SAMS8 IAR Assembler

Reference Guide

for Samsung’s
SAMS8 Microcontroller Family

COPYRIGHT NOTICE
© Copyright 1997-2003 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR, IAR Embedded Workbench, IAR XLINK Linker, IAR XAR Library Builder, [AR
XLIB Librarian, IAR MakeApp, and IAR PreQual are trademarks owned by IAR
Systems. C-SPY is a trademark registered in Sweden by IAR Systems. IAR
visualSTATE is a registered trademark owned by IAR Systems.

SAMS and Samsung are registered trademarks of Samsung Electronics Co., Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Second edition: April 2003

Part number: ASAMS-2

Contents

TABIES ..ottt Vil

PPEFACE ... ix

Who should read this guide ... ix

How to use this guide ... ix

What this guide contains ... ix

Other documentation ... X

Document conventions ..o X

Introduction to the SAM8 IAR Assembler ..., 1

S0oUrCe fOFMALo.ooii s 1

Assembler eXpressions ... 2

TRUE and FALSEcc.ooiiiiiiiiecceneeeeeeeecreseesee e 2

Using symbols in relocatable eXpressionsc..c.ceceeveeveereceneneenens 2

SYMDOIS ..ttt 3

LabeIS .ot 3

Integer CoNStantsccoeeiiiiiiiiiiiiiiiiii e 3

ASCII character CONSLANLSc..coververuerrerrenreereeeeeeieiererenesee e seniene 4

Predefined Symbolsccccoevieniiniiniiniinininenccee e 4
Programming hints ...

Accessing special function registers

Using C-style preprocessor directives

Assembler OPLiONS ... 9
Setting command line options ... 9
Extended command line filecocooininininiiniiniinieieienenese e 9
Assembler environment variablesccoooiiiiiiiiiiiiinie 10

Summary of assembler options ...

Descriptions of assembler options

Assembler Operators ... 23

Precedence of operators ..o
Summary of assembler operatorscccvonrennenccneennne
Unary Operators — 1 ..c..cocvererenineneeieeeeeieiereresre et

Multiplicative and shift arithmetic operators — 3

Additive arithmetic Operators — 4cccecvevererenienieneseseseseseenean
AND OPETAOTS — 5 ..cueeiieiieiieieientertestet ettt
OR OPEIALOTS — 6 ...ceenvinieieierieriericiceece ettt se e 24
Comparison OPEIAtOrS — 7ccccveuereeuiruereeieeerenieenreneerensereseesaeseenenes 25
Description of operators ... 25
Assembler direCtives ... 37

Summary of assembler directives
SYNtaxX CONVENLIONSocoiuiiiiiiiiieie s

Labels and COMMENLSccccuveeeeiiieeeeiiiieeeeeeeeeeeireeeeeiaeeeeevreeeeeanees

SAMS8 IAR Assembler
Reference Guide

Contents ___4

Parameters ...

Descriptions

EXaMPIES ..oveiiiiiiiiiiiieee e

Assembler control directivescccoocovvvieiiiviieieeeeiee. 76

Description

EXaMPIES ..oveiiiiiiiiiiii e
Compiler function directives ... 79
DESCTIPHON ..ottt ettt st st ere e 79

vi

SAMS8 IAR Assembler
Reference Guide

SYNLAX .ttt s s 80
Parametersccccoouiiiiiiiiiiiic 81
DESCTIPHONS ettt ettt sttt s sre st saesbesae s e e 82
SIMPIE TULES ..ot 86
CFI @XPIESSIONS ..cvvenventieirienieniieiinienieeitentesteteteteresresresbesaesiesaesreeneene 88

Example
DIagNOSLICSocoouuuirercrceeeiiiiiisess e sesseessssssssese e sessssss s ssesseeens 93
Message format ... 93
Severity levels ... 93
INAEX .o 95

Tables

1: Typographic conventions used in this UIdEcc.ceeeveerrenierrerenenieninineeeeeeenes X
2: Integer CONStANt fOIMALSc.eeuieuierieieieieietetete ettt ettt s e benees 4
3: ASCII character constant fOrmatsccccoevieeiiiniiiiiiiiieiccee e 4
4: Predefined SYMDOLSccoeviiiiiiiiiriiiincrerer ettt 5
5: Predefined register SYMDOIScceeviririeiiniiiniiniencece e 6
6: Assembler error TetUrn COAESoceviiiiiiiiiiiiiieiiiiee e 10
7: Asssembler environment variablesccccooiiiiiiiiiiiiii e 10
8: Assembler OPtioNS SUMIMATYcc.coeeuereuiniererieinreeeenieeeereeereesesesseseesessesessenessenes 11
9: ConditioNal LISt (=€) .eevvviieiiieciii ettt e

10: Generating debug information (-r)

11: Controlling case sensitivity in user Symbols (-8)cccoevererverereinrereneierennnne 19
12: Specifying the processor configuration (=V)cc.ceccevererveieienenenenieneeneeneennens 20
13: Disabling assembler Warnings (-W)c.ccoeeeveeuerueriereneneneneneneneseseeeneereenees 21
14: Including cross-references in assembler list file (-X)ccceovevererenienienienenenee 22
15: Assembler directives summary

16: Assembler directive parameters

17: Module cONtrol difECHIVESccvereerierierieriiriesiesteeieeiietietteteeeeee et ebesaesaeseeseenee
18: Symbol cOntrol dir€CtiVEScoueviiiriinieniiiiniirenieneeeeereete ettt

19: Segment control dir€CtiVEScouevuerireniniinineneneee et see e 45
20: Value assignment dif€CHIVESc..c.cceeirieirieiriinieenieieeeniee ettt eeeteie e 51
21: Conditional assembly dif€CHVEScocerveruerieriirierererenieiecteteneentenee e eeeeaeas 55
22: Macro processing dir€CHIVESccuevuererereriiriiniieriententetetetesee st eseeseeseeseenees 57
23: Listing cONtrol dir€CtiVEScceeuirieuirueuirienieiiietinieeetene ettt eteeere s etere s ienene e 65
24: C-style preprocessor irECHIVESc.coerererierieniereniereninieertertesterteeeneeseeneeseesnens 70
25: Space allocation dITECHIVESceeereeieieieieieienenenentente ettt ettt seesnens 74
26: Using data definition or allocation dir€Ctivesccccocevererenrernennieneccneeenens 75
27: Assembler control directives ... 76
28: Compiler function dir€Ctivescceeevuerierierierinenenenireceeeertestenee e 79
29: Call frame information dir€CtiVesecevererirerrieierieieieientertenienteeeseeseesaens 79
30: Unary operators in CEL @XPreSSionsc.ceceeererreneneeeeneeneeieierenrenesenvenenne 89
31: Binary operators in CFL Xpressionscoceeeeevieieinieieneeneenienierenrenenesenenne 89

vii

viii

SAMS8 IAR Assembler
Reference Guide

32: Ternary operators in CFI expressions

33: Code sample with backtrace rows and columns

Preface

Welcome to the SAM8 IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the SAM8 IAR Assembler to best suit your application requirements.

Who should read this guide

You should read this guide if you plan to develop an application using assembler
language for the SAMS8 microcontroller and need to get detailed reference information
on how to use the SAMS8 IAR Assembler. In addition, you should have working
knowledge of the following:

o The architecture and instruction set of the SAMS8 microcontroller. Refer to the
documentation from Samsung for information about the SAMS8 microcontroller

o General assembler language programming

Application development for embedded systems

o The operating system of your host machine.

How to use this guide

When you first begin using the SAMS8 IAR Assembler, you should read the Introduction
to the SAMS8 IAR Assembler chapter in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the SAMS IAR Embedded Workbench™ IDE User Guide. They give product
overviews, as well as tutorials that can help you get started.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

e [ntroduction to the SAMS IAR Assembler provides programming information. It also
describes the source code format, and the format of assembler listings.

® Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Other documentation

® Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

o Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

e Diagnostics contains information about the formats and severity levels of diagnostic
messages.

Other documentation

The complete set of IAR Systems development tools for the SAM8 microcontroller is
described in a series of guides. For information about:

o Using the IAR Embedded Workbench™ and the IAR C-SPY™ Debugger, refer to
the SAMS8 IAR Embedded Workbench™ IDE User Guide

e Programming for the SAMS8 IAR C Compiler, refer to the SAMS IAR C Compiler
Reference Guide

o Using the IAR XLINK Linker™, the IAR XLIB Librarian™, and the AR XAR
Library Builder™, refer to the IAR Linker and Library Tools Reference Guide.

o Using the IAR C Library, refer to the IJAR C Library Functions Reference Guide,
available from the IAR Embedded Workbench IDE Help menu.

All of these guides are delivered in PDF format on the installation media. Some of them
are also delivered as printed books.

Document conventions

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

reference A cross-reference within or to another part of this guide.

Table 1: Typographic conventions used in this guide

SAMS IAR Assembler
X Reference Guide

Preface __4

Used for

Identifies instructions specific to the versions of the IAR Systems tools
for the IAR Embedded Workbench interface.

Identifies instructions specific to the command line versions of IAR

Systems development tools.

Table 1: Typographic conventions used in this guide (Continued)

Document conventions

SAMS IAR Assembler
xii Reference Guide

Introduction to the SAMS8
IAR Assembler

This chapter describes the source code format for the SAM8 IAR Assembler
and provides programming hints.

Refer to Samsung’s hardware documentation for syntax descriptions of the

instruction mnemonics.

Source format

The format of an assembler source line is as follows:
[label [:]1] [operation] [operands] [; comment]

where the components are as follows:

label A label, which is assigned the value and type of the current
program location counter (PLC). The : (colon) is optional if the
label starts in the first column.

operation An assembler instruction or directive. This must not start in the
first column.
operands An assembler instruction can have zero, one, or more operands.

The data definition directives, for example DB and DCS8, can have
any number of operands. For reference information about the
data definition directives, see Space allocation directives, page 74.

Other assembler directives can have one, two, or three operands,
separated by commas.

comment Comment, preceded by a ; (semicolon).

The fields can be separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 09H, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

The SAMBS IAR Assembler uses the default filename extensions s18, asm, and msa for
source files.

Assembler expressions

Assembler expressions

SAMS IAR Assembler
2 Reference Guide

Expressions can consist of operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers, and range
checking is only performed when a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 23.

The following operands are valid in an expression:

o User-defined symbols and labels
e Constants, excluding floating-point constants
o The program location counter (PLC) symbol, $.

These are described in greater detail in the following sections.

The valid operators are described in the chapter Assembler operators, page 23.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value 0 for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker™.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

NAME progl

EXTERN third

RSEG DATA
first: DCS8 5
second: DC8 3

ENDMOD

MODULE prog2

RSEG CODE

start

Introduction to the SAM8 IAR Assembler ___4

Then in the segment CODE the following instructions are legal:

LD R7,first

LD R7,first+1

LD R7,1+first

LD R7, (first/second) *third

Note: At assembly time, there will be no range check. The range check will occur at link
time and, if the values are too large, there will be a linker error.
SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant.

Symbols must begin with a letter, a—z or A-Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

For built-in symbols like instructions, registers, operators, and directives, case is
insignificant. For user-defined symbols case is by default significant but can be turned
on and off using the Case sensitive user symbols (-s) assembler option. See page 19
for additional information.

Note that symbols and labels are byte addresses. For additional information, see
Generating lookup table, page 75.
LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)
The program location counter is called $. For example:

JR T,$; Loop forever

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

Assembler expressions

4

SAMS IAR Assembler
Reference Guide

The following types of number representation are supported:

Integer type Example

Binary 1010b,b'1010"

Octal 1234qg,9'1234"'

Decimal 1234, -1,d'1234"
Hexadecimal OFFFFh, OXFFFF, h' FFFF'

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single or
double quotes. Only printable characters and spaces may be used in ASCII strings. If the
quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'A"B' A'B

TAT Al

"1 11 (4 quotes) '

' ' (2 quotes) Empty string (no value).

Empty string (an ASCII null character).
\ !
\\ \

Table 3: ASCII character constant formats

PREDEFINED SYMBOLS

The SAMS8 IAR Assembler defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them
in preprocessor directives or include them in the assembled code. The strings returned
by the assembler are enclosed in double quotes.

Introduction to the SAM8 IAR Assembler ___4

The following predefined symbols are available:

Symbol Value

__ASAMS8__ Target identity.

__DATE__ Current date in dd/Mmm/yyyy format (string).

__FILE__ Current source filename (string).

__IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes. The high byte is the

target identity, which is 8 for ASAMS. Bits 7-4 of the low
byte give the Processor configuration option, and bits 3-0
give the Default data pointer size option.

The following values are therefore possible:

-vo0 -ut 0x0800
-vo0 -un 0x0801
-vl -ut 0x0810
-vl -un 0x0811
-v2 -ut 0x0820
-v2 -un 0x0821
-v3 -ut 0x0830
-v3 -un 0x0831
-v4 -ut 0x0840
-v4 -un 0x0841
__TIME__ Current time in hh:mm: ss format (string).
VER Version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 4: Predefined symbols

Notice that __TID _ isrelated to the predefined symbol _TID _ inthe SAM8IAR C
Compiler. It is described in the SAM8 IAR C Compiler Reference Guide.

Including symbol values in code

To include a symbol value in the code, you use the symbol in one of the data definition
directives.

Programming hints

For example, to include the time of assembly as a string for the program to display:

timdat DC8 __TIME__,"”,”,__DATE__,0 ; time and date
LD RR4, #timdat ; load address of string
CALL printstring ; routine to print string

Testing symbols for conditional assembly
To test a symbol at assembly time, you use one of the conditional assembly directives.

For example, in a source file written for use on any one of the SAM8 family members,
you may want to assemble appropriate code for a specific microcontroller. You could do
this using the TID _ symbol as follows:

#define TARGET ((__TID _& O0xO0F0)>>4)
#if (TARGET==1)

#else
#endif

Register symbols

The following table shows the existing predefined register symbols:

Name Address size Description

RO-R15 8 bits Byte registers

RRO, RR2, ..., RR14 16 bits Word registers

PC Program counter

SP Stack pointer, word
SPH Stack pointer, high byte
SPL Stack pointer; low byte

Table 5: Predefined register symbols

Programming hints

SAMS IAR Assembler
6 Reference Guide

This section gives hints on how to write efficient code for the SAMS IAR Assembler.
For information about projects including both assembler and C source files, see the
SAMS8 IAR C Compiler Reference Guide.

Introduction to the SAM8 IAR Assembler ___4

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of SAMS derivatives are included in the IAR product
package, in the \ sam8\ inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the SAMS8 IAR C Compiler, ICcCSAMS,
and they are suitable to use as templates when creating new header files for other SAMS
derivatives.

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef _ TAR SYSTEMS ASM
(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments.

Programming hints

SAMS IAR Assembler
8 Reference Guide

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The SAM8 IAR Embedded Workbench™ IDE User Guide describes how to set
assembler options in the IAR Embedded Workbench, and gives reference

information about the available options.

Setting command line options

To set assembler options from the command line, you include them on the command
line, after the asam8 command:

asam8 [options] [sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2 .s18, use the following
command to generate a list file to the default filename (power2.1st):

asam8 power2 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

asam8 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named list:

asam8 power2 -Llist)\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Setting command line options

10

SAMS IAR Assembler
Reference Guide

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from
extend.xcl, enter:

asam8 -f extend.xcl

Error return codes

When using the SAMS IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take next.
For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 6: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASMSAMS8 environment variable. The assembler
appends the value of this variable to every command line, so it provides a convenient
method of specifying options that are required for every assembly.

The following environment variables can be used with the SAM8 IAR Assembler:

Environment variable Description

ASMSAMS Specifies command line options; for example:
set ASMSAM8=-L -ws

ASAM8_INC Specifies directories to search for include files; for example:
set ASAM8 INC=c:\myinc\

Table 7: Asssembler environment variables

For example, setting the following environment variable will always generate a list file
with the name temp.1st:

ASMSAM8=-1 temp.lst

For information about the environment variables used by the IAR XLINK Linker and
the TAR XLIB Librarian, see the IAR Linker and Library Tools Reference Guide.

Assembler options ___4

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B
-b

-c{DMEAO}

-Dsymbol [=value]

-d

-Enumber

-f filename

-G
-Iprefix
-1

-L[prefix]

-1 filename

-Mab
-N

-Oprefix

-o filename

-plines
-r[e|n]
-S
“s{+]-}
-T

-tn
-Usymbol

-ult|n]

-v[o]|1]2]3]4]

-w[string] [s]

-X

-x{D12}

Macro execution information
Makes a library module
Conditional list

Defines a symbol

Disables matching

Maximum number of errors
Extends the command line
Opens standard input as source
Includes paths

#included text

Lists to prefixed source name
Lists to named file

Macro quote characters

Onmits header from assembler listing
Sets object filename prefix

Sets object filename

Lines/page

Generates debug information
Sets silent operation
Case-sensitive user symbols
List active lines

Tab spacing

Undefines a symbol

Default data pointer

Processor configuration
Disables warnings

Includes unreferenced external symbols

Includes cross-references

Table 8: Assembler options summary

Descriptions of assembler options

12

Descriptions of assembler options

SAMS IAR Assembler
Reference Guide

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the standard
output stream on every call of a macro. The information consists of:

o The name of the macro

o The definition of the macro

o The arguments to the macro

o The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 15.

This option is identical to the Macro execution info option in the ASAMS category in
the AR Embedded Workbench.

-b
This option causes the object file to be a library module rather than a program module.

By default, the assembler produces a program module ready to be linked with the IAR
XLINK Linker. Use the -b option if you instead want the assembler to make a library
module.

If the NAME directive is used in the source (to specify the name of the program module),
the -b option is ignored, i.e. the assembler produces a program module regardless of the
-b option.

This option is identical to the Make a LIBRARY module option in the ASAMS
category in the IAR Embedded Workbench.

-c{DMEAO}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and - 1; see page 15 for additional
information.

Assembler options ___4

The following table shows the available parameters:

Command line option Description

-cD Disable list file

-cM Macro definitions
-cE No macro expansions
-cA Assembled lines only
-co Multiline code

Table 9: Conditional list (-c)

This option is related to the List file options in the ASAMS category in the
IAR Embedded Workbench.

Dsymbol [=value]

Use this option to define a preprocessor symbol with the name symbol and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.

Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol TESTVER was defined. To do
this, use include sections such as:

#ifdef TESTVER

A ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

Production version: asam8 prog
Test version: asam8 prog -DTESTVER

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

asam8 prog -DFRAMERATE=3

This option is identical to the #define option in the ASAMS category in the
IAR Embedded Workbench.

Descriptions of assembler options

14

SAMS IAR Assembler
Reference Guide

-d
This option disables #ifdef, #endif matching.

This option is identical to the Disable #ifdef/#endif matching option in the ASAMS
category in the IAR Embedded Workbench.

-Enumber
This option specifies the maximum number of errors that the assembler will report.

By default, the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

-f filename

Extends the command line with text read from the specified file. Notice that there must
be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself. For example, to run
the assembler with further options taken from the file extend.xc1, use:

asam8 prog -f extend.xcl

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the #include
file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the ASAM8 INC environment variable. The -1
option allows you to give the assembler the names of directories where it will also search
if it fails to find the file in the current working directory.

Assembler options ___4

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\global\, and finally in the directory c:\thisproj\headers\.

This option is related to the #include option in the ASAMS category in the
IAR Embedded Workbench.

-i
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these often come from
standard files and would waste space in the list file. The - i option allows you to list
these file lines.

This option is related to the #include option in the ASAMS category in the
IAR Embedded Workbench.

-L[prefix]

By default the assembler does not generate a list file. Use this option to make the
assembler generate one and sent it to file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to the
file with the same name as the source, but the extension will be 1st.

The -L option lets you specify a prefix, for example to direct the list file to a
subdirectory. Notice that you must not include a space before the prefix.

-L may not be used at the same time as - 1.

Example
To send the list file to 1ist\prog.1st rather than the default prog.1st:
asam8 prog -Llist)\

This option is related to the Qutput directories options in the General category in the
IAR Embedded Workbench.

Descriptions of assembler options

16

SAMS IAR Assembler
Reference Guide

-1

-1 filename

Use this option to make the assembler generate a listing and send it to the file £i1ename.
If no extension is specified, 1st is used. Notice that you must include a space before the
filename.

By default, the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
-L option instead.

This option is related to the List options in the ASAMS category in the IAR Embedded
Workbench.

-Mab

This option sets the characters to be used as left and right quotes of each macro argument
to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Example

For example, using the option:

-M[1]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

asam8 filename -M'<>'

This option is identical to the Macro quote chars option in the ASAMS category in the
IAR Embedded Workbench.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 15 for
additional information.

Assembler options ___4

This option is related to the List file option in the ASAMS category in the
IAR Embedded Workbench.

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that you
must not include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj\prog.r1s rather than to the default file
prog.rl8:

asam8 prog -0obj\

This option is related to the Output directories option in the General category in the
IAR Embedded Workbench.

-o filename

This option sets the filename to be used for the object file. Notice that you must include
a space before the filename. If no extension is specified, r18 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r18 instead
of the default prog.ris:

asam8 prog -o obj
Notice that you must include a space between the option itself and the filename.

This option is related to the filename and directory that you specify when creating a new
source file or project in the IAR Embedded Workbench.

Descriptions of assembler options

-p -plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 15 for
additional information.

This option is identical to the Lines/page option in the ASAMS category in the
IAR Embedded Workbench.

-r -rle|n]

The -r option makes the assembler generate debug information that allows a symbolic
debugger such as C-SPY to be used on the program.

By default, the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

The following table shows the available parameters:

Command line option Description
-re Includes the full source file into the object file
-rn Generates an object file without source information; symbol

information will be available.

Table 10: Generating debug information (-r)

This option is identical to the Generate debug info option in the ASAMS category in
the IAR Embedded Workbench.

-S -8

The -s option causes the assembler to operate without sending any messages to the
standard output stream.

By default, the assembler sends various insignificant messages via the standard output
stream. Use the -S option to prevent this.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

SAMS IAR Assembler
18 Reference Guide

Assembler options ___4

-s(+]-)

Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case-sensitive user symbols
-s- Case-insensitive user symbols

Table 11: Controlling case sensitivity in user symbols (-s)

By default, case sensitivity is on. This means that, for example, LABEL and 1abel refer
to different symbols. Use -s- to turn case sensitivity off, in which case LABEL and label
will refer to the same symbol.

This option is identical to the Case-sensitive user symbols option in the ASAMS
category in the IAR Embedded Workbench.

-T
This option lists active lines only.

This option is identical to the Active lines only option in the ASAMS category in the
IAR Embedded Workbench.

-tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 15 for
additional information.

This option is identical to the Tab spacing option in the ASAMS category in the
IAR Embedded Workbench.

-ult|n]
This option sets the default data pointer size to either 8 bits (tiny, t), or 16 bits (near, n).

In the IAR Embedded Workbench, this is set by the chosen data model, where small =
-ut, and large = -un.

Descriptions of assembler options

-U -Usymbol
Use the -U option to undefine the predefined symbol symbol.

By default, the assembler provides certain predefined symbols; see Predefined symbols,
page 4. The -U option allows you to undefine such a predefined symbol to make its name
available for your own use through a subsequent -D option or source definition.

Example

To use the name of the predefined symbol _ TIME _ for your own purposes, you could
undefine it with:

asam8 prog -U __ TIME _

-v -v[0|1]|2]3]4]
Use the -v option to specify the processor configuration.

The following table shows how the -+ options are mapped to the SAMS derivatives:

Option Description Derivative

-vO0 CPUI type processor SAMS8 (CPUI)
-v1l CPU2 type processor SAM8x (CPU2)
-v2 Reduced cycle count processor SAM8xRC

-v3 Reduced instruction set processor SAMB8xRI

-v4 Reduced cycle count and instruction set processor SAM8xRCRI

Table 12: Specifying the processor configuration (-v)

If no processor configuration option is specified, the assembler uses the -v0 option by
default.

The -v option is identical to the Processor configuration option in the General
category in the IAR Embedded Workbench.

-w -wl[string] [s]

By default, the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but may contain a programming error; see
Diagnostics, page 93, for details.

SAMS IAR Assembler
20 Reference Guide

Assembler options ___4

Use this option to disable warnings.

Command line option Description

-w Disables all warnings.
-w+ Enables all warnings.

-w- Disables all warnings.
-w+n Enables just warning n.
-w-n Disables just warning n.
-w+m-n Enables warnings m to n.
-w-m-n Disables warnings m to n.

Table 13: Disabling assembler warnings (-w)

Only one -w option may be used on the command line.

By default, the assembler generates exit code 0 for warnings. Use the -ws option to
generate exit code 1 if a warning message is produced.

Example

To disable just warning O (unreferenced label), use the following command:

asam8 prog -w-0

To disable warnings O to 8, use the following command:

asam8 prog -w-0-8

This option is identical to the Warnings option in the ASAMS category in the
IAR Embedded Workbench.

-X

This option includes unreferenced external symbols in the output.

-x{D12}

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 15 for
additional information.

21

Descriptions of assembler options

The following parameters are available:

Command line option Description
-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 14: Including cross-references in assembler list file (-x)

This option is identical to the Include cross-reference option in the ASAMS category
in the AR Embedded Workbench.

SAMS IAR Assembler
22 Reference Guide

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e. last evaluated).

The following rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown after the operator name.

UNARY OPERATORS - |

() Parenthesis.

+ Unary plus.

- Unary minus.
NOT, ! Logical NOT.
BINNOT, ~ Bitwise NOT.
LOW Low byte.
HIGH High byte.

23

Summary of assembler operators

BYTE2 Second byte.
BYTE3 Third byte.

LWRD Low word.

HWRD High word.

DATE Current time/date.
SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.

MULTIPLICATIVE AND SHIFT ARITHMETIC OPERATORS -3

* Multiplication.

/ Division.

MOD, % Modulo.

SHR, >> Logical shift right.
SHL, << Logical shift left.

ADDITIVE ARITHMETIC OPERATORS - 4

+ Addition.

- Subtraction.

AND OPERATORS -5

AND, && Logical AND.

BINAND, & Bitwise AND.

OR OPERATORS -6

OR, || Logical OR.
BINOR, | Bitwise OR.
XOR Logical exclusive OR.
BINXOR, ™ Bitwise exclusive OR.

SAMS IAR Assembler
24 Reference Guide

Assembler operators ___4

COMPARISON OPERATORS -7

EQ, =, == Equal.

NE, <>, != Not equal.

GT, > Greater than.

LT, < Less than.

UGT Unsigned greater than.
ULT Unsigned less than.
GE, >= Greater than or equal.
LE, <= Less than or equal.

Description of operators

The following sections give detailed descriptions of each assembler operator. See
Assembler expressions, page 2, for related information.

() Parenthesis (1).
(and) group expressions to be evaluated separately, overriding the default precedence
order.
Example

1+2*3 —> 7
(1+2)*3 —> 9

* Multiplication (3).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2%2 > 4
-2%2 > -4

+ Unary plus (1).

Unary plus operator.

25

Description of operators

26

SAMS IAR Assembler
Reference Guide

Example

+3 > 3
3%¥4+2 > 6

Addition (4).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.
Example

92419 — 111
-242 > 0
-2+-2 > -4

Unary minus (1).
The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Subtraction (4).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example

92-19 > 73
-2-2 > -4
-2--2 > 0

Division (3).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example

9/2 > a
-12/3 > -4
9/2%6 —> 24

Assembler operators ___4

<, LT Less than (7).

=, NE

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Example

-l <2 7> 1
2 <1 >0
2 <270

Less than or equal (7).

<= evaluates to 1 (true) if the left operand has a lower or equal numeric value to the right
operand.

Example

1 <=2 1
2 <=1 0
1 <=1 1
Not equal (7).

<> evaluates to O (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 > 1
2 <>2 7> 0
'A' <> 'B' > 1

Equal (7).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

'ABC' = 'ABCD' > 0

27

Description of operators

28

SAMS IAR Assembler
Reference Guide

>, GT

>=, GE

&&, AND

&, BINAND

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Example

-1 >1 >0
2>1—>1
1>1—>0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand.

Example
1>=2 > 0

2 >=1 7> 1

1 >=1 7> 1
Logical AND (5).

Use && to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1; otherwise it is zero.

Example

B’1010 && B’0011 > 1
B’1010 && B’0101 —> 1
B’1010 && B’0000 —> O

Bitwise AND (5).

Use & to perform bitwise AND between the integer operands.

Example

B’1010 & B’'0011 — B’0010
B’1010 & B’'0101 — B’0000
B’1010 & B’'0000 — B’0000

Assembler operators ___4

~, BINNOT Bitwise NOT (1).

Use ~ to perform bitwise NOT on its operand.

Example

~ B’1010 ™ B’11111111111111111111111111110101

|, BINOR Bitwise OR (6).

Use | to perform bitwise OR on its operands.

Example

B’1010 | B'0101 — B’1111
B/1010 | B’0000 — B’1010

*, BINXOR Bitwise exclusive OR (6).

Use * to perform bitwise XOR on its operands.

Example
B’1010 ”~ B’0101 — B’1111
B’1010 ”~ B’0011 — B’1001

%, MOD Modulo (3).

% produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X % Yisequivalent to X-Y* (X/Y) using integer division.

Example

2%2 >0
12 $ 7 > 5
3%2 > 1

!, NOT Logical NOT (1).

Use ! to negate a logical argument.

29

Description of operators

30

SAMS IAR Assembler
Reference Guide

1, or

BYTE2

BYTE3

DATE

Example

! B’0101 > O
! B’0000 > 1

Logical OR (6).

Use | | to perform a logical OR between two integer operands.

Example

B’1010 || B'0000 > 1
B’0000 || B’0000 > 0
Second byte (1).

BYTE2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 —> 0x56

Third byte (1).
BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 —> 0x34

Current time/date (1).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).
DATE 2 Current minute (0-59).
DATE 3 Current hour (0-23).
DATE 4 Current day (1-31).

Assembler operators ___4

DATE 5 Current month (1-12).
DATE 6 Current year MOD 100 (1998 — 98, 2000 — 00, 2002 — 02).
Example

To assemble the date of assembly:

today: DC8 DATE 6, DATE 5, DATE 4

HIGH High byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD —> O0xAB

HWRD High word (1).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

Example

HWRD 0x12345678 — 0x1234

LOW Low byte (1).
Low takes a single operand, which is interpreted as an unsigned, 16-bit integer value.

The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW O0xABCD —> 0xCD

LWRD Low word (1).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

31

Description of operators

32

SAMS IAR Assembler
Reference Guide

SFB

SFE

Example

LWRD 0x12345678 —> 0x5678

Segment begin (1).

Syntax

SFB (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are
optional if offset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation takes place at linking time.
Example

NAME demo
RSEG CODE
start: DCl6 SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before

SFE is used.

Assembler operators ___4

offset An optional offset from the start address. The parentheses are
optional if of £set is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at linking time.

Example

NAME demo
RSEG CODE
end: DC1lé6 SFE (CODE)

Even if the above code is linked with many other modules, end will still be set to the
address of the last byte of the segment.

The size of the segment MY SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

<<, SHL Logical shift left (3).

Use << to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’00011100 << 3 > B’11100000
B’00000111111111111 << 5 ™ B’11111111111100000
14 << 1 > 28

>>, SHR Logical shift right (3).

Use >> to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’01110000 >> 3 —> B’00001110
B’1111111111111111 >> 20 > 0
14 >> 1 > 7

33

Description of operators

34

SAMS IAR Assembler
Reference Guide

SIZEOF

UGT

ULT

Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; i.e. it calculates the size in bytes of a segment. This is done when modules are
linked together.

Example

NAME demo
RSEG CODE
size: DC1l6 SIZEOF CODE

sets size to the size of segment CODE.

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand. The
operation treats its operands as unsigned values.

Example

2 UGT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.

Example

1 ULT 2 > 1
-1 ULT 2 > O

Assembler operators ___4

XOR Logical exclusive OR (6).

Use XOR to perform logical XOR on its two operands.

Example

B’0101 XOR B’1010 — O
B’0101 XOR B’0000 > 1

35

Description of operators

SAMS IAR Assembler
36 Reference Guide

Assembler directives

This chapter gives an alphabetical summary of the assembler directives. It then

describes the syntax conventions and provides detailed reference information

for each category of directives.

Summary of assembler directives

The following table gives a summary of all the assembler directives.

Directive

Description

Section

_args
$
#define
#elif

#else
#endif
#error

#if

#ifdef
#ifndef
#include
#pragma
#undef
/*comment */

//

ALIAS
ALIGN

ALIGNRAM

ARGFRAME

Is set to number of arguments passed to macro.
Includes a file.
Assigns a value to a label.

Introduces a new condition in a #if...#endif
block.

Assembles instructions if a condition is false.
Endsa #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Ignored.

Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the location counter by inserting
zero-filled bytes.

Aligns the location counter by incrementing it (no

filling).

Defines a function’s arguments.

Macro processing
Assembler control
C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Value assignment

Value assignment

Segment control

Segment control

Function control

Table 15: Assembler directives summary

37

Summary of assembler directives

Directive Description Section
ASEG Begins an absolute segment. Segment control
ASEGN Begins a named absolute segment. Segment control
ASSIGN Assigns a temporary value. Value assignment
CASEOFF Disables case sensitivity. Assembler control
CASEON Enables case sensitivity. Assembler control
CFI Specifies call frame information. Call frame
information
COL Sets the number of columns per page. Listing control
COMMON Begins a common segment. Segment control
CONST Specifies an SFR label as read-only. Value assignment
DB Generates 8-bit byte constants, including strings. Space allocation
DC16 Generates |6-bit constants. Space allocation
DC24 Generates 24-bit constants. Space allocation
DC32 Generates 32-bit constants. Space allocation
DC8 Generates 8-bit byte constants, including strings. Space allocation
DD Generates 32-bit constants. Space allocation
DECLARE Defines a file-wide value with optional r or R Value assignment
prefix.
DEFINE Defines a file-wide value. Value assignment
DP Generates 24-bit constants. Space allocation
DS Reserves memory space without initializing Space allocation
(8-bit).
DS8 Reserves memory space without initializing Space allocation
(8-bit).
DW Generates |6-bit constants. Space allocation
ELSE Assembles instructions if a condition is false. Conditional assembly
ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.
END Terminates the assembly of the last module ina Module control
file.
ENDIF Ends an IF block. Conditional assembly
ENDM Ends a macro definition. Macro processing
ENDMOD Terminates the assembly of the current module. Module control

Table 15: Assembler directives summary (Continued)

SAMS IAR Assembler
38 Reference Guide

Assembler directives ___o

Directive Description Section
ENDR Ends a repeat structure. Macro processing
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. ~ Segment control
EXITM Exits prematurely from a macro. Macro processing
EXPORT Exports symbols to other modules. Symbol control
EXTERN Imports an external symbol. Symbol control
FUNCALL Defines function call information. Function control
FUNCTION Defines a function. Function control
IF Assembles instructions if a condition is true. Conditional assembly
IMPORT Imports an external symbol. Symbol control
LIBRARY Begins a library module. Module control
LIMIT Checks a value against limits. Value assignment
LOCAL Creates symbols local to a macro. Macro processing
LOCFRAME Defines a function’s local variables. Function control
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTPAG Controls the formatting of output into pages. Listing control
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control
MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ORG Sets the location counter. Segment control
PAGE Generates a new page. Listing control
PAGSIZ Sets the number of lines per page. Listing control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control

Table 15: Assembler directives summary (Continued)

39

Syntax conventions

40

Directive

Description

Section

PUBWEAK

RADIX
REPT

REPTC
REPTI
REQUIRE
RSEG
RTMODEL
SET

SFR
SFRP
SFRTYPE
STACK
VAR

Exports symbols to other modules, multiple

definitions allowed.

Sets the default base.

Assembles instructions a specified number of

times.

Repeats and substitutes characters.

Repeats and substitutes strings.
Forces a symbol to be referenced.

Begins a relocatable segment.

Declares runtime model attributes.

Assigns a temporary value.
Creates byte-access SFR labels.
Creates word-access SFR labels.
Specifies SFR attributes.

Begins a stack segment.

Assigns a temporary value.

Symbol control

Assembler control

Macro processing

Macro processing
Macro processing
Symbol control
Segment control
Module control
Value assignment
Value assignment
Value assignment
Value assignment
Segment control

Value assignment

Table 15: Assembler directives summary (Continued)

Syntax conventions

SAMS IAR Assembler
Reference Guide

In the syntax definitions the following conventions are used:

o Parameters, representing what you would type, are shown in italics. So, for

example, in:
ORG expr

expr represents an arbitrary expression.

o Optional parameters are shown in square brackets. So, for example, in:

END [expr]

the expr parameter is optional. An ellipsis indicates that the previous item can be

repeated an arbitrary number of times. For example:

PUBLIC symbol

[, symbol]

indicates that PUBLIC can be followed by one or more symbols, separated by

commas.

Assembler directives ___o

e Alternatives are enclosed in { and } brackets, separated by a vertical bar, for
example:
LSTOUT{+|-}
indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as in:

label VAR expr

An optional label, which will assume the value and type of the current program location
counter (PLC), can precede all directives. For clarity, this is not included in each syntax
definition.

In addition, unless explicitly specified, all directives can be followed by a comment,
preceded by ; (semicolon).

PARAMETERS

The following table shows the correct form of the most commonly used types of
parameter:

Parameter What it consists of

expr An expression; see Assembler expressions, page 2.

label A symbolic label.

symbol An assembler symbol.

Table 16: Assembler directive parameters

Module control directives

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

RTMODEL Declares runtime model attributes.

Table 17: Module control directives

41

Module control directives

SAMS IAR Assembler
42 Reference Guide

SYNTAX

END [labell]

ENDMOD [labell]

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

expr Optional expression (0-255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is output in the
object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when processing object
files.

value A text string specifying the value.

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
TAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing lots of small modules—like runtime systems
for high-level languages—where each module often represents a single routine. With the
multi-module facility, you can significantly reduce the number of source and object files
needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.
Terminating a module

Use ENDMOD to define the end of a module.

Assembler directives ___o

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

e At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the /ast module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of the
source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscore. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C code, and you want to control the
module consistency, refer to the SAM8 IAR C Compiler Reference Guide.

Examples

The following example defines three modules where:

e MOD 1 and MOD_2 cannot be linked together since they have different values for
runtime model " foo™.

e MOD 1 and MOD_3 can be linked together since they have the same definition of
runtime model "bar" and no conflict in the definition of "foo".

43

Symbol control directives

e MOD 2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value " *" matches any runtime model value.
MODULE MOD_1

RTMODEL "foo", "1"
RTMODEL "bar", "XXX"
ENDMOD

MODULE MOD_2

RTMODEL "foo", "2®
RTMODEL "bar", "*mn
ENDMOD

MODULE MOD_3
RTMODEL "bar", "XXX"

END

Symbol control directives

These directives control how symbols are shared between modules.

Directive Description

EXTERN (IMPORT) Imports an external symbol.

PUBLIC (EXPORT) Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions
allowed.

REQUIRE Forces a symbol to be referenced.

Table 18: Symbol control directives

SYNTAX

EXTERN symbol [,symbol]
PUBLIC symbol [,symbol]
PUBWEAK symbol [,symbol]
REQUIRE symbol

PARAMETERS

symbol Symbol to be imported or exported.

SAMS IAR Assembler
44 Reference Guide

Assembler directives ___o

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. The symbols
declared as PUBLIC can only be assigned values by using them as labels. Symbols
declared PUBLIC can be relocated or absolute, and can also be used in expressions (with
the same rules as for other symbols).

The puBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Importing symbols

Use EXTERN to import an untyped external symbol.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules. It defines print as an
external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

err RCALL print
DC8 % % Error * %N
EVEN
RET

END

Segment control directives

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the location counter by inserting zero-filled bytes.
ALIGNRAM Aligns the location counter by incrementing it (no filling).
ASEG Begins an absolute segment.

Table 19: Segment control directives

45

Segment control directives

46

SAMS IAR Assembler
Reference Guide

Directive Description

ASEGN Begins a named absolute segment.

COMMON Begins a common segment.

EVEN Aligns the program counter to an even address.
ORG Sets the location counter.

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

Table 19: Segment control directives (Continued)

SYNTAX

ALIGN align [,valuel

ALIGNRAM align [,valuel

ASEG [start [(align)]]

ASEGN segment [:type], address
COMMON segment [:type] [(align)]
EVEN [value]

ORG expr

RSEG segment [:type] [flag]l [(align)]
RSEG segment [:typel, address

STACK segment [:typel [(align)]

PARAMETERS
address Address where this segment part will be placed.
align Exponent of the value to which the address should be aligned, in the range 0

to 30. For example, align 1 results in word alignment 2.
expr Address to set the location counter to.

flag NOROOT
This segment part may be discarded by the linker even if no symbols in this
segment part are referred to. Normally all segment parts except startup
code and interrupt vectors should set this flag. The default mode is ROOT
which indicates that the segment part must not be discarded.

REORDER

Allows the linker to reorder segment parts. For a given segment, all segment
parts must specify the same state for this flag. The default mode is
NOREORDER which indicates that the segment parts must remain in order.

Assembler directives ___o

SORT

The linker will sort the segment parts in decreasing alignment order. For a
given segment, all segment parts must specify the same state for this flag.
The default mode is NOSORT which indicates that the segment parts will
not be sorted.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at the
beginning of the absolute segment.

type The memory type, typically CODE, or DATA. In addition, any of the types
supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment

Use ASEGN to start a named absolute segment located at the address address. This
directive has the advantage of allowing you to specify the memory type of the segment.
Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to save
the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a stack segment

Use STACK to allocate code or data allocated from high to low addresses (in contrast
with the RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

47

Segment control directives

48

SAMS IAR Assembler
Reference Guide

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all coMMON segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the coMmMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

The result of the expression must be of the same type as the current segment, i.e. it is not
valid to use ORG 10 during RSEG, since the expression is absolute; use ORG $+10 instead.
The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembly module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1) and the oDD directive aligns
the program counter to an odd address.

Assembler directives ___o

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry instructions in the appropriate
interrupt vectors using an absolute segment:

EXTERN reset,IRQO,IRQ1,IRQ2

ASEG
ORG 0x00
int0 DC1l6 IRQO
intl DC16 IRQ1
int2 DC16 IRQ2
;...etc
ORG 0x100
Jp T, reset ; Reset wvector
END

Beginning a relocatable segment

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used for creating a gap of six
bytes in the table.

The code following the second RSEG directive is placed in a relocatable segment called
code:

EXTERN divrtn,mulrtn

RSEG table
DC16 divrtn,mulrtn
ORG $+6
DC1le6 subrtn
RSEG code
subrtn MOV R6,R7
SUBT R6,#20
END

49

Segment control directives

Beginning a stack segment

The following example defines two 100-byte stacks in a relocatable segment called
rpnstack:

STACK rpnstack

parms DS8 100
opers DS8 100
END

The data is allocated from high to low addresses.

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl
COMMON data
count DD 1
ENDMOD
NAME commonz2
COMMON data
up DC8 1
ORG $+2
down DC8 1
END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

NAME align

RSEG data ; Start a relocatable data segment

EVEN ; Ensure it’s on an even boundary
target DC1le6 1 ; Target 1is on an even boundary

ALIGN 6 ; Zero-fill to a 64-byte boundary
results DS8 64 ; Create a 64-byte table

ALIGNRAM 3 ; Align to an 8-byte boundary
ages DS8 64 ; Create another 64-byte table

END

SAMS IAR Assembler
50 Reference Guide

Assembler directives ___o

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
ASSIGN Assigns a temporary value.

CONST Specifies an SFR label as read-only.
DECLARE Defines a file-wide value with optional r or R prefix.
DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
LIMIT Checks a value against limits.

SET Assigns a temporary value.

SFR Creates byte-access SFR labels.

SFRTYPE Specifies SFR attributes.

SFRP Creates word-access SFR labels.

VAR Assigns a temporary value.

Table 20: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label CONST expr

DECLARE label, expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message
label SET expr

[const] SFR register = value
[const] SFRTYPE register attribute [,attribute] = value
[const] SFRP register = value
label VAR expr

51

Value assignment directives

SAMS IAR Assembler
52 Reference Guide

PARAMETERS
attribute One or more of the following:
BYTE The SFR must be accessed as a byte.
READ You can read from this SFR.
WORD The SFR must be accessed as a word.
WRITE You can write to this SFR.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.
message A text message that will be printed when expzr is out of range.
min, max The minimum and maximum values allowed for expr.
register The special function register.
value The SFR port address.
DESCRIPTION

Defining a temporary value

Use either of ASSIGN, SET, and VAR to define a symbol that may be redefined, such as
for use with macro variables. Symbols defined with VAR cannot be declared PUBLIC.
Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE or DECLARE to define symbols that should be known to all modules in the
source file. Symbols defined with DECLARE can optionally be prefixed with r or Rr.

A symbol which has been given a value with DEFINE or DECLARE can be made available
to modules in other files with the PUBLIC directive.

Symbols defined with DEFINE or DECLARE cannot be redefined.

Assembler directives ___o

Defining special function registers

Use SFR to create special function register labels with attributes READ, WRITE, and BYTE
turned on. Use SFRP to create special function register labels with attributes READ,
WRITE, or WORD turned on. Use SFRTYPE to create special function register labels with
specified attributes.

Prefix the directive with CONST to disable the WRITE attribute assigned to the SFR. You
will then get an error/warning when trying to write to the SFR.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during linking
if the expression contains external references. The min and max expressions cannot
involve references to forward or external labels, i.e. they must be resolved when
encountered.

EXAMPLES

Defining a permanent global value
globvalue DEFINE 12

DECLARE REG4, 4

Redefining a symbol

The following example uses VAR to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
cons VAR 1
buildit MACRO times
DC1l6 cons
cons VAR cons*3
IF times>1
buildit times-1
ENDIF
ENDM
main buildit 4
END

53

Value assignment directives

It generates the following code:

1 00000000 NAME table

2 00000001 cons VAR 1
10 00000000 main buildit 4
10.1 00000000 0OOO1 DC1l6 cons
10.2 00000003 cons VAR cons*3
10.3 00000002 IF 4>1
10 00000002 buildit 4-1
10.1 00000002 0003 DC1l6 cons
10.2 00000009 cons VAR cons*3
10.3 00000004 IF 4-1>1
10 00000004 buildit 4-1-1
10.1 00000004 0009 DC16 cons
10.2 0000001B cons VAR cons*3
10.3 00000006 IF 4-1-1>1
10 00000006 buildit 4-1-1-1
10.1 00000006 001B DC1l6 cons
10.2 00000051 cons VAR cons*3
10.3 00000008 IF 4-1-1-1>1
10.4 00000008 buildit 4-1-1-1-1
10.5 00000008 ENDIF
10.6 00000008 ENDM
10.7 00000008 ENDIF
10.8 00000008 ENDM
10.9 00000008 ENDIF
10.10 00000008 ENDM
10.11 00000008 ENDIF
10.12 00000008 ENDM
11 00000008 END

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring 1ocn for use anywhere in the file:

NAME addl

locn DEFINE 020h

value EQU 77
CLR R10
LD R11, #locn
LDC R6,@RR10
LD R7, #value
ADD R6,R7
RET
ENDMOD

SAMS IAR Assembler
54 Reference Guide

Assembler directives ___o

NAME add2

value EQU 88
CLR R10
LD R11, #locn
LDC R6, @RR10
LD R7, #value
ADD R6,R7
RET
END

The symbol locn defined in module add1 is also available to module add2.

Using special function registers

In this example a number of SFR variables are declared with a variety of access

capabilities:

sfrb portd = 0x12 /* byte read/write
access */

sfrw ocrl = Ox2A /* word read/write
access */

const sfrb pind = 0x10 /* byte read only

access */
SFRTYPE portb write, byte = 0x18 /* byte write only

access */

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable

behavior.
speed VAR 23
LIMIT speed, 10,30, ...speed out of range...

Conditional assembly directives

These directives provide logical control over the selective assembly of source code.

Directive Description

IF Assembles instructions if a condition is true.
ELSE Assembles instructions if a condition is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.
ENDIF Ends an IF block.

Table 21: Conditional assembly directives

55

Conditional assembly directives

56

SAMS IAR Assembler
Reference Guide

SYNTAX

IF condition
ELSE

ELSEIF condition
ENDIF

PARAMETERS

condition One of the following:

An absolute expression

stringl=string2

stringl<>string2

DESCRIPTION

The expression must not contain forward
or external references, and any non-zero
value is considered as true.

The condition is true if stringl and
string2 have the same length and
contents.

The condition is true if stringl and
string2 have different length or
contents.

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly

time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an ELSE

or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembler

directives may be used anywhere in an assembly, but have their greatest use in

conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled

by the conditional directives. Each IF directive must be terminated by an ENDIF

directive. The ELSE directive is optional, and if used, it must be inside an IF...ENDIF

block. IF. . .ENDIF and IF...ELSE...ENDIF blocks may be nested to any level.

EXAMPLES

The following macro subtracts a constant from any byte register.

sub MACRO r, c

IF c=1
DEC r
ELSE

SUB r, #c

Assembler directives ___o

ENDIF
ENDM

If the argument to the macro is 1 it generates a DEC instruction to save instruction cycles;
otherwise it generates a SUB intruction.

It could be tested with the following program:

main LD R6, #17
sub R6, 2
LD R7, #22
sub R7, 1
RET
END

Macro processing directives

These directives allow user macros to be defined.

Directive Description

_args Is set to number of arguments passed to macro.
ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

Table 22: Macro processing directives

SYNTAX

ENDM

ENDR

EXITM

LOCAL symbol [, symbol]

name MACRO [, argument]

REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall]

57

Macro processing directives

58

SAMS IAR Assembler
Reference Guide

PARAMETERS

actual String to be substituted.

argument A symbolic argument name.

expr An expression.

formal Argument into which each character of actual (REPTC) or each actual

(REPTT) is substituted.

name The name of the macro.
symbol Symbol to be local to the macro.
DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

macroname MACRO [,arg] [,arg]

Here macroname is the name you are going to use for the macro, and argis an argument
for values that you want to pass to the macro when it is expanded.

Insert the target-specific file macro.fm here:
For example, you could define a macro ERROR as follows:

errmac MACRO text

CALL abort
DC8 text, 0
ENDM

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'

Assembler directives ___o

The assembler will expand this to:

CALL abort
DC8 'Disk not ready',O0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \ 0 to \ 9 and \A to \ z.

The previous example could therefore be written as follows:

errmac MACRO

CALL abort
DC8 \0,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LOCAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

Import the target-specific file macroqch.fm here:

For example:

macld MACRO op
LD op
ENDM

The macro can be called using the macro quote characters:

macld <R6, 1>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 16.

59

Macro processing directives

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

MODULE ASAM8_MAN
EXTERN subl

MACRO DO_SUB1

IF _args == 2
CP \0, \1
Jp Z, mnocall
CALL subl
nocall:
ELSE
CALL subl
ENDIF
ENDM
RSEG CODE
DO_SUB1

DO _SUB1 R6, #2

END
Import the target-specific file L__args.fm here:

The following listing is generated:

1 0000 MODULE ASAM8_MAN
2 0000

3 0000 EXTERN subl

4 0000

15 0000

16 0000 RSEG CODE

17 0000

18 0000 DO_SUB1

18.1 0000 IF _args == 2
18.2 0000 CP ,

18.3 0000 Jp Z, nocall
18.4 0000 CALL subl
18.5 0000 nocall:

18.6 0000 ELSE

18.7 0000 F6.... CALL subl
18.8 0003 ENDIF

18.9 0003 ENDM

19 0003 DO_SUB1 R6, #2

SAMS IAR Assembler
60 Reference Guide

Assembler directives ___o

19.1 0003 IF _args == 2
19.2 0003 A6C602 CP R6, #2
19.3 0006 6D.... Jp Z, mnocall
19.4 0009 F6.... CALL subl
19.5 000C nocall:

19.6 000C ELSE

19.7 o000C CALL subl
19.8 000C ENDIF

19.9 o000C ENDM

20 000C

21 000C END

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT ... ENDR, REPTC ... ENDR, Or REPTI ... ENDR.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time a macro is expanded, new instances of local symbols are created by the LOCAL
directive, so it is legal to use local symbols in recursive macros.

It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
LD op
ENDM

It could be called using:

macld <R6, 1>
END

You can redefine the macro quote characters with the -M command line option.

How macros are processed
There are three distinct phases in the macro process:

o The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked. Include-file references $£ile are
recorded and will be included during macro expansion.

61

Macro processing directives

62

SAMS IAR Assembler
Reference Guide

o A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

o The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTTI to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding in-line for efficiency

In time-critical code it is often desirable to code routines in-line to avoid the overhead
of a subroutine call and return. Macros provide a convenient way of doing this.

The following example outputs bytes from a buffer to a port:

NAME play
portb SET 0x18

RSEG DATA
buffer DS8 256

RSEG CODE

play LD
LD
LD
LDET
LD
DEC
JR
RET

loop

END

Assembler directives ___o

R6, #HIGH (buffer)
R7, #LOW(buffer)

R5, 255
RO, @RR6
portb, RO
R5

NE, loop

The main program calls this routine as follows:

doplay CALL

play

For efficiency we can recode this as the following macro:

NAME

portb SET
RSEG
buffer DsS8

MACRO
LOCAL
LD

LD

LD
LDEI
LD
DEC
JR
ENDM

play

loop

RSEG

play
END

play

0x18
DATA
256

loop
R6, #HIGH (buffer)
R7, #LOW (buffer)

R5, 255
RO, @RR6
portb, RO
R5

NE, loop
CODE

Notice the use of the LocaL directive to make the label 1oop local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will

already exist.

63

Macro processing directives

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each
character in a string:

NAME reptc

EXTERN plotc
banner REPTC chr, "Welcome"

LD R6, #'chr’
CALL plotc
ENDR

END

This produces the following code:

1 0000 NAME reptc

2 0000

3 0000 EXTERN plotc

4 0000 banner REPTC chr, "Welcome"
5 0000 LD R6, #'chr!'
6 0000 CALL plotc

7 0000 ENDR

7.1 0000 6C57 LD R6, #'W!'
7.2 0002 F6.. CALL plotc
7.3 0005 6Cé65 LD R6, #'e!'
7.4 0007 F6.... CALL plotc
7.5 000A 6Cé6C LD R6, #'1°'
7.6 000C F6.... CALL plotc
7.7 O0O00F 6C63 LD R6, #'c!'
7.8 0011 F6.... CALL plotc
7.9 0014 6CéF LD R6, #'0'
7.10 0016 F6.... CALL plotc
7.11 0019 6Cé6D LD R6, #'m'
7.12 001B F6.... CALL plotc
7.13 001E 6C65 LD R6, #'e!’
7.14 0020 F6.... CALL plotc

8 0023

9 0023 END

The following example uses REPTI to clear a number of memory locations:

NAME repti
EXTERN base, count, init

banner REPTI adds, base, count, init
LD R11, #LOW(adds)

SAMS IAR Assembler
64 Reference Guide

Assembler directives ___o

LD R10, #HIGH (adds)
LD R6, #0

LDE @RR8, R6

ENDR

END

This produces the following code:

1 0000 NAME repti

2 0000

3 0000 EXTERN base, count, init
4 0000

5 0000 banner REPTI adds, base, count, init
6 0000 LD R11, #LOW (adds)

7 0000 LD R10, #HIGH (adds)
8 0000 LD R6, #0

S 0000 LDE @RR8, R6

10 0000 ENDR

10.1 0000 BC.. LD R11, #LOW(base)
10.2 0002 AC.. LD R10, #HIGH(base)
10.3 0004 6CO0O0 LD R6, #0

10.4 0006 D369 LDE @RR8, R6

10.5 0008 BC.. LD R11, #LOW(count)
10.6 O000A AC.. LD R10, #HIGH(count)
10.7 000C 6CO0O0 LD R6, #0

10.8 O0OOE D3969 LDE @RR8, R6

10.9 0010 BC.. LD R11, #LOW(init)
10.10 0012 AC.. LD R10, #HIGH(init)
10.11 0014 6CO0O LD R6, #0

10.12 0016 D369 LDE @RR8, R6

11 0018

12 0018 END

Listing control directives

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.

Table 23: Listing control directives

65

Listing control directives

66

SAMS IAR Assembler
Reference Guide

Directive Description

LSTOUT Controls assembler-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 23: Listing control directives (Continued)

SYNTAX

COL columns

LSTCND({ +
LSTCOD{
LSTEXP
LSTMAC({
LSTOUT{
LSTPAG{
LSTREP{
LSTXRF{

PAGE

+
+
+
+
+
+
+

B e e e

PAGSIZ lines

PARAMETERS

columns

lines

An absolute expression in the range 80 to 132, default is 80

An absolute expression in the range 10 to 150, default is 44

DESCRIPTION

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides

all other listing control directives.

The default is LsToUT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LSTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements, ELSE, Or END.

The default setting is LSTCND-, which lists all source lines.

Assembler directives ___o

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; i.e. long ASCII strings will produce several lines of output. Code generation
is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF -, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number
of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LSTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.

67

Listing control directives

EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-

; Debugged section
LSTOUT+

; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an IF directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug VAR 0
begin IF debug

CALL print

ENDIF

LSTCND+
begin2 IF debug

CALL print

ENDIF

END

This will generate the following listing:

1 0000 NAME lstcndtst
2 0000 EXTERN print
3 0000
4 0000 RSEG prom
5 0000 debug VAR 0
6 0000 begin IF debug
7 0000 CALL print
8 0000 ENDIF
9 0000

10 0000 LSTCND+

11 0000 begin2 IF debug

12 0000 ENDIF

13 0000 END

SAMS IAR Assembler
68 Reference Guide

Assembler directives ___o

The following example shows the effect of LsTCOD+ on the code generated by a DC16
directive:

1 0000 NAME lstcodtst

2 0000 0001000A DC16 1,10,100,100,1000

3 000A

4 000A LSTCOD+

5 000A 0001000A DC16 1,10,100,100,1000
00640064
03ES8

6 0014

7 0014 END

Controlling the listing of macros

The following example shows the effect of LSTMAC and LSTEXP:

dec2 MACRO arg
DEC arg
DEC arg
ENDM
LSTMAC-

inc2 MACRO arg
INC arg
INC arg
ENDM

begin dec2 R6

LSTEXP-

inc2 R7
RET

END begin

This will produce the following output:

5 0000

6 0000 LSTMAC-

7 0000
12 0000 begin dec2 R6
13 0000 begin dec2 R6
13.1 0000 00Ce DEC R6
13.2 0002 00Ce DEC R6
13.3 0004 ENDM
14 0004
15 0004 LSTEXP-

69

C-style preprocessor directives

70

16
17
18
19

0004 inc2 R7
0006 AF RET

0007

0007 END begin

Formatting listed output

The following example formats the output into pages of 66 lines each with 132 columns.
The LSTPAG directive organizes the listing into pages, starting each module on a new
page. The PAGE directive inserts additional page breaks.

PAGSIZ 66 ; Page size
COL 80

LSTPAG+

ENDMOD

MODULE

PAGE

C-style preprocessor directives

The following C-language preprocessor directives are available:

SAMS IAR Assembler
Reference Guide

Directive Description

#define Assigns a value to a label.

#elif Introduces a new condition ina #if. . .#endif block.
#else Assembles instructions if a condition is false.
#endif Endsa #1if, #ifdef, or #ifndef block.
#error Generates an error.

#if Assembles instructions if a condition is true.
#ifdef Assembles instructions if a symbol is defined.
#ifndef Assembles instructions if a symbol is undefined.
#include Includes a file.

#pragma Recognized and ignored.

#undef Undefines a label.

/*comment*/ C-style comment delimiter.

// C+style comment delimiter.

Table 24: C-style preprocessor directives

SYNTAX

#define label text
#elif condition
#else

#endif

#ferror "message"
#if condition
#ifdef label
#ifndef label
#include {"filename"
#message "message"
#undef label
/*comment*/

| <filename>}

Assembler directives ___o

//comment

PARAMETERS

condition

filename

label

message

text

One of the following:

An absolute expression

stringl=string

stringl<>string?2

Name of file to be included.
Symbol to be defined, undefined, or tested.
Text to be displayed.

Value to be assigned.

The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

The condition is true if
stringl and string2 have
the same length and contents.

The condition is true if
stringl and string2 have
different length or contents.

71

C-style preprocessor directives

72

SAMS IAR Assembler
Reference Guide

DESCRIPTION

Defining and undefining labels

Use #define to define a temporary label.

#define label value

is similar to:

label VAR value

Use #undef to undefine a label; the effect is as if it had not been defined.
Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

Conditional directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #i £ directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #if directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #if...#endif block.

#if..#endif and #if.. #else..#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #1ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include "filename" searches the following directories in the specified order:

1 The source file directory.

2 The directories specified by the - I option, or options.

3 The current directory.

Assembler directives ___o

#include <filename> searches the following directories in the specified order:
1 The directories specified by the - I option, or options.

2 The current directory.

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior, since an assembler directive is not necessarily
accepted as a part of the C language.

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment

LD five, #3 ; syntax error
; Expands to "LD 0x05 ; comment, #3"

LD R3, #five + adde ; incorrect code
; Expands to "LD R3, 0x05 ; comment + addr"

EXAMPLES

Using conditional directives

The following example defines the labels tweak and adjust. If adjust is defined, then
register 16 is decremented by an amount that depends on adjust, in this case 30.

#define tweak 1
#define adjust 3

#ifdef tweak

#if adjust=1

SUB R6, #4
#elif adjust=2

SUB R6,#20
#elif adjust=3

SUB R6,#30

73

Space allocation directives

#endif
#endif /* ifdef tweak */
Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in Macros.s18:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can then be included, using #include, as in the following
example:

NAME include

; Standard macro definitions
#include c:\iar\asm\inc\macros.s1l8"

; Program

main: xch R6,R7
RET
END main

Space allocation directives

These directives define temporary values or reserve memory:

Directive Description Expression restrictions

DC8, DB Generates 8-bit constants, including strings.

DC16, DW Generates |6-bit constants.

DC24, DP Generates 24-bit constants.

DC32, DD Generates 32-bit constants.

DS8, DS Reserves memory space without initializing No external references
(8-bit). Absolute

Table 25: Space allocation directives

SAMS IAR Assembler
74 Reference Guide

Assembler directives ___o

SYNTAX

DC8 expr [,expr]
DCl6 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DB expr [,expr]
DW expr [,expr]
DP expr [,expr]
DD expr [,expr]

DS8 expr

DS expr

PARAMETERS

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.

value A valid absolute expression or a floating-point constant.

DESCRIPTIONS

Use the data definition and allocation directives according to the following table; it
shows which directives reserve and initialize memory space or reserve uninitialized
memory space, and their size.

Size Reserve and initialize memory Reserve unitialized memory
8-bit integers DC8, DB DS8, DS

16-bit integers DClé6, DW

24-bit integers DC24, DP

32-bit integers DC32, DD

Table 26: Using data definition or allocation directives

EXAMPLES

Generating lookup table

The following example generates a lookup table of addresses to routines:

NAME table
RSEG CONST
table DC16 addsubr/2, subsubr/2, clrsubr/2
RSEG CODE
addsubr ADD R6,R7
RET

75

Assembler control directives

subsubr SUB R6,R7
RET

clrsubr CLR R6
RET
END

Defining strings

To define a string:

mymsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errmsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xa bytes:

table DS8 0xA

Assembler control directives

These directives provide control over the operation of the assembler.

Directive Description

3 Includes a file.
CASEOFF Disables case sensitivity.
CASEON Enables case sensitivity.
RADIX Sets the default base.

Table 27: Assembler control directives

SYNTAX

Sfilename
CASEOFF
CASEON
RADIX expr

SAMS IAR Assembler
76 Reference Guide

Assembler directives ___o

PARAMETERS

comment Comment ignored by the assembler.
expr Default base; default 10 (decimal).

filename Name of file to be included. The $ character must be the first character on the line.

DESCRIPTION
Use $ to insert the contents of a file into the source file at a specified point.

Use RADIX to set the default base for use in conversion of constants from ASCII source
to the internal binary format.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.
EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file. For
example, the following macros could be defined in Mymacros.s18:

xch MACRO a,b
PUSH a
LD a,b
POP b
ENDM

The macro definitions can be included with a $ directive, as in:

NAME include
; standard macro definitions

Smymacros.sl8

; program
main
xch R6,R7
RET
END main

77

Assembler control directives

Defining comments

The following example shows how /+*. . .+*/ can be used for a multi-line comment:
/*

Program to read serial input.

Version 3: 19.12.01

Author: mjp

*/

Changing the base

To set the default base to 16:

RADIX D’'16
LD R6,#12

The immediate argument will then be interpreted as H' 12.

To change the base from 16 to 10, expr must be written in hexadecimal format, for
example:

RADIX 0x0A

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
JPp LABEL

The following will generate a duplicate label error:

CASEOFF

label NOP
LABEL NOP ; Error, "LABEL" already defined

END

SAMS IAR Assembler
78 Reference Guide

Assembler directives ___o

Compiler function directives

The following directives are used by the C compiler:

Directive Description

ARGFRAME Defines a function’s arguments.
FUNCALL Defines function call information.
FUNCTION Defines a function.

LOCFRAME Defines a function’s local variables.

Table 28: Compiler function directives

DESCRIPTION

The compiler function directives can be used by the compiler to pass information about
functions to the linker. These directives are normally not used in assembler
programming. For information on how to use these directives, see the chapter Assembler
language interface in the SAMS8 IAR C Compiler Reference Guide.

Call frame information directives
These directives allow backtrace information to be defined.

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI BLOCK Starts a data block.

CFI CODEALIGN Declares code alignment.

CFI COMMON Starts or extends a common block.

CFI CONDITIONAL Declares data block to be a conditional thread.

CFI DATAALIGN Declares data alignment.

CFI ENDBLOCK Ends a data block.

CFI ENDCOMMON Ends a common block.

CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.

CFI FUNCTION Declares a function associated with data block.

CFI INVALID Starts range of invalid backtrace information.

CFI NAMES Starts a names block.

CFI NOFUNCTION Declares data block to not be associated with a function.

Table 29: Call frame information directives

79

Call frame information directives

SAMS IAR Assembler
Reference Guide

Directive Description

CFI PICKER Declares data block to be a picker thread.

CFI REMEMBERSTATE Remembers the backtrace information state.
CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI RESTORESTATE Restores the saved backtrace information state.
CFI RETURNADDRESS Declares a return address column.

CFI STACKFRAME Declares a stack frame CFA.

CFI STATICOVERLAYFRAME Declares a static overlay frame CFA.

CFI VALID Ends range of invalid backtrace information.
CFI VIRTUALRESOURCE Declares a virtual resource.

CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 29: Call frame information directives (Continued)

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are
grouped according to usage.

Names block directives

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits] ..

CFI VIRTUALRESOURCE resource : bits [, resource : bits] ..
CFI RESOURCEPARTS resource part, part [, part]...

CFI STACKFRAME cfa resource type [, cfa resource type]
CFI STATICOVERLAYFRAME cfa segment [, cfa segment]
CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI NAMES name EXTENDS namesblock
CFI ENDNAMES name
CFI FRAMECELL cell cfa(offset): sizel[, cell cfa (offset): sizel

Common block directives

CFI COMMON name USING namesblock
CFI ENDCOMMON name
CFI CODEALIGN codealignfactor

Assembler directives ___o

CFI DATAALIGN dataalignfactor

CFI RETURNADDRESS resource type

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME (cfa, offset) }

CFI resource cfiexpr

Extended common block directives

CFI COMMON name EXTENDS commonblock USING namesblock
CFI ENDCOMMON name

Data block directives

CFI BLOCK name USING commonblock
CFI ENDBLOCK name

CFI { NOFUNCTION | FUNCTION label }
CFI { INVALID | VALID }

CFI { REMEMBERSTATE | RESTORESTATE }

CFI PICKER
CFI CONDITIONAL label [, label]
CFI cfa { resource | resource + constant | resource - constant }

CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }
CFI resource cfiexpr

PARAMETERS

bits The size of the resource in bits.

cell The name of a frame cell.

cfa The name of a CFA (canonical frame address).
cfiexpr A CFI expression (see CFI expressions, page 88).

codealignfactor The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

commonblock The name of a previously defined common block.

81

Call frame information directives

SAMS IAR Assembler

82 Reference Guide

constant A constant value or an assembler expression that can be evaluated
to a constant value.

dataalignfactor The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 — -1 and 1 — 256.

label A function label.

name The name of the block.

namesblock The name of a previously defined names block.

offset The offset relative the CFA. An integer with an optional sign.
part A part of a composite resource. The name of a previously

declared resource.

resource The name of a resource.

segment The name of a segment.

size The size of the frame cell in bytes.

type The memory type, such as CODE, CONST or DATA. In addition, any

of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

DESCRIPTIONS

The Call Frame Information directives (CFI directives) are an extension to the
debugging format of the IAR C-SPY Debugger. The CFI directives are used for defining
the backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Assembler directives ___o

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

o The resource columns keep track of where the original value of a resource can be
found.

e The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.

Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

83

Call frame information directives

84

SAMS IAR Assembler
Reference Guide

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

e To declare a static overlay frame CFA, use the directive:
CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C functions; these routines
manipulate the caller’s frame. Extended names blocks are normally used only by
compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Assembler directives ___o

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name
where name is the name used to start the common block.

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 80. For more information on
these directives, see Simple rules, page 86, and CFI expressions, page 88.

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

85

Call frame information directives

86

SAMS IAR Assembler
Reference Guide

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where label is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 81. For more information on these directives,
see Simple rules, page 86, and CFI expressions, page 88.

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME (cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 88).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Assembler directives ___o

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since it is not tracked. Usually it is only meaningful to use it to declare the initial location
of a resource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REG1l REG2

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of £set is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP, -4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

87

Call frame information directives

88

SAMS IAR Assembler
Reference Guide

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 80.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

CFI EXPRESSIONS

Call Frame Information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, c£iexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant
o A CFA name

® A resource name.

Unary operators

Assembler directives ___o

Overall syntax: OPERATOR (operand)

Operator Operand Description

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

NOT cfiexpr Negates a logical CFl expression.

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl
expression.

Table 30: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand2)

Operator Operands Description

ADD cfiexpr,cfiexpr Addition

SUB cfiexpr,cfiexpr Subtraction

MUL cfiexpr,cfiexpr Multiplication

DIV cfiexpr,cfiexpr Division

MOD cfiexpr,cfiexpr Modulo

AND cfiexpr,cfiexpr Bitwise AND

OR cfiexpr,cfiexpr Bitwise OR

XOR cfiexpr,cfiexpr Bitwise XOR

EQ cfiexpr,cfiexpr Equal

NE cfiexpr,cfiexpr Not equal

LT cfiexpr,cfiexpr Less than

LE cfiexpr,cfiexpr Less than or equal
GT cfiexpr,cfiexpr Greater than

GE cfiexpr,cfiexpr Greater than or equal
LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of

bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

Table 31: Binary operators in CFI expressions

89

Call frame information directives

90

SAMS IAR Assembler
Reference Guide

Operator Operands Description

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

Table 31: Binary operators in CFI expressions (Continued)

Ternary operators
Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Get value from stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
sizeA constant expression denoting a size in bytes.
offsetA constant expression denoting an offset in
bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
condA CFA expression denoting a condition.
trueAny CFA expression.
falseAny CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Get value from memory. The operands are:
sizeA constant expression denoting a size in bytes.
typeA memory type.
addrA CFA expression denoting a memory address.
Gets the value at address addr in segment type type of
size size.

Table 32: Ternary operators in CFI expressions

EXAMPLE

The following is a generic example and not an example specific to the SAM8
microcontroller. This will simplify the example and clarify the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Assembler directives ___o

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register R0 will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO R1 RET Assembler code

0000 SP+2 — SAME CFA -2 funcl: PUSH R1
0002 SP+4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 33: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of R0 is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, RO:16, R1:8
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column

CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

91

Call frame information directives

92

SAMS IAR Assembler
Reference Guide

Defining the common block

The common block for the simple example above would be:

CFI
CFI
CFI
CFI
CFI
CFI
CFI

Note: sp may not be changed using a CFI directive since it is the resource associated

COMMON trivialCommon USING trivialNames
RETURNADDRESS RET DATA

CFA SP + 2

RO UNDEFINED

R1 SAMEVALUE

RET FRAME (CFA, -2) ; Offset -2 from top of frame

ENDCOMMON trivialCommon

with cFa.

Defining the data block

Continuing the simple example, the data block would be:

RSEG
CFI
CFI

funcl:

Note that the CFI directives are placed affer the instruction that affects the backtrace
information.

PUSH
CFI
CFI
LD
CALL
POP
CFI
CFI
LD
CFI
RET

CODE : CODE
BLOCK funclblock USING trivialCommon
FUNCTION funcl

R1

CFA SP + 4

R1 FRAME (CFA, -4)
R1, #4

func2

RO

R1 RO

CFA SP + 2
R1,RO

R1 SAMEVALUE

CFI ENDBLOCK funclblock

Diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered;
1linenumber is the line number at which the assembler detected the error; 1evel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; and message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Severity levels

The diagnostics are divided into different levels of severity:

Line error

A diagnostic message that is produced when the assembler finds an error in the
parameters given on the command line. The assembler then issues a self-explanatory
message.

Error
A diagnostic message that is produced when the assembler has found a construct which
clearly violates the language rules, such that code cannot be produced.

Fatal error

A diagnostic message that is produced when the assembler has found a condition that
not only prevents code generation, but which makes further processing of the source
code pointless. After the diagnostic message has been issued, the assembly terminates.

93

Severity levels

94

SAMS IAR Assembler
Reference Guide

Memory overflow

A diagnostic message that is produced when the assembler runs out of memory.

Internal error

A diagnostic message that is produced when a serious and unexpected failture occurs
due to a fault in the assembler itself. After the diagnostic message has been issued, the
assembly terminates.

Warning

A diagnostic message that is produced when the assembler finds a programming error
or omission which likely to cause problems, but not so severe as to prevent the
completion of the assembly. These warnings can be disabled by use of the
command-line option -w.

A

absolute Segmentsou it 47
active lines, listing i 19
ADD (CFLoperator)vuueneiennen.. 89
addition (assembler operator) 26
ALIAS (assembler directive) 51
ALIGN (assembler directive) 45
alignment, of segments.............. 48
ALIGNRAM (assembler directive). 45
AND (assembler operator)ouueiinan.. 28
AND (CFLoperator)c.ueuninneneenennan.. 89
architecture, SAMS. ix
ARGFRAME (assembler directive) 79
_ _ASAMS_ _ (predefined symbol) 5
ASAMS_INC (environment variable)................. 10
ASCII character constants.ccvueuen... 4
ASEG (assembler directive) 45
ASEGN (assembler directive). 46
asm (filename extension)o. ..., 1
ASMSAMS (environment variable) 10
assembler control directives 76
assembler diagnostics i 93
assembler directives
ALIAS . .. 51
ALIGN. 45
ALIGNRAM i 45
ARGFRAME. i, 79
ASEG. ... 45
ASEGN 46
assemblercontrol. 76
ASSIGN. . .. 51
call frame information 79
CASEOFF 76
CASEON. ... e e 76
CHL. .o 79
COL. .t e 65
COMMENTS, USINZ « « v v vvve ettt et ie e e 41
COMMON. ... e 46

Index __4

conditional assembly L 55
See also C-style preprocessor directives
CONST . . 51
C-style preprocessorc.cveuenenennn... 70
DB . 74
DCI6. .. 74
DC24 . . 74
DC32 . o 74
DC8 . 74
DD .. 74
DECLARE. i 51
DEFINE. 51
DP . 74
DS 74
DS . 74
DW 74
ELSE.o 55
ELSEIF 55
END. ..o 41
ENDIF. ... 55
ENDM. ... 57
ENDMOD i 41
ENDR . ..o 57
EQU. ... 51
EVEN ..o 46
EXITM . .o 57
EXPORT ... 44
EXTERN e 44
FUNCALL. e 79
FUNCTION. 79
TF . 55
IMPORT 44
labels, using. 41
LIBRARY ... 41
LIMIT ..o 51
listfilecontrol, 65
LOCAL 57
LOCFRAME i 79
LSTCNDo e 65

95

96

LSTCOD . ..ot 65
LSTEXP ... 65
LSTMAC. ..o 65
LSTOUT . ..o e 66
LSTPAG ... 66
LSTREP. ... 66
LSTXRF ... 66
MACRO. ... 57
MACIO PrOCESSING . « « vt v vttt ie e ee e 57
MODULE ...t 41
module control. L L i 41
NAME. ... 41
ORG ... 46
PAGE. 66
PAGSIZ 66
PATameLers . . . oot e 41
PROGRAM i 41
PUBLIC.o e 44
PUBWEAK. 44
RADIX ..o 76
REPTo 57
REPTC. o 57
REPTIo 57
REQUIRE i 44
RSEG. 46
RTMODEL i 41
SEgMENt CONtIOlottt 45
SET . 51
SER . . 51
SERP . .. 51
SERTYPE 51
space allocationt 74
STACK . ..o 46
staticoverlay i 79
SUMMATY . v vttt ettt et et 37
symbolcontrol, 44
SYIEAX. © o v vt vt et et e 40
value assignment il 51
VAR, .o 51

SAMS8 IAR Assembler
Reference Guide

#elif ... 70
felse. ... 70
#endif. 70
HEITOT . . . oot 70
HE 70
#ifdef 70
#ifndef L 70
#include. L 70
HPragma. . ..o ov it e 70
fundef 70
S 76
S PP 70
I 70
e e 51
LATES ottt e e e e 57
assembler environment variables 10
assembler eXpressions.u i 2
assembler global values
defining i 53
assemblerlabels il 3
assembler directives, using with., 41
defining and undefining 72
formatof 1
assembler list files
conditional code and strings. 66
conditions, specifying 12
cross-references
ENerating.couvuiininnin . 21
table, generating 67
disabling 66
enabling. i 66
filename, specifying. 16
format
SPECIfYINg . ..o v e 67
generated lines, controlling 67
ENEratingottt 15
header section, omitting. 16
#include files, specifying 15

Index __4

lines per page, specifying. 18 SEE .o 32
macro execution information, including. 12 SHL 33
macro-generated lines, controlling. 67 SHR. ..o 33
tab spacing, specifying. 19 SIZEOF . . . 34
using directives to format. 67 UGT. .o 34
assembler macros ULT ..o 34
arguments, passing to.ov vttt 60 XOR 35
defining 58 D 29
generated lines, controlling in listfile 67 o 27
in-lineroutines. L L. 62 Do ..o 29
predefined symbol L L L L 60 PP 28
PrOCESSING . . .o vttt e 61 Q& o 28
quote characters, specifying. 16 () et 25
special characters, using. 59 e 25
assembler object file, specifying filename. 17 PP 25-26
assembler Operators 23 PP 26
AND .o 28 PP 26
BINAND . ..o 28 S 27
BINNOT ... e 29 K e 33
BINOR. . ..o 29 Ko e 27
BINXOR ... 29 e 27
BYTE2. . .. 30 TSP 27
BYTE3. . .. 30 e 27
DATE. 30 D 28
EQ . 27 DT P 28
GE .. 28 > e 33
GT . 28 P 29
HIGH. 31 b 29
HWRD. 31 e 30
1N EXPIESSIONS. .« « v v vv e vt ettt e et e e e eean 2 PN 29
LE . 27 assembler options
LOW . 31 command line, setting 9
LT 27 extended command file, setting 9
LWRD 31 SUMMATY .ottt ettt ettt et e 11
MOD ... 29 typographic convention X
NE . o 27 B 12
OR .. 30 TP 12
precedence. i 23 S 12
SEB . .o 32 D 13

97

98

L P 14
B 14
S PPN 9,14
SG 14
P 14
P 15
L 15
P 16
Mo 16
N 16
SO 17
S0 e 17
D e 18
s 18
LS 18
S e e 19
ST 19
L P 19
U 20
L 19
20 20
W 20
X 21
QA 21
assembler output, including debug information 18
assembler source files, including 72,71
assembler source format............. 1
assembler symbols i 3
EXPOItING . .o ov et 45
IMPOrting . .. oottt e e 45
in relocatable expressionsc.. ... 2
local. 54
predefined 4
undefining. L. 20
redefining. L 53
assembly warning messages
disabling 20
ASSIGN (assembler directive)covu.... 51
assumptions (programming experience) ix

SAMS8 IAR Assembler
Reference Guide

-B (assembler option) i 12
-b (assembleroption)c.. ... 12
backtrace information, defining 79
BINAND (assembler operator) 28
BINNOT (assembler operator) 29
BINOR (assembler operator) 29
BINXOR (assembler operator)c..... 29
bitwise AND (assembler operator) 28
bitwise exclusive OR (assembler operator)............. 29
bitwise NOT (assembler operator) 29
bitwise OR (assembler operator). 29
BYTE2 (assembler operator) 30
BYTES3 (assembler operator) 30
-c (assembleroption) 12
call frame information directives 79
case sensitive user symbols. L L. 19
case sensitivity, controlling. 77
CASEOQOFF (assembler directive). 76
CASEON (assembler directive) 76
CFLAIrectivesottt e 79

rules in. 86
CFLexpressionsuvuentnenennunennenenan.n 88
CFLOPEratorsvuvune ettt 89
character constants, ASCII 4
COL (assembler directive)ccuuur.n.. 65
command line Options.uii i 9
command line, extending 14
COMIMENES .+« v vt v et ettt et et et et e e eeeee e 73

assembler directives, using with. 41

in assembler soucecode., 1

multi-line, using with assembler directives 78
COMIMON SEZMENTS . . .o v v vttt eeeeneeenenennn 48
COMMON (assembler directive) 46
COMPLEMENT (CFIL operator).covuennn.. 89

computer style, typographic convention X
conditional assembly directives 55

See also C-style preprocessor directives. 72
conditional code and strings, listing 66
conditional listfile 12
configuration, ProCeSSOT v vvve e e 20
CONST (assembler directive). 51
CONSLANts, INEZET . .. o v vttt et 3
conventions, typographicc.oin.. X

CPU, defining in assembler. See processor configuration
cross-references, in assembler list file

GENETALING . . o vttt et e 21
table, generating. i 67
current time/date (assembler operator) 30
C-style preprocessor directivesc.oueun.. 70
-D (assembleroption) 13
-d (assembler option)iiiiiia., 14
_ _DATE_ _ (predefined symbol)..................... 5
DATE (assembler operator). 30
DB (assembler directive). 74
DCI16 (assembler directive)., 74
DC24 (assembler directive). 74
DC32 (assembler directive)., 74
DCS (assembler directive)., 74
DD (assembler directive), 74
debug information, including in assembler output 18
DECLARE (assembler directive) 51
default data pointer, specifying. 19
#define (assembler directive) 70
DEFINE (assembler directive) 51
derivatives, specifying. See processor configuration
diagnostic MESSAZES« v vttt 93
[() P 93
fatal error. 93
internal errorvt i 94
lNE erroroov et 93

Index __4

memory overflow. L i oL 94

WAINING . oo v ettt et e 94
directives. See assembler directives
disable matching. i 14
DIV (CFLOperator). oovvv et 89
division (assembler operator) 26
document CONVENtioNS.o ov vt v ie e eeaenn X
DP (assembler directive). 74
DS8 (assembler directive). 74
DS (assembler directive). 74
DS8 (assembler directive). 74
DW (assembler directive), 74
-E (assembleroption), 14
edition NOLICE . ..\ vt e et ii
efficient coding techniques 6
#elif (assembler directive)., 70
#else (assembler directive) 70
ELSE (assembler directive). 55
ELSEIF (assembler directive).covuen.... 55
END (assembler directive) 41
#endif (assembler directive), 70
ENDIF (assembler directive) 55
ENDM (assembler directive) 57
ENDMOD (assembler directive). 41
ENDR (assembler directive)ovinneninn.. 57
environment variables

ASAMSE_INC. ... 10

ASMSAMS 10

assembler. 10
EQ (assembler operator).ooiiieninn.. 27
EQ (CFLOperator).vvve et ieeeaen 89
EQU (assembler directive) 51
equal (assembler operator)oeiini... 27
#error (assembler directive) 70

error messages
maximum number, specifying 14

99

100

using #errortodisplay oL Lt 73

error, diagnostic MesSageo vt 93
EVEN (assembler directive) 46
EXITM (assembler directive) 57
experience, programmingc.c.euenaeaenen.. ix
EXPORT (assembler directive). 44
expressions. See assembler expressions
extended command linefile 9,14
EXTERN (assembler directive). 44
external symbols

unreferenced, including L. 21
-f (assembler option). 9, 14
false value, in assembler expressions 2
fatal error, diagnostic message 93
_ _FILE_ _ (predefined symbol). 5
file extensions. See filename extensions
file types

assembler SOUrCeo.vteiti i 1

extended commandline....................... 9, 14

#include. 14
filename extensions

) 1 L 1

10T 1

T18 17

SI8 e 1

XCl o 9, 14
filenames, specifying for assembler object file 17
formats

assembler sourcecode 1
FRAME (CFLoperator).oovunenenenenennnn.. 90
FUNCALL (assembler directive) 79
FUNCTION (assembler directive) 79
-G (assembler option) 14

SAMS8 IAR Assembler
Reference Guide

GE (assembler operator)oiiiiinn.. 28
GE (CFLoperator).ovv et 89
global value, defining 52
greater than or equal (assembler operator) 28
greater than (assembler operator) 28
GT (assembler operator)c.oouvenenenenn . 28
GT (CFLOperator). vve et 89
header files, SFR. 7
header section, omitting from assembler list file. 16
high byte (assembler operator) 31
high word (assembler operator) 31
HIGH (assembler operator). 31
HWRD (assembler operator) 31
-I (assembler option). 14
-i(assembler option). 15
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 5
#if (assembler directive) 70
IF (assembler directive)ccouui.n.. 55
IF (CFLoperator).c.oovunne e 90
#ifdef (assembler directive). 70
#ifndef (assembler directive). 70
IMPORT (assembler directive) 44
#includefiles. i i 14-15
#include (assembler directive) 70
include paths, specifying. L. 14
including

unreferenced external symbols. 21
INSIUCHON SEL .« . v vttt et et e ee e ix
INEEZET CONSLANLS . « . ¢ o v vttt e e e eee e 3
internal error, diagnostic message. 94
in-line coding, using mMacros.covuo... 62

L

-L (assembler option)ot 15
-1 (assembleroption). 16
labels. See assembler labels
LE (assembler operator)o, 27
LE (CFLOperator)ooovu ettt 89
less than or equal (assembler operator). 27
less than (assembler operator).c...ou.... 27
library modules. i 42
CIEALINE .« o vttt et e 12
LIBRARY (assembler directive). 41
LIMIT (assembler directive). 51
_ _LINE_ _ (predefined symbol) 5
line error, diagnostic message. 93
lines per page, in assembler listfile 18
listingactivelineso, 19
listing control directives 65
LITERAL (CFLoperator)covuenennenennn.. 89
LOAD (CFILoperator)coovueienenennn.. 90
local value, defining 52
LOCAL (assembler directive). 57
LOCFRAME (assembler directive). 79
logical AND (assembler operator) 28
logical exclusive OR (assembler operator) 35
logical NOT (assembler operator). 29
logical OR (assembler operator) 30
logical shift left (assembler operator) 33
logical shift right (assembler operator) 33
low byte (assembler operator). 31
low word (assembler operator) 31
LOW (assembler operator)c.c.ovuvunon.. 31
LSHIFT (CFlLoperator).c.cvvueninnnnnnnn.. 89
LSTCND (assembler directive). 65
LSTCOD (assembler directive). 65
LSTEXP (assembler directives) 65
LSTMAC (assembler directive) 65
LSTOUT (assembler directive). 66
LSTPAG (assembler directive) 66

Index __4

LSTREP (assembler directive) 66
LSTXREF (assembler directive) 66
LT (assembler operator)ooueuenennn.. 27
LT (CFILOoperator)ovvinei e enn 89
LWRD (assembler operator) 31
-M (assembler option)., 16
macro execution information, including in listfile 12
macro processing directives 57
macro quote characters. 59

specifying 16
MACRO (assembler directive) 57
macros. See assembler macros
memory

reserving space and initializing 75

reserving uninitialized spacein 74
memory overflow, diagnostic message 94
messages, excluding from standard output stream 18
MOD (assembler Operator)vvvvinnenenn.. 29
MOD (CFLOperator).vuueuenennennenn.n. 89
module consistency. 43
module control directives, 41
MODULE (assembler directive) 41
modules, terminating 42
modulo (assembler operator) 29
msa (filename extension) 1
MUL (CFLOPerator)c.ovueneineaennennen. 89
multiplication (assembler operator) 25
multi-module files, assembling 43
-N (assembleroption) 16
NAME (assembler directive). 41
named absolute segments i 47
NE (assembler operator)c...vuiiienenn.. 27
NE (CFLoperator).oveti i eaeenn 89

101

102

not equal (assembler operator) 27

NOT (CFIoperator)covuuiinienann.... 89
-O (assembler option) 17
-0 (assembler option) 17
operands
formatof 1
in assembler eXpressions 2
operations, formatof. 1
operation, Silent i 18
operators. See assembler operators
OPLION SUMMATLY .« . vttt ettt et e e e e e 11
OR (assembler operator).c.oueenenenn.. 30
OR (CFLOperator). ovvee et eeanns 89
ORG (assembler directive)ooveneen .. 46
-p (assembleroption) i 18
PAGE (assembler directive) 66
PAGSIZ (assembler directive). 66
parameters
in assembler directives. L.l 41
typographic conventionc.c....... X
parenthesis (assembler operator). 25
passing special characters. 61
#pragma (assembler directive) 70
precedence, of assembler operators. 23
predefined register symbols 6
predefined symbols. L i 4
inassembler macros. 60
undefining L L 20
__ASAME 5
__DATE .. 5
__FILE .. 5
__JAR_ SYSTEMS_ASM_ _ 5
__LINE_ 5

SAMS8 IAR Assembler
Reference Guide

o TID . 5-6
TIME_ _ ... 5
__VER . 5
preprocessor symbol, defining 13
prerequisites (programming exXperience). ix
processor configuration, specifying 20
program location counter (PLC) 1,3
SELHIG .« o vttt 48
program modules, beginning. 42
PROGRAM (assembler directive). 41
programming experience, required ix
programming hints L L L il 6
PUBLIC (assembler directive) 44
PUBWEAK (assembler directive). 44
-r (assembler option). 18
RADIX (assembler directive) 76
reference information, typographic convention. X
registered trademarks L oL ii
TEEISTETS « . ottt ettt e e 6
relocatable expressions, using symbolsin. 2
relocatable segments, beginning 47
repeating Statementsot 62
REPT (assembler directive) 57
REPTC (assembler directive) 57
REPTI (assembler directive).coouvn.... 57
REQUIRE (assembler directive). 44
RSEG (assembler directive)covu.n.. 46
RSHIFTA (CFLoperator)c.oouvuiinenenan.. 90
RSHIFTL (CFLoperator)o.vuuiinenenan.. 90
RTMODEL (assembler directive) 41
runtime model attributes, declaring. 43
r18 (filename extension), 17
-S (assembler option)l 18

-s (assembler option). il 19
SAMS architecture and instructionset ix
SAMS derivatives, specifying. 20
SAMS INStruCtioN SEt . .« oot e ettt ix
second byte (assembler operator) 30
segment begin (assembler operator) 32
segment control directives. 45
segment end (assembler operator). 32
segment size (assembler operator) 34
segments
absolute 47
aligning 48
common, beginningttt 48
named absolute i, 47
relocatable L 47
stack,beginning. Lo 47
SET (assembler directive).covune. ... 51
severity level, of diagnostic messages................. 93
SFB (assembler operator)c..iiiiinn.. 32
SFE (assembler operator)c.covuvnn.. 32
SFR (assembler directive).couui.n.. 51
SFRP (assembler directive).covuen.. 51
SFRTYPE (assembler directive) 51
SFR. See special function registers
SHL (assembler operator).c..coveu. .. 33
SHR (assembler operator).c..oviieninn.. 33
silent operation, specifying in assembler. 18
simple rules, in CFI directives. 86
SIZEOF (assembler operator).c...ouou.. 34
source files, including. 72,77
source format, assembler 1
space allocation directives., 74
special characters, passingc....... 61
special function registers.t 7
defining labels 53
stack segments, beginning. 47
STACK (assembler directive)couv.... 46
standard input stream (stdin), reading from. 14
standard output stream, disabling messagesto 18

Index __4

statements, repeating.ttt 62
SUB (CFLOperator)veuunenenenennnnn 89
subtraction (assembler operator). 26
symbol control directives 44
symbol values, checking., 53
symbols

See also assembler symbols

predefined, inassembler 4

predefined, in assemblermacro 60

user-defined, case sensitive 19
syntax

See also assembler source format

assembler directives. 40
s18 (filename extension)v it 1
-T (assembler option)c.ouiuiinnenenn.. 19
-t (assembleroption)., 19
tab spacing, specifying in assembler listfile............ 19
target processor, specifying. 20
temporary values, defining 52,74
third byte (assembler operator) 30
_ _TID_ _ (predefined symbol). 5-6
_ _TIME_ _ (predefined symbol) 5
time-criticalcode 62
trademarks ii
true value, in assembler expressions 2
typographic conventionso.uuvuieannenn. X
-U (assembleroption), 20
-u (assembler option) 19
UGT (assembler operator)ouuen.. 34
ULT (assembler operator)oueienen.n.. 34
UMINUS (CFILoperator).covuinennnnenenen.. 89
unary minus (assembler operator). 26
unary plus (assembler operator) 25

103

104

#undef (assembler directive). 70

unsigned greater than (assembler operator). 34
unsigned less than (assembler operator) 34
user symbols, case sensitive 19
-v (assembleroption), 20
value assignment directives. 51
values, defining temporary 74
VAR (assembler directive) 51
_ _VER_ _ (predefined symbol) 5
-w (assembler option) 20
warnings

disabling 20
warning, diagnostic message.ot 94
-X (assembler option)t 21
-X (assembler option) 21
xcl (filename extension)c.covun... 9, 14
XOR (assembler operator)c.ooiin.... 35
XOR (CFLOperator)ovuee i eeeeeane 89

Symbols

! (assembler operator). 29
I=(assembler operator)., 27
#define (assembler directive) 70
#elif (assembler directive)., 70
#else (assembler directive), 70
#endif (assembler directive) 70
#error (assembler directive) 70
#if (assembler directive) 70
#ifdef (assembler directive). 70

SAMS8 IAR Assembler
Reference Guide

#ifndef (assembler directive). 70
#includefiles. 14-15
#include (assembler directive) 70
#pragma (assembler directive) 70
#undef (assembler directive). 70
$ (assembler directive) i 76
$ (program location counter). 3
%0 (assembler Operator)t 29
& (assembler operator) 28
&& (assembler operator)iiia... 28
() (assembler Operator)ouvuveninenenan.. 25
* (assembler operator) 25
+ (assembler operator) 25-26
- (assembler operator). 26
-B (assembleroption) i 12
-b (assembleroption) 12
-c (assembleroption) i 12
-D (assembler option) 13
-d (assembler option) 14
-E (assembleroption) i 14
-f (assembler option). 9,14
-G (assembler option)t 14
-I (assembler option). 14
-i(assembleroption). 15
-L (assembler option) 15
-1 (assembleroption). 16
-M (assembler option). 16
-N (assembler option)o, 16
-O (assembler option)couii i 17
-0 (assembler option) 17
-p (assembleroption) 18
-r (assembler option). 18
-S (assembler option) 18
-s (assembleroption)., 19
-T (assembler option)cvuiininenenn.. 19
-t (assembleroption). i, 19
-U (assembleroption), 20
-u (assembleroption) i, 19
-v (assembleroption) 20

-w (assembler option) 20
-X (assembler option) 21
-X (assembler option) i 21
/ (assembler operator) i 26
[*...%/ (assembler directive)., 70
// (assembler directive), 70
< (assembler operator)c.iiii.. 27
<< (assembler operator)cii. 33
<= (assembler operator) 27
<> (assembler operator)c.iiii. 27
= (assemblerdirective) 51
= (assembleroperator) 27
== (assembler operator) 27
> (assembler operator) 28
>= (assembler operator) 28
>> (assembler operator)l 33
A (assembler operator). 29
_ _ASAMS_ _ (predefined symbol) 5
_ _DATE_ _ (predefined symbol) 5
_ _FILE_ _ (predefined symbol)................... ... 5
_ _TAR_SYSTEMS_ASM_ _ (predefined symbol) 5
_ _LINE_ _ (predefined symbol) 5
_ _TID_ _ (predefined symbol). 5-6
_ _TIME_ _ (predefined symbol) 5
_ _VER_ _ (predefined symbol) 5
_args (assembler directive), 57
_args, predefined macrosymbol 60
| (assembler operator) 29
[l (assembler operator).viviiini 30
~ (assembler operator), 29

Index __4

105

SAMS8 IAR Assembler
106 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the SAM8 IAR Assembler
	Source format
	Assembler expressions
	TRUE and FALSE
	Using symbols in relocatable expressions
	Symbols
	Labels
	Program location counter (PLC)
	Integer constants
	ASCII character constants
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly
	Register symbols

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Assembler options
	Setting command line options
	Extended command line file
	Error return codes
	Assembler environment variables

	Summary of assembler options
	Descriptions of assembler options
	-B
	-b
	-c
	-D
	-d
	-E
	-f
	-G
	-I
	-i
	-L
	-l
	-M
	-N
	-O
	-o
	-p
	-r
	-S
	-s
	-T
	-t
	-u
	-U
	-v
	-w
	-X
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators – 1
	Multiplicative and shift arithmetic operators – 3
	Additive arithmetic operators – 4
	AND operators – 5
	OR operators – 6
	Comparison operators – 7

	Description of operators
	()
	*
	+
	+
	–
	–
	/
	<, LT
	<=, LE
	<>, !=, NE
	=, ==, EQ
	>, GT
	>=, GE
	&&, AND
	&, BINAND
	~, BINNOT
	|, BINOR
	^, BINXOR
	%, MOD
	!, NOT
	||, OR
	BYTE2
	BYTE3
	DATE
	HIGH
	HWRD
	LOW
	LWRD
	SFB
	Syntax
	Parameters
	Description

	SFE
	Syntax
	Parameters
	Description

	<<, SHL
	>>, SHR
	SIZEOF
	Syntax
	Parameters
	Description

	UGT
	ULT
	XOR

	Assembler directives
	Summary of assembler directives
	Syntax conventions
	Labels and comments
	Parameters

	Module control directives
	Syntax
	Parameters
	Description
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the last module
	Assembling multi-module files
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Importing symbols
	Examples

	Segment control directives
	Syntax
	Parameters
	Description
	Beginning an absolute segment
	Beginning a named absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment
	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Defining special function registers
	Checking symbol values
	Examples
	Defining a permanent global value
	Redefining a symbol
	Using local and global symbols
	Using special function registers
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Examples

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Passing special characters
	Predefined macro symbols
	Passing special characters
	How macros are processed
	Repeating statements
	Examples
	Coding in-line for efficiency
	Using REPTC and REPTI

	Listing control directives
	Syntax
	Parameters
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table
	Specifying the list file format
	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Formatting listed output

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining labels
	Conditional directives
	Including source files
	Displaying errors
	Defining comments
	Examples
	Using conditional directives
	Including a source file

	Space allocation directives
	Syntax
	Parameters
	Descriptions
	Examples
	Generating lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity
	Examples
	Including a source file
	Defining comments
	Changing the base
	Controlling case sensitivity

	Compiler function directives
	Description

	Call frame information directives
	Syntax
	Names block directives
	Extended names block directives
	Common block directives
	Extended common block directives
	Data block directives
	Parameters
	Descriptions
	Backtrace rows and columns
	Defining a names block
	Extending a names block
	Defining a common block
	Extending a common block
	Defining a data block
	Simple rules
	Simple rules for resources
	Simple rules for CFAs
	CFI expressions
	Unary operators
	Binary operators
	Ternary operators
	Example
	Defining the names block
	Defining the common block
	Defining the data block

	Diagnostics
	Message format
	Severity levels
	Line error
	Error
	Fatal error
	Memory overflow
	Internal error
	Warning

	Index

