISRA C 1998 page to control how IAR Embedded Workbench
checks the source code for deviations from the MISRA C rules. The settings will be used
for both the compiler and the linker.

Note: This list is only available when both the options Enable MISRA C and
MISRA C 1998 have been selected on the MISRA C 2004 page. If you want a verbose
log of the check, you must also select the option Log MISRA C settings on the
MISRA C 2004 page. See the IAR Embedded Workbench® MISRA C:2004 Reference
Guide.

If you want the compiler to check different set of rules than the linker, you can override
these settings in the C/C++ Compiler category of options.

Figure 1: MISRA C 1998 general options
EWMISRAC1998-4

13

14

MISRA C 1998
SET ACTIVE MISRA C 1998 RULES

Select the checkboxes for the rules in the scroll list that you want the compiler and linker
to check during compilation and linking. You can use the buttons None, Required, or
All to select or deselect several rules with one click:

Note: This list is only available when both the options Enable MISRA C and
MISRA C 1998 have been selected on the MISRA C 2004 page.

None Deselects all rules.

Required Selects all rules that are categorized by the Guidelines for the Use of the C Language in
Vehicle Based Software as required and deselects the rules that are categorized as
advisory

All Selects all rules.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Compiler IDE options
This chapter describes the MISRA C 1998 compiler options available in the
IAR Embedded Workbench® IDE.

For information about how to set options, see the IAR Embedded Workbench®
IDE User Guide.

MISRA C 1998
Use these options to override the options set on the General Options>MISRA C 1998
page.

Figure 2: MISRA C 1998 compiler options

To make the compiler to check a different set of rules than the rules selected on the
General Options>MISRA C 1998 page, select the option Override general MISRA
C settings on the C/C++ Compiler>MISRA C 2004 page.

SET ACTIVE MISRA C 1998 RULES

Select the checkboxes for the rules in the scroll list that you want the compiler to check
during compilation. You can use the buttons None, Required, All, or Restore to select
or deselect several rules with one click:

None Deselects all rules.
EWMISRAC1998-4

15

16

MISRA C 1998
Note: This list is only available when both the options Enable MISRA C and
MISRA C 1998 have been selected on the MISRA C 2004 page of the General
Options category.

Required Selects all rules that are categorized by the Guidelines for the Use of the C Language in
Vehicle Based Software as required and deselects the rules that are categorized as
advisory

All Selects all rules.

Restore Restores the MISRA C 1998 settings used in the General Options category.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

Command line options
This chapter describes how to set the options from the command line, and
gives reference information about each option.

Options summary
The following table summarizes the command line options:

Descriptions of options
This section gives detailed reference information about each command line option.

--misrac1998

Syntax --misrac1998[={tag1,tag2-tag3,…|all|required}]

Description Use this option to enable checking for deviations from the rules described in the MISRA
Guidelines for the Use of the C Language in Vehicle Based Software. By using one or
more arguments with the option, you can restrict the checking to a specific subset of the
MISRA C:1998 rules.

If a rule cannot be checked, specifying the option for that rule has no effect. For instance,
MISRA C rule 15 is a documentation issue, and the rule is not checked. As a
consequence, specifying --misrac1998=15 has no effect.

MISRA C:1998 is not supported by all IAR Systems products. If MISRA C:1998
checking is not supported, using this option will generate an error.

Note: In some IAR Systems products, you must specify this option as --misrac
instead, for reasons of backwards compatibility.

Parameters

Command line option Description

--misrac1998 Enables error messages specific to MISRA C:1998

--misrac_verbose Enables verbose logging of MISRA C checking

Table 2: Command line options summary

--misrac1998 Enables checking for all MISRA C:1998 rules

--misrac1998=n Enables checking for the MISRA C:1998 rule with number n
EWMISRAC1998-4

17

18

Descriptions of options
To set related options in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>MISRA C 1998 or Project>Options>C/C++
Compiler>MISRA C 1998.

--misrac_verbose

Syntax --misrac_verbose

Description Use this option to generate a MISRA C log during compilation and linking. This is a list
of the rules that are enabled—but not necessarily checked—and a list of rules that are
actually checked.

If this option is enabled, a text is displayed at sign-on that shows both enabled and
checked MISRA C rules.

To set the equivalent option in the IAR Embedded Workbench IDE, select
Project>Options>General Options>MISRA C 2004>Log MISRA C Settings.

--misrac1998=m,n Enables checking for the MISRA C:1998 rules with numbers m
and n

--misrac1998=k-n Enables checking for all MISRA C:1998 rules with numbers from
k to n

--misrac1998=k,m,r-t Enables checking for MISRA C:1998 rules with numbers k, m, and
from r to t

--misrac1998=all Enables checking for all MISRA C:1998 rules

--misrac1998=required Enables checking for all MISRA C:1998 rules categorized as
required
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules
reference
This chapter describes how IAR Systems has interpreted and implemented the
rules given in the legacy Guidelines for the Use of the C Language in Vehicle Based
Software (MISRA C:1998) to enforce measures for stricter safety in the ISO
standard for the C programming language [ISO/IEC 9899:1990].

The IAR Systems implementation is based on version 1 of the MISRA C rules,
dated April 1998.

Summary of rules
The table below lists all MISRA C:1998 rules.

No Rule Type Category

1 All code shall conform to ISO 9899 standard C, with no
extensions permitted.

Environment Required

2 Code written in languages other than C should only be used
if there is a defined interface standard for object code to
which the compiler/assemblers for both languages conform.

Environment Advisory

3 Assembler language functions that are called from C should
be written as C functions containing only inline assembler
language, and inline assembler language should not be
embedded in normal code.

Environment Advisory

4 Provisions should be made for appropriate runtime
checking.

Environment Advisory

5 Only those characters and escape sequences which are
defined in the ISO C standard shall be used.

Character sets Required

6 Values of character types shall be restricted to a defined and
documented subset of ISO 10646-1.

Character sets Required

7 Trigraphs shall not be used. Character sets Required

8 Multibyte characters and wide string literals shall not be
used.

Character sets Required

9 Comments shall not be nested. Comments Required

Table 3: MISRA C 1998 rules summary
EWMISRAC1998-4

19

20

Summary of rules
10 Sections of code should not be ‘commented out’. Comments Advisory

11 Identifiers (internal and external) shall not rely on
significance of more than 31 characters. Furthermore, the
compiler/linker shall be checked to ensure that 31 character
significance and case sensitivity are supported for external
identifiers.

Identifiers Required

12 No identifier in one namespace shall have the same spelling
as an identifier in another namespace.

Identifiers Advisory

13 The basic types of char, int, short, long, float, and double
should not be used, but specific-length equivalents should
be typedef’d for the specific compiler, and these type names
used in the code.

Types Advisory

14 The type char shall always be declared as unsigned char or
signed char.

Types Required

15 Floating point implementations should comply with a
defined floating-point standard.

Types Advisory

16 The underlying bit representation of floating-point numbers
shall not be used in any way by the programmer..

Types Required

17 typedef names shall not be reused. Types Required

18 Numeric constants should be suffixed to indicate type,
where an appropriate suffix is available.

Constants Advisory

19 Octal constants (other than zero) shall not be used. Constants Required

20 All object and function identifiers shall be declared before
use.

Declarations and
definitions

Required

21 Identifiers in an inner scope shall not use the same name as
an identifier in an outer scope, and therefore hide the
identifier.

Declarations and
definitions

Required

22 Declaration of objects should be at function scope unless a
wider scope is necessary.

Declarations and
definitions

Advisory

23 All declarations at file scope should be static where
possible.

Declarations and
definitions

Advisory

24 Identifiers shall not simultaneously have both internal and
external linkage in the same translation unit.

Declarations and
definitions

Required

25 An identifier with external linkage shall have exactly one
external definition.

Declarations and
definitions

Required

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
26 If objects or functions are declared more than once, they
shall have compatible declarations.

Declarations and
definitions

Required

27 External objects should not be declared in more than one
file.

Declarations and
definitions

Advisory

28 The register storage class specifier should not be used. Declarations and
definitions

Advisory

29 The use of a tag shall agree with its declaration. Declarations and
definitions

Required

30 All automatic variables shall be assigned a value before being
used.

Initialization Required

31 Braces shall be used to indicate and match the structure in
the non-zero initialization of arrays and structures.

Initialization Required

32 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized.

Initialization Required

33 The right-hand operand of an && or || operator shall not
contain side effects.

Operators Required

34 The operands of a logical && or || shall be primary
expressions.

Operators Required

35 Assignment operators shall not be used in expressions
which return Boolean values.

Operators Required

36 Logical operators should not be confused with bitwise
operators.

Operators Advisory

37 Bitwise operations shall not be performed on signed integer
types.

Operators Required

38 The right-hand operand of a shift operator shall lie between
zero and one less than the width in bits of the left-hand
operand (inclusive).

Operators Required

39 The unary minus operator shall not be applied to an
unsigned expression.

Operators Required

40 The sizeof operator should not be used on expressions that
contain side effects.

Operators Advisory

41 The implementation of integer division in the chosen
compiler should be determined, documented, and taken
into account.

Operators Advisory

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

21

22

Summary of rules
42 The comma operator shall not be used, except in the
control expression of a for loop.

Operators Required

43 Implicit conversions which may result in a loss of
information shall not be used.

Conversions Required

44 Redundant explicit casts should not be used. Conversions Advisory

45 Type casting from any type to or from pointers shall not be
used.

Conversions Required

46 The value of an expression shall be the same under any
order of evaluation that the standard permits.

Expressions Required

47 No dependence should be placed on C’s operator
precedence rules in expressions.

Expressions Advisory

48 Mixed precision arithmetic should use explicit casting to
generate the desired result.

Expressions Advisory

49 Tests of a value against zero should be made explicit, unless
the operand is effectively Boolean.

Expressions Advisory

50 Floating-point variables shall not be tested for exact equality
or inequality.

Expressions Required

51 Evaluation of constant unsigned integer expressions should
not lead to wrap-around.

Expressions Advisory

52 There shall be no unreachable code. Control flow Required

53 All non-null statements shall have a side-effect. Control flow Required

54 A null statement shall only occur on a line by itself, and shall
not have any other text on the same line.

Control flow Required

55 Labels should not be used, except in switch statements. Control flow Advisory

56 The goto statement shall not be used. Control flow Required

57 The continue statement shall not be used. Control flow Required

58 The break statement shall not be used (except to terminate
the cases of a switch statement).

Control flow Required

59 The statements forming the body of an if, else if, else, while,
do … while or for statement shall always be enclosed in
braces.

Control flow Required

60 All if, else if constructs should contain a final else clause. Control flow Advisory

61 Every non-empty case clause in a switch statement shall be
terminated with a break statement.

Control flow Required

62 All switch statements should contain a final default clause. Control flow Required

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
63 A switch expression should not represent a Boolean value. Control flow Advisory

64 Every switch statement shall have at least one case. Control flow Required

65 Floating-point variables shall not be used as loop counters. Control flow Required

66 Only expressions concerned with loop control should
appear within a for statement.

Control flow Advisory

67 Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop.

Control flow Advisory

68 Functions shall always be declared at file scope. Functions Required

69 Functions with variable number of arguments shall not be
used.

Functions Required

70 Functions shall not call themselves, either directly or
indirectly.

Functions Required

71 Functions shall always have prototype declarations and the
prototype shall be visible at both the function definition and
call.

Functions Required

72 For each function parameter the type given in the
declaration and definition shall be identical, and the return
types shall also be identical.

Functions Required

73 Identifiers shall either be given for all the parameters in a
function prototype declaration, or for none.

Functions Required

74 If identifiers are given for any of the parameters, then the
identifiers used in the declaration and definition shall be
identical.

Functions Required

75 Every function shall have an explicit return type. Functions Required

76 Functions with no parameters shall be declared with
parameter type void.

Functions Required

77 The unqualified type of parameters passed to a function
shall be compatible with the unqualified expected types
defined in the function prototype.

Functions Required

78 The number of parameters passed to a function shall match
the function prototype.

Functions Required

79 The values returned by void functions shall not be used. Functions Required

80 void expressions shall not be passed as function
parameters.

Functions Required

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

23

24

Summary of rules
81 const qualification should be used on function parameters
which are passed by reference, where it is intended that the
function will not modify the parameter.

Functions Advisory

82 A function should have a single point of exit. Functions Advisory

83 For functions with non-void return types:… Functions Required

84 For functions with void return type, return statements shall
not have an expression.

Functions Required

85 Function calls with no parameters should have empty
parentheses.

Functions Advisory

86 If a function returns error information, then that error
information should be tested.

Functions Advisory

87 #include statements in a file shall only be preceded by
other preprocessor directives or comments.

Preprocessing
directives

Required

88 Non-standard characters shall not occur in header file
names in #include directives.

Preprocessing
directives

Required

89 The #include directive shall be followed by either a
<filename> or "filename" sequence.

Preprocessing
directives

Required

80 C macros shall only be used for symbolic constants,
function-like macros, type qualifiers, and storage class
specifiers.

Preprocessing
directives

Required

91 Macros shall not be #define’d and #undef’d within a block. Preprocessing
directives

Required

92 #undef should not be used. Preprocessing
directives

Advisory

93 A function should be used in preference to a function-like
macro.

Preprocessing
directives

Advisory

94 A function-like macro shall not be ‘called’ without all of its
arguments.

Preprocessing
directives

Required

95 Arguments to a function-like macro shall not contain tokens
that look like preprocessing directives.

Preprocessing
directives

Required

96 In the definition of a function-like macro the whole
definition, and each instance of a parameter, shall be
enclosed in parentheses.

Preprocessing
directives

Required

97 Identifiers in preprocessor directives should be defined
before use.

Preprocessing
directives

Advisory

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
98 There shall be at most one occurrence of the # or ##
preprocessor operator in a single macro definition.

Preprocessing
directives

Required

99 All uses of the #pragma directive shall be documented and
explained.

Preprocessing
directives

Required

100 The defined preprocessor operator shall only be used in
one of the two standard forms.

Preprocessing
directives

Required

101 Pointer arithmetic should not be used. Pointers and
arrays

Advisory

102 No more than 2 levels of pointer indirection should be
used.

Pointers and
arrays

Advisory

103 Relational operators shall not be applied to pointer types
except where both operands are of the same type and point
to the same array, structure, or union.

Pointers and
arrays

Required

104 Non-constant pointers to functions shall not be used. Pointers and
arrays

Required

105 All the functions pointed to by a single pointer to function
shall be identical in the number and type of parameters and
the return type.

Pointers and
arrays

Required

106 The address of an object with automatic storage shall not be
assigned to an object which may persist after the object has
ceased to exist.

Pointers and
arrays

Required

107 The null pointer shall not be de-referenced. Pointers and
arrays

Required

108 In the specification of a structure or union type, all
members of the structure or union shall be fully specified.

Structures and
unions

Required

109 Overlapping storage shall not be used. Structures and
unions

Required

110 Unions shall not be used to access subparts of larger data
types.

Structures and
unions

Required

111 Bitfields shall only be defined to be of type unsigned int or
signed int.

Structures and
unions

Required

112 Bitfields of type signed int shall be at least 2 bits long. Structures and
unions

Required

113 All the members of a structure (or union) shall be named
and shall only be accessed via their name.

Structures and
unions

Required

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

25

26

Summary of rules
114 Reserved words and standard library function names shall
not be redefined or undefined.

Standard libraries Required

115 Standard library function names shall not be reused. Standard libraries Required

116 All libraries used in production code shall be written to
comply with the provisions of this document, and shall have
been subject to appropriate validation.

Standard libraries Required

117 The validity of values passed to library functions shall be
checked.

Standard libraries Required

118 Dynamic heap memory allocation shall not be used. Standard libraries Required

119 The error indicator errno shall not be used. Standard libraries Required

120 The macro offsetof, in library <stddef.h>, shall not be used. Standard libraries Required

121 <locale.h> and the setlocale function shall not be used. Standard libraries Required

122 The setjmp macro and the longjmp function shall not be
used.

Standard libraries Required

123 The signal handling facilities of <signal.h> shall not be used. Standard libraries Required

124 The input/output library <stdio.h> shall not be used in
production code.

Standard libraries Required

125 The library functions atof, atoi, and atol from library
<stdlib.h> shall not be used.

Standard libraries Required

126 The library functions abort, exit, getenv, and system from
library <stdlib.h> shall not be used.

Standard libraries Required

127 The time handling functions of library <time.h> shall not be
used.

Standard libraries Required

No Rule Type Category

Table 3: MISRA C 1998 rules summary (Continued)
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Environment rules
The rules in this section are concerned with the language environment.

Rule 1 (required) All code shall conform to ISO 9899 standard C, with no extensions permitted.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the compiler is
configured (using command line options or GUI options) to:

● compile with IAR extensions

● compile C++ code.

Note: The compiler does not generate this error if you use IAR extensions from within
the code by using a pragma directive.

Examples of rule violations

int __far my_far_variable;
int port @ 0xbeef;

Example of correct code

#pragma location=0xbeef
int port;

Rule 2 (advisory) Code written in languages other than C should only be used if there is a defined interface
standard for object code to which the compiler/assemblers for both languages conform.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 3 (advisory) Assembler language functions that are called from C should be written as C functions
containing only inline assembler language, and inline assembler language should not be
embedded in normal code.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

27

28

Character sets
Rule 4 (advisory) Provisions should be made for appropriate runtime checking.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Character sets
The rules in this section are concerned with how character sets may be used.

Rule 5 (required) Only those characters and escape sequences which are defined in the ISO C standard
shall be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any of the
following are read inside a string or character literal:

● A character with an ASCII code outside the ranges 32–35, 37–63, 65–95, and
97–126

● An escape sequence that is not one of: \a, \b, \f, \n, \r, \t, \v, or \octal.

Note: $ (dollar), @ (at), and ` (backquote) are not part of the source character set.

Examples of rule violations

"Just my $0.02"
"Just my £0.02"

Examples of correct code

"Hello world!\n"
'\n'

Note: This rule aims to restrict undefined behavior and implementation-defined
behavior. The implementation-defined behavior applies only when characters are
converted to internal representation, which only applies to character constants and string
literals. For that reason, the IAR Systems implementation restricts the usage of
characters only within character literals and string literals; characters within comments
are not restricted.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 6 (required) Values of character types shall be restricted to a defined and documented subset of ISO
10646-1.

How the rule is checked

This restriction is implemented according to the information in the section about
characters in the chapter Implementation-defined behavior in the IAR C/EC++
Compiler Reference Guide.

Rule 7 (required) Trigraphs shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a trigraph is
used.

Examples of rule violations

SI_16 a ??(3 ??);
STRING sic = "??(sic??)";

Example of correct code

STRING str = "What???";

Rule 8 (required) Multibyte characters and wide string literals shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if:

● any multibyte character occurs in a character literal, a string literal, a comment, or a
header file name

● any of the functions mblen, mbtowc, wctomb, mbstowcs, or wcstombs (declared
in the header file stdlib.h) are called

● a wide string literal is used.

Note: The compiler will only generate an error for using mblen, mbtowc, wctomb,
mbstowcs, or wcstombs when the correct header file is included. Using any other
function with the same name will not generate an error.
EWMISRAC1998-4

29

30

Comments
Comments
The rules in this section are concerned with the use of comments in the code.

Rule 9 (required) Comments shall not be nested.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if /* is used
inside a comment.

Rule 10 (advisory) Sections of code should not be ‘commented out’.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
comment ends with ;, {, or }.

Note: This rule is checked in such a manner that code samples inside comments are
allowed and do not generate an error.

Identifiers
The rules in this section are concerned with identifiers used in the code.

Rule 11 (required) Identifiers (internal and external) shall not rely on significance of more than 31
characters. Furthermore, the compiler/linker shall be checked to ensure that 31 character
significance and case sensitivity are supported for external identifiers.

How the rule is checked

The linker will generate an error, indicating a violation of this rule, if any identifiers have
the same 31 initial characters.

The compiler will generate an error, indicating a violation of this rule, in a declaration
or definition of an identifier if it has the same 31 initial characters as a previously
declared or defined identifier.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 12 (required) No identifier in one namespace shall have the same spelling as an identifier in another
namespace.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a declaration
or definition would hide an identifier if they were in the same namespace. For example,
fields of different structures will not generate an error.

Example of rule violations

struct an_ident { int an_ident; } an_ident;

Example of correct code

struct a_struct { int a_field; } a_variable;

Types
The rules in this section are concerned with how data types may be declared.

Rule 13 (advisory) The basic types of char, int, short, long, float, and double should not be used,
but specific-length equivalents should be typedef’d for the specific compiler, and these
type names used in the code.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any of the basic
types given above is used in a declaration or definition that is not a typedef.

Example of rule violations

int x;

Example of correct code

typedef int SI_16
SI_16 x;
EWMISRAC1998-4

31

32

Types
Rule 14 (required) The type char shall always be declared as unsigned char or signed char.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the basic type
char is used without explicitly having either a signed or unsigned specifier.

Rule 15 (advisory) Floating point implementations should comply with a defined floating-point standard.

How the rule is checked

The floating-point standard of the IAR C/C++ Compiler is documented in the IAR
C/EC++ Compiler Reference Guide.

Rule 16 (required) The underlying bit representation of floating-point numbers shall not be used in any way
by the programmer.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 17 (required) typedef names shall not be reused.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for:

● any declaration or definition that uses a name previously used as a typedef

● any typedef using a name previously used in a declaration or definition.

Example of correct code

 /* No error for this widely used coding idiom */
 typedef struct a_struct {
 …
 } a_struct;
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Constants
The rules in this section are concerned with the use of constants.

Rule 18 (advisory) Numeric constants should be suffixed to indicate type, where an appropriate suffix is
available.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any integer
constant whose type is not the same in any standard-conforming implementation.

Example of rule violations

100000

Examples of correct code

30000
100000L
100000UL

Rule 19 (required) Octal constants (other than zero) shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
non-zero constant starts with a 0.

Declarations and definitions
The rules in this section are concerned with declarations and definitions.

Rule 20 (required) All object and function identifiers shall be declared before use.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any implicit
declaration of a function.

Note: This rule still permits Kernighan & Ritchie functions since their behavior is
well-defined.
EWMISRAC1998-4

33

34

Declarations and definitions
Rule 21 (required) Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide the identifier.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
declaration or definition hides the name of another identifier.

Rule 22 (advisory) Declaration of objects should be at function scope unless a wider scope is necessary.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 23 (advisory) All declarations at file scope should be static where possible.

How the rule is checked

The linker will generate an error, indicating a violation of this rule, if a symbol is used
in—and exported from—a module but not referenced from any other module.

Rule 24 (required) Identifiers shall not simultaneously have both internal and external linkage in the same
translation unit.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a symbol is
declared:

● with external linkage and there already exists an identical symbol in the current
scope with internal linkage, or

● with internal linkage and there already exists an identical symbol in the current
scope with external linkage.

Rule 25 (required) An identifier with external linkage shall have exactly one external definition.

How the rule is checked

The linker always checks for this, also when the MISRA C rules are disabled.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Note: Multiple definitions of global symbols are considered to be errors by the linker.
The use of a symbol with no definition available is also considered to be a linker error.

Rule 26 (required) If objects or functions are declared more than once, they shall have compatible
declarations.

How the rule is checked

The linker always checks for this, also when the MISRA C rules are disabled, and issues
a warning. When the MISRA C rules are enabled, an error is issued instead.

The linker checks that declarations and definitions have compatible types, with these
exceptions:

● bool and wchar_t are compatible with all int types of the same size.

● For parameters to Kernighan & Ritchie functions:

● int and unsigned int are considered compatible

● long and unsigned long are considered compatible.

● Incomplete types are considered compatible if they have the same name.

● Complete types are considered compatible if they have fields with compatible types.

Rule 27 (advisory) External objects should not be declared in more than one file.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 28 (advisory) The register storage class specifier should not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the register
keyword is used.

Rule 29 (required) The use of a tag shall agree with its declaration.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an enumeration
constant is assigned to variable of the wrong enumeration type.
EWMISRAC1998-4

35

36

Initialization
The linker will generate an error, indicating a violation of this rule, if the same structure
or enumeration tag is used in several different translation units.

Initialization
The rules in this section are concerned with the initialization of variables.

Rule 30 (required) All automatic variables shall be assigned a value before being used.

How the rule is checked

Partial support for checking this rule is available in the implementation.

The compiler will generate an error, indicating a violation of this rule, if a variable is
used but not previously assigned a value, but only if no execution path contains an
assignment.

Rule 31 (required) Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any initializer
that does not have the correct brace structure and number of elements. The compiler will
not generate an error if the initializer { 0 } is used.

Examples of rule violations

struct { int a,b; } a_struct = { 1 };
struct { int a[3]; } a_struct = { 1, 2 };

Examples of correct code

struct { int a,b; } a_struct = { 1, 2 };
struct { int a,b; } a_struct = { 0 };
struct { int a[3]; } a_struct = { 0 };
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 32 (required) In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if there are
initializers for at least one of the enumeration constants, but:

● the first enumeration constant does not have an initializer, or

● the number of initializers is more than one but fewer than the number of
enumeration constants.

Operators
The rules in this section are concerned with the behavior of operators and operands.

Rule 33 (required) The right-hand operand of an && or || operator shall not contain side effects.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the right-hand
side expression of an && or || operator contains either ++, --, an assignment operator,
or a function call.

Rule 34 (required) The operands of a logical && or || shall be primary expressions.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, unless both the
left- and right-hand sides of a binary logical operator are either a single variable, a
constant, or an expression in parentheses.

Note: There is an exception: No error is generated when the left- or right-hand
expression is using the same logical operator. These are safe with respect to evaluation
order and readability.

Examples of rule violations

a && b || c
a || b && c
a == 3 || b > 5
EWMISRAC1998-4

37

38

Operators
Examples of correct code

a && b && c
a || b || c
(a == 3) || (b > 5)

Rule 35 (required) Assignment operators shall not be used in expressions which return Boolean values.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any
assignment operator appearing in a Boolean context, that is:

● On the top level of the controlling expression in an if, while, or for statement.

● In the first part of an ?: operator.

● On the top level of the left- or right-hand side of an && or || operator.

Example of rule violations

 if (a = func()) {
 …
 }

Example of correct code

 if ((a = func()) != 0) {
 …
 }

Rule 36 (advisory) Logical operators should not be confused with bitwise operators.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in the following
situations:

● If a bitwise operator is used in a Boolean context.

● If a logical operator is used in a non-Boolean context.

Examples of rule violations

d = (c & a) && b;
d = a && b << c;
if (ga & 1) { … }
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Examples of correct code

d = a && b ? a : c;
d = ~a & b;
if ((ga & 1) == 0) { … }

Note: The following are considered Boolean contexts:

● The top level of the controlling expression in an if, while, or for statement.

● The top level of the first expression of an ?: operator.

● The top level of the left- or right-hand side of an && or || operator.

Rule 37 (required) Bitwise operations shall not be performed on signed integer types.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the type of the
operation is a signed integer, with an exception if the expression is:

● a positive constant

● directly converted from an integer type strictly smaller than int

● a Boolean operation.

Rule 38 (required) The right-hand operand of a shift operator shall lie between zero and one less than the
width in bits of the left-hand operand (inclusive).

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the right-hand
side of a shift operator is an integer constant with a value exceeding the width of the
left-hand type after integer promotion.

Specifically, for a signed 8-bit integer variable i8, the compiler will not generate an
error when shifting 8 positions since the value of i8 will be promoted to int before the
left-shift operator is applied and therefore has a well-defined behavior.

Example of correct code

i8 = i8 >> 8; /* i8 promoted to int */
EWMISRAC1998-4

39

40

Conversions
Rule 39 (required) The unary minus operator shall not be applied to an unsigned expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if unary minus is
applied to an expression with an unsigned type.

Rule 40 (advisory) The sizeof operator should not be used on expressions that contain side effects.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the sizeof
operator is applied to an expression containing either ++, --, an assignment operator, or
a function call.

Rule 41 (advisory) The implementation of integer division in the chosen compiler should be determined,
documented, and taken into account.

How the rule is checked

This is implementation-defined behavior. For the IAR C/C++ Compiler, the sign of the
remainder on integer division is the same as the sign of the dividend, as documented in
the IAR C/EC++ Compiler Reference Guide.

Rule 42 (required) The comma operator shall not be used, except in the control expression of a for loop.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a comma is used
anywhere except in the first or last part in the head of a for loop.

Conversions
The rules in this section are concerned with data conversion and type casts.

Rule 43 (required) Implicit conversions which may result in a loss of information shall not be used.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 44 (advisory) Redundant explicit casts should not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an explicit cast
is used to convert to an identical type.

Rule 45 (required) Type casting from any type to or from pointers shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a value of object
pointer type is cast to any other type or if any value is cast to an object pointer type.

Note: This includes implicit and explicit casts to or from void pointer types, which are
otherwise allowed by the standard.

Expressions
The rules in this section are concerned with expressions.

Rule 46 (required) The value of an expression shall be the same under any order of evaluation that the
standard permits.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for an expression
if there are:

● multiple writes to a location without an intervening sequence point.

● unordered reads and writes to or from the same location.

● unordered accesses to the a volatile location.

Note: The implementation does not generate an error for the expression f() + f().

Rule 47 (advisory) No dependence should be placed on C’s operator precedence rules in expressions.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

41

42

Expressions
Example of rule violations

x = 3 * a + b / c;

Example of correct code

x = (3 * a) + (b / c);

Rule 48 (advisory) Mixed precision arithmetic should use explicit casting to generate the desired result.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 49 (advisory) Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 50 (required) Floating-point variables shall not be tested for exact equality or inequality.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if == or != is
applied to a floating-point value. If a comparison is explicitly against the floating-point
constant 0.0, no error message is given.

Rule 51 (advisory) Evaluation of constant unsigned integer expressions should not lead to wrap-around.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the evaluation
of a constant unsigned integer expression leads to wrap-around.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Control flow
The rules in this section are concerned with the flow of the application code.

Rule 52 (required) There shall be no unreachable code.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in any of the
following cases:

● Code after a goto or return.

● Code in a switch body, before the first label.

● Code after an infinite loop (a loop with a constant controlling expression that
evaluates to true).

● Code after a function call of a function that is known not to return.

● Code after break in a switch clause.

● Code after an if statement that is always taken where the end of the dependent
statement is unreachable.

● Code after an if statement where the ends of both dependent statements are
unreachable.

● Code after a switch statement where the ends of all clauses are unreachable.

Rule 53 (required) All non-null statements shall have a side-effect.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a statement
does not contain a function call, an assignment, an operator with a side-effect (++ and
--), or an access to a volatile variable.

Example of rule violations

v; /* If 'v' is non-volatile */

Examples of correct code

do_stuff();
; /* A null statement */
v; /* If 'v' is volatile */
EWMISRAC1998-4

43

44

Control flow
Rule 54 (required) A null statement shall only occur on a line by itself, and shall not have any other text on
the same line.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for a null
statement if the last physical line contains anything else than a single semicolon
surrounded by white space.

Rule 55 (advisory) Labels should not be used, except in switch statements.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a label that is
not a case label or default is used.

Rule 56 (required) The goto statement shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a goto
statement is used.

Rule 57 (required) The continue statement shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a continue
statement is used.

Rule 58 (required) The break statement shall not be used (except to terminate the cases of a switch
statement).

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any break
statement that is not part of a switch statement.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 59 (required) The statements forming the body of an if, else if, else, while, do … while or for
statement shall always be enclosed in braces.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the statements
forming the body of the constructions above is not a block.

Rule 60 (advisory) All if, else if constructs should contain a final else clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever an if,
else if construct is not terminated by an else clause.

Rule 61 (required) Every non-empty case clause in a switch statement shall be terminated with a break
statement.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any case
clause that is not terminated by a break statement.

Note: An error will be generated even if the case statement is terminated with a
return statement.

Rule 62 (required) All switch statements should contain a final default clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
switch statement does not have a default label or the default label is not last in the
switch statement.
EWMISRAC1998-4

45

46

Control flow
Rule 63 (advisory) A switch expression should not represent a Boolean value.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in the following
two cases:

● The controlling expression of a switch is the result of a comparison operator
(equality or relational operator) or a logical operator (&&, ||, or !).

● There is only one case label in the switch body.

Rule 64 (required) Every switch statement shall have at least one case.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a switch
statement does not contain at least one case clause.

Rule 65 (required) Floating-point variables shall not be used as loop counters.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 66 (advisory) Only expressions concerned with loop control should appear within a for statement.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 67 (advisory) Numeric variables being used within a for loop for iteration counting should not be
modified in the body of the loop.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Functions
The rules in this section are concerned with the declaration and use of functions.

Rule 68 (required) Functions shall always be declared at file scope.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, on encountering
a function declaration at block scope.

Rule 69 (required) Functions with variable number of arguments shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
function is declared or defined using the ellipsis notation.

Note: No error is given for using va_start, va_end, or va_arg macros, because it is
pointless to use them without using the ellipsis notation.

Rule 70 (required) Functions shall not call themselves, either directly or indirectly.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 71 (required) Functions shall always have prototype declarations and the prototype shall be visible at
both the function definition and call.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever:

● A non-static function is defined but there is no prototype visible at the point of
definition

● A function pointer type with no prototype is used

● A non-prototype function is declared.
EWMISRAC1998-4

47

48

Functions
Example of rule violations

void func(); /* Not a prototype */

Example of correct code

void func(void);
void func(void) { … }

Rule 72 (required) For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any function
definition where the type given in the definition is not identical with the return type and
the type of the parameters in the declaration. In particular, typedef types with different
names are not considered identical and will generate an error.

Rule 73 (required) Identifiers shall either be given for all the parameters in a function prototype declaration,
or for none.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a prototype
declaration has an identifier for more than one parameter, but for fewer than the number
of parameters in the prototype.

Rule 74 (required) If identifiers are given for any of the parameters, then the identifiers used in the
declaration and definition shall be identical.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the identifier
given in the definition of a function does not match the corresponding identifier given
in the prototype.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 75 (required) Every function shall have an explicit return type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a function has
an implicitly declared return type.

Rule 76 (required) Functions with no parameters shall be declared with parameter type void.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a function
declaration or definition is not also a prototype.

Rule 77 (required) The unqualified type of parameters passed to a function shall be compatible with the
unqualified expected types defined in the function prototype.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any function
call requiring an implicit conversion of any of the parameters.

Rule 78 (required) The number of parameters passed to a function shall match the function prototype.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.

Rule 79 (required) The values returned by void functions shall not be used.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.

Rule 80 (required) void expressions shall not be passed as function parameters.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.
EWMISRAC1998-4

49

50

Functions
Rule 81 (advisory) const qualification should be used on function parameters which are passed by
reference, where it is intended that the function will not modify the parameter.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 82 (advisory) A function should have a single point of exit.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for the second
point of exit from a function, which is either a return statement or the end of the
function.

No error is given for points of exit that cannot be reached.

Rule 83 (required) For functions with non-void return types:

● there shall be one return statement for every exit branch (including the end of
the program),

● each return shall have an expression,

● the return expression shall match the declared return type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever:

● a function with non-void return type does not have a return last in the function

● a return statement does not have an expression

● the expression given in any return statement is implicitly converted to match the
return type.

Rule 84 (required) For functions with void return type, return statements shall not have an expression.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 85 (advisory) Function calls with no parameters should have empty parentheses.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if:

● a function designator (a function name without parentheses) is used in the
controlling expression of an if, while, or for statement

● a function designator is compared with 0 using either == or !=

● a function designator is used in a void expression.

Example of rule violations

extern int func(void);
if (func) { … }

Example of correct code

extern int func(void);
if (func()) { … }

Rule 86 (advisory) If a function returns error information, then that error information should be tested.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Preprocessing directives
The rules in this section are concerned with include files and preprocessor directives.

Rule 87 (required) #include statements in a file shall only be preceded by other preprocessor directives
or comments.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an include
directive is preceded by anything that is not a preprocessor directive or a comment.
EWMISRAC1998-4

51

52

Preprocessing directives
Rule 88 (required) Non-standard characters shall not occur in header file names in #include directives.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a header file
name contains any non-standard character.

Rule 89 (required) The #include directive shall be followed by either a <filename> or "filename"
sequence.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an include
directive is not followed by either " or <.

Rule 90 (required) C macros shall only be used for symbolic constants, function-like macros, type
qualifiers, and storage class specifiers.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 91 (required) Macros shall not be #define’d and #undef’d within a block.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a #define or
#undef directive is used outside of a file-level scope.

Rule 92 (advisory) #undef should not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an #undef
directive is used.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 93 (advisory) A function should be used in preference to a function-like macro.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 94 (required) A function-like macro shall not be ‘called’ without all of its arguments.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for a macro call
where one or more arguments do not contain any tokens.

Example of rule violations

MACRO(,)

Example of correct code

#define EMPTY
MACRO(EMPTY,EMPTY)

Rule 95 (required) Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a preprocessing
token with an initial # is used.

Note: No error is given for macros that are never expanded.

Rule 96 (require) In the definition of a function-like macro the whole definition, and each instance of a
parameter, shall be enclosed in parentheses.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a function-like
macro is defined where either:

● a macro parameter in the replacement text of the macro is not enclosed in
parentheses, or
EWMISRAC1998-4

53

54

Preprocessing directives
● the replacement text is not enclosed in parentheses.

Examples of rule violations

#define FOO(x) x + 2
#define FOO(x) (x) + 2

Example of correct code

#define FOO(x) ((x) + 2)

Rule 97 (advisory) Identifiers in preprocessor directives should be defined before use.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an undefined
preprocessor symbol is used in an #if or #elif directive.

Rule 98 (required) There shall be at most one occurrence of the # or ## preprocessor operator in a single
macro definition.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if more than one
of # or ## is used in combination. For example, the occurrence of # and ## in the same
macro definition will trigger an error.

Example of rule violations

#define FOO(x) BAR(#x) ## _var

Examples of correct code

#define FOO(x) #x
#define FOO(x) my_ ## x

Rule 99 (required) All uses of the #pragma directive shall be documented and explained.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 100 (required) The defined preprocessor operator shall only be used in one of the two standard forms.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the result of
expanding a macro in an expression controlling conditional inclusion, results in the
defined unary operator.

Pointers and arrays
The rules in this section are concerned with pointers and arrays.

Rule 101 (advisory) Pointer arithmetic should not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the left- or
right-hand side of +, -, +=, or -= is an expression of pointer type.

Rule 102 (advisory) No more than 2 levels of pointer indirection should be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any type with
more than two levels of indirection is used in a declaration or definition of an object or
function.

Rule 103 (required) Relational operators shall not be applied to pointer types except where both operands
are of the same type and point to the same array, structure, or union.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

55

56

Pointers and arrays
Rule 104 (required) Non-constant pointers to functions shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an explicit cast
of a value to a function pointer type is made, except when casting:

● constant values

● function pointers.

Rule 105 (required) All the functions pointed to by a single pointer to function shall be identical in the
number and type of parameters and the return type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an implicit or
explicit cast of a function pointer is made to a different function pointer type.

Rule 106 (required) The address of an object with automatic storage shall not be assigned to an object which
may persist after the object has ceased to exist.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 107 (required) The null pointer shall not be de-referenced.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Structures and unions
The rules in this section are concerned with the specification and use of structures and
unions.

Rule 108 (required) In the specification of a structure or union type, all members of the structure or union
shall be fully specified.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a field is
declared as an array without a size.

Rule 109 (required) Overlapping storage shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for a definition
or declaration of a union.

Rule 110 (required) Unions shall not be used to access subparts of larger data types.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 111 (required) Bitfields shall only be defined to be of type unsigned int or signed int.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitfield is
declared to have any type other than unsigned int or signed int.

Note: An error is given if a bitfield is declared to be of type int without using a
signed or unsigned specifier.
EWMISRAC1998-4

57

58

Standard libraries
Rule 112 (required) Bitfields of type signed int shall be at least 2 bits long.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitfield of type
signed int is declared to have size 0 or 1.

Rule 113 (required) All the members of a structure (or union) shall be named and shall only be accessed via
their name.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitfield is
declared without a name or if the address of a structure field is taken.

Standard libraries
The rules in this section are concerned with the use of standard library functions.

Rule 114 (required) Reserved words and standard library function names shall not be redefined or undefined.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any #define
(or #undef) used to define (or undefine) an object- or function-like macro with a name
that is:

● a compiler predefined macro

● an object- or function-like macro defined in any standard header

● an object or function declared in any standard header.

Rule 115 (required) Standard library function names shall not be reused.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any function
definition used to define a function with a name that is already declared in a standard
header. This regardless of whether the correct header file has been included or not.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 116 (required) All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

How the rule is checked

This rule is not enforced.

Rule 117 (required) The validity of values passed to library functions shall be checked.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Rule 118 (required) Dynamic heap memory allocation shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to functions named malloc, realloc, calloc, or free, even if the header file
stdlib.h has not been included.

Rule 119 (required) The error indicator errno shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to an object named errno, even if the header file errno.h has been included.

Rule 120 (required) The macro offsetof, in library <stddef.h>, shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a macro with
the name offsetof is expanded.

Note: Including the header file stddef.h does not, in itself, generate an error.
EWMISRAC1998-4

59

60

Standard libraries
Rule 121 (required) <locale.h> and the setlocale function shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
locale.h is included.

Rule 122 (required) The setjmp macro and the longjmp function shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named setjmp or longjmp; regardless of whether the header file
setjmp.h is included.

Rule 123 (required) The signal handling facilities of <signal.h> shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
signal.h is included.

Rule 124 (required) The input/output library <stdio.h> shall not be used in production code.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
stdio.h has been included when NDEBUG is defined.

Rule 125 (required) The library functions atof, atoi, and atol from library <stdlib.h> shall not be
used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named atof, atoi, or atol; regardless of whether the header file
stdlib.h is included.
EWMISRAC1998-4

IAR Embedded Workbench® MISRA C:1998
Reference Guide

MISRA C:1998 rules reference
Rule 126 (required) The library functions abort, exit, getenv, and system from library <stdlib.h>
shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named abort, exit, getenv, and system; regardless of whether the
header file stdlib.h is included.

Rule 127 (required) The time handling functions of library <time.h> shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
time.h has been included.
EWMISRAC1998-4

61

	Contents
	Preface
	Who should read this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction
	Using MISRA C
	Claiming compliance

	Implementation and interpretation of the MISRA C rules
	Checking the rules

	Enabling MISRA C rules

	General IDE options
	MISRA C 1998
	Set active MISRA C 1998 rules

	Compiler IDE options
	MISRA C 1998
	Set active MISRA C 1998 rules

	Command line options
	Options summary
	Descriptions of options
	--misrac1998
	--misrac_verbose

	MISRA C:1998 rules reference
	Summary of rules
	Environment rules
	Rule 1 (required)
	Rule 2 (advisory)
	Rule 3 (advisory)
	Rule 4 (advisory)

	Character sets
	Rule 5 (required)
	Rule 6 (required)
	Rule 7 (required)
	Rule 8 (required)

	Comments
	Rule 9 (required)
	Rule 10 (advisory)

	Identifiers
	Rule 11 (required)
	Rule 12 (required)

	Types
	Rule 13 (advisory)
	Rule 14 (required)
	Rule 15 (advisory)
	Rule 16 (required)
	Rule 17 (required)

	Constants
	Rule 18 (advisory)
	Rule 19 (required)

	Declarations and definitions
	Rule 20 (required)
	Rule 21 (required)
	Rule 22 (advisory)
	Rule 23 (advisory)
	Rule 24 (required)
	Rule 25 (required)
	Rule 26 (required)
	Rule 27 (advisory)
	Rule 28 (advisory)
	Rule 29 (required)

	Initialization
	Rule 30 (required)
	Rule 31 (required)
	Rule 32 (required)

	Operators
	Rule 33 (required)
	Rule 34 (required)
	Rule 35 (required)
	Rule 36 (advisory)
	Rule 37 (required)
	Rule 38 (required)
	Rule 39 (required)
	Rule 40 (advisory)
	Rule 41 (advisory)
	Rule 42 (required)

	Conversions
	Rule 43 (required)
	Rule 44 (advisory)
	Rule 45 (required)

	Expressions
	Rule 46 (required)
	Rule 47 (advisory)
	Rule 48 (advisory)
	Rule 49 (advisory)
	Rule 50 (required)
	Rule 51 (advisory)

	Control flow
	Rule 52 (required)
	Rule 53 (required)
	Rule 54 (required)
	Rule 55 (advisory)
	Rule 56 (required)
	Rule 57 (required)
	Rule 58 (required)
	Rule 59 (required)
	Rule 60 (advisory)
	Rule 61 (required)
	Rule 62 (required)
	Rule 63 (advisory)
	Rule 64 (required)
	Rule 65 (required)
	Rule 66 (advisory)
	Rule 67 (advisory)

	Functions
	Rule 68 (required)
	Rule 69 (required)
	Rule 70 (required)
	Rule 71 (required)
	Rule 72 (required)
	Rule 73 (required)
	Rule 74 (required)
	Rule 75 (required)
	Rule 76 (required)
	Rule 77 (required)
	Rule 78 (required)
	Rule 79 (required)
	Rule 80 (required)
	Rule 81 (advisory)
	Rule 82 (advisory)
	Rule 83 (required)
	Rule 84 (required)
	Rule 85 (advisory)
	Rule 86 (advisory)

	Preprocessing directives
	Rule 87 (required)
	Rule 88 (required)
	Rule 89 (required)
	Rule 90 (required)
	Rule 91 (required)
	Rule 92 (advisory)
	Rule 93 (advisory)
	Rule 94 (required)
	Rule 95 (required)
	Rule 96 (require)
	Rule 97 (advisory)
	Rule 98 (required)
	Rule 99 (required)
	Rule 100 (required)

	Pointers and arrays
	Rule 101 (advisory)
	Rule 102 (advisory)
	Rule 103 (required)
	Rule 104 (required)
	Rule 105 (required)
	Rule 106 (required)
	Rule 107 (required)

	Structures and unions
	Rule 108 (required)
	Rule 109 (required)
	Rule 110 (required)
	Rule 111 (required)
	Rule 112 (required)
	Rule 113 (required)

	Standard libraries
	Rule 114 (required)
	Rule 115 (required)
	Rule 116 (required)
	Rule 117 (required)
	Rule 118 (required)
	Rule 119 (required)
	Rule 120 (required)
	Rule 121 (required)
	Rule 122 (required)
	Rule 123 (required)
	Rule 124 (required)
	Rule 125 (required)
	Rule 126 (required)
	Rule 127 (required)

