SAMS8 IAR C Compiler

Reference Guide

for Samsung’s
SAMS8 Microcontroller Family

COPYRIGHT NOTICE
© Copyright 1997-2003 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR, IAR Embedded Workbench, IAR XLINK Linker, IAR XAR Library Builder, [AR
XLIB Librarian, IAR MakeApp, and IAR PreQual are trademarks owned by IAR
Systems. C-SPY is a trademark registered in Sweden by IAR Systems. IAR
visualSTATE is a registered trademark owned by IAR Systems.

SAMS and Samsung are registered trademarks of Samsung Electronics Co., Ltd.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Second edition: April 2003
Part number: CSAMS8-2

Contents

TADIES ..o xi
PrEfACE ..o xiii
Who should read this guide ... xiii

How to use this guide ... xiii
What this guide contains ... xiv
Other documentation ... XV
Further readingccocooevveeieeieieieeeieete e XV

Document conventions e XVi
Typographic CONVENTIONScceeeereererenrinrenrenieerenieieirereseeseenienaenee xvi

Part |. Using the compiler ... 1

INEFOAUCTION ...t e e 3

Building applications

COMPIIING ..ottt

LINKING ettt 3
Data StOrage ..o 4
Code MOAEIS ... 4

Optimization techniques

IAR language extension overview ..., 5
Special function tYPescoceeeeerereeiriereeerierineireneeeseee et 5
Extended KEyWOrdsc.ccoeeeeieviinenieiiiiieneeeeeeieeeee e 5
HPragma dir€CLIVESccvevuerueeeeriiieieieicreteete ettt 5
Predefined SymbOLScccocoirieririiieinicincineneecneeee e 5
INtrinsic fUNCHONSeovevieeeiirieieieieieerere e 6
Inline assembIErccccoeeiirieniiieiciceeree s 6

Runtime libraries ... 6

CUSTOMIZATION ..o 7

Code MOEI ... 7

Data model ... 7

Runtime library ... 8

Data STOrage ... 11
Stack, static, and heap memory ... 11
The stack and auto variablesc.cceceeveevierierienienienienienenesenereenean 11
StAtiC MEMOTY .veveiiiieieeieeeetetetet ettt ettt er et neene 13
Dynamic memory on the heapccceceevieneneneneninenenesecan 14
Memory access methods and memory types 14
Memory access methods ...
MEMOTY LYPES ceveiiieerieniieieeiteeiieete ettt ettt eareeaees
Structures and MEMOry tyPesiiiinncnneneeeennes 16
Non-initialized memory ... 16
Located variables ... 17
Absolute location placementceeeeeierierierienienienenese e 17
Segment PlaCEMENLTcccoveiiiiriirieiiiiicteneee et 17
Accessing special function registerscocoveeveverneneeneeerenennene 18
Anonymous structs and UNIONS ..., 18
FUNCLIONS .. 21
Code models

Special function types ...

Interrupt fUNCHONSoveviiieeieieeieceeete e
Fast funCtionsc.ccoevuererinininciceececteeeeeee e
MONILOT fUNCHIONS ...uveevenriiiereeteriieieeiieie ettt enees 22
Segment placement ... 23
Assembler language interface ... 25
INErodUCtioN ... 25
Runtime model attributes ...

Specifying runtime attributes ...

Predefined runtime attributesc..ceceeceevienienienienienienienesesesceceneen
Calling coONVENtIONccooiiiiiiiiiicc e 27
Function declarationsccccocoiiiiiiiiiininiincccciccceee 27
Function parametersc..cccoccoveeeeinreenreninieneeenieeereneeseseesessennenenns 28
Returning a value from a functionccceceeevvrecricricncncncncncnnene 29

SAMS IAR C Compiler
Reference Guide

Contents _¢

Permanent versus scratch registers

REturn L0CALIONcc.eeueeuieiieiieiieiieceteietet ettt s

EXAMPIES .ottt s
Calling assembler routines from C ... 31

Creating skeleton codeccocoeveinineicneninennencesceeeeceeee 31
Call frame information ... 33

Function directives

SYNLAX vttt s s

Parameters ...
DESCTIPHON ..ottt ettt ettt s ere e 36
Segments and MEMOIY ... 37
What is @ segment? ... 37

Linker segment type ...

Placeholder segments

Placing segments in memory ... 38
The contents of the linker configuration filec.cccoeivccnenenne. 39
Customizing a linker configuration filec..cccocevvveininencncncnnene 39

Data SEZMENLS ..o s 40
Static MEMOTY SEZMENLS ...c.ceueuvevireeiiriereeietereeieeereseeeseresaeesreneenennes 40
The Stack ..o 43
The REAP ..eveiiieieiieeet ettt 44
Located datacoceevveireieinieiriceneccneee e 44

Code segments
Startup code

Normal code

EXCEPLION VECIOTS ..uveuveniiiiniinieniieieeiieiecitett ettt 45

Runtime enviroNmMeNt ... 47
The cstartup.sl8 file ... 47
SYSTEM STATTUP ...ovviiiiiriiiiieiieie sttt 47

System terMINAtIONceeeereeieieieieienenenenererieereese et et eeee e 48

__low_level _init

Customizing cstartup.s18 ...

Modules and segment parts

Call frame informationcccoeeoniniiiiiinccccce
Modifying the cstartup.s18 fileccccoveoieneneneneninenenererccenee 50
Input and oUtPUL ...
Library object files
Header files ..o
Library definitions summary ..., 52
C-SPY debugger interface ... 53
The debugger terminal I/O Windowc.ccccevevenenenencnicncncncenene 53
Programming hintscoisssessseeensessseesesnnns 55
General programming hints ... 55
FUNCtion ProtOtYPESc.ceeeeeverieueruererieiereneeinteneeienteneereense e saeaeenenes 55
Bitfields
ATTaYS ooovvveieeieene.
Floating-point types ... 56
Saving stack space and RAM memory ... 56
Optimization techniques ... 56
Specifying the optimization type and levelc..ccccccoeenenenncnee 57
OptimiZation DINESc..coeeeririririniceeteeeeetete e 57
Part 2. Compiler reference ... 59
Data representation ... 61
ALIZNMENT ..o 61
Data tyPes ...
INEEEET LYPES oottt
Floating-point types
POINEEIS ...ttt
SUZE e
CASHIINE oottt ettt ettt et sae st b sae b ene e saeeae

SAMS IAR C Compiler
vi Reference Guide

Contents _¢

SErUCLUNE LYPES ..o 64
Alignment

General JayOULcc.coeviriieninicc e 64

Segment reference ... 65

Summary of SEgMENtS ... 65

Descriptions of segments ... 66

ComMPIler OPLIONS ... 75

Setting command line options ... 75

Specifying Parametersc.cooevererierierereriencrereeeereeeeseeeeeeeeneens 76

Specifying environment variablesccccooevveverenienieneninenenennenne 77

Error return codes ...

OPLiONS SUMMAKYooviiiiiiince ettt
Descriptions of options ... 79
Extended keywords ... 99
Summary of extended keywords ... 99
Using extended keywords
Data StOTAZEocverveeieeiieiiieeeeseeteere e
FUNCHIONS ...
Descriptions of extended keywords ... 102
HPragma dir€CLIVESooooooviiiriieeeeee e 109
Summary of #pragma directives ... 109
Descriptions of #pragma directivesccccoccoevinncncnns 110
Predefined symbols ... 119
Summary of predefined symbols ... 119
Descriptions of predefined symbols ..., 120
INErinSic FUNCLIONS ... 123
Intrinsic functions SUMMAry ... 123
Descriptions of intrinsic functions ... 124
Library fUNCLIONS ... 127
INtroduction ..o 127

vii

viii

SAMS IAR C Compiler
Reference Guide

IAR CLIB ibrary ... 127

Library object filescocevirieienieieieieieiese e 127
Header files ..o 128
Library definitions SUMMATYcccoecveveeienenenenenenenenreneneeeens 128
Restrictions on ANSI C liDrariescccceeceverierererenenienrensenieneene 129
DIAGNOSLICSoooovieieii s 131
Message format ... 131
Severity levels ... 131
Setting the severity 18Velccccveominiieneiinenenccceneeeeeene 132
TNLEINAl ©ITOTveieiiiiiiiieeee et 132
Part 3. Migration and portability ... 133
Migrating to the SAM8 |IAR C Compiler V2.x ... 135
DiIffErEnCes ..o 135
Implementation-defined behavior ..., 139
Descriptions of implementation-defined behavior 139
Translation ..o 139
ENVITONMENE ...eiviiiiiiieiiieeteeteeeee ettt ettt 140
IAEentifiersocoooiiiiiiiic e 140
CRATACTETS ..ot s 140
TIEEZETS ettt et 141
FLoating POINEc.cooveruiriiniiriintietieeeeeietcit ettt 142
ATTays and POINLETS ...eoveeveevierierieieieieterete st sttt et saeeneene 143

Registers
Structures, unions, enumerations, and bitfieldsc.ccccoeuerreennns 143
QUALIFIETS ..eivivieiiie ettt ere e et 144
DECIATAtOrS ..euveeiiiiiiiiiieeieetertetete ettt 144
STALBMENLS ...ttt 144
Preprocessing dir€CtiVesocvevveieieieierienieniesiesiesienie e et 144

C library functions

Contents _¢

[AR C @XLENSIONSoooiiveeiee s 151
Why should language extensions be used? 151
Descriptions of language extensions ... 151

INAEX e 163

SAMS IAR C Compiler
Reference Guide

Tables

1: Typographic conventions used in this UIdEcccceeevevuerierreninenenenineneeene XVvi
2: COdE MOALLS ..ottt ettt ettt ettt see st e s b s be s bbbt ebe et eabeneen 7
31 Data MOGLILS ..o e 8
4: Runtime HIDIariesccccooiiiiiiiiiiiiiiieccce e 9
5: Memory types and KEYWOIdScccoeeveirieinieinenieineinenecenieet et 13
6: MEIMOTY LYPES ..eovvveemteitentenientenientteseere et ettt et eateseesbesaesbesbeebeebe et et enaesensensesaeeneas 15
7: Example of runtime model attributescccceeerenenieninenenenreeeeieiceeesenens 26
8: Runtime model attribDULESc.coeeeeiriiieieierientese ettt 27
9: Register use in different code MOdelscc.coeeererierieninicieiiineneeeeeeene 30
10: Call frame information

11: XLINK segment types

12: Linker configuration file eXamplecccceveeenerierieriiriiiciceneneneneeeeeeeeeen 39
131 MEIMOTY LYPES wnvenrinrieerierieeieeiieiteiteite ettt st st sae st sbe b b et et eneensesaennens 41
14: SEZMENL GIOUPS ...ouviiiiiiiiiiiiii ettt sttt sae b s s 41
15: Segments in SEZMENL ZEOUPSeevvevrereenrenrerenienrenreneniesitrieeseereesteseessensessesesseeneas 42
16: Preprocessor symbols for code and data models 51
17: TAR C Library header filescccoeeieiniinieineieinecneenceeneeceeeeeveiene 52
18: Miscellaneous IAR C Library header filescc.ceceveririeieiencnenenincnienennne 53
190 TREEEET LYPES everveniiiiieeieeieeieeiteiteetee ettt st sttt ettt seesae s 61
20: Floating-POint tYPESc.ceeueruereruiriererienieienteuiteuenteeeseneesesseeesesereseentsseseesessesesnens 62
21: SEZMENT SUMIMATY ..eovverterrerrerirreereereeteiteateatestetestestesiesuesteeseeseeseestensensensensessessens 65
22: Environment Variables ... 77
23: EITOT TELUITI COUES ..eevriviiiiiieiiieetinitenit ettt te ettt e st sae et et saeesbaesbeenseenbeenee 77
24: Compiler OPtioNS SUMIMATYccceeeertereruerrertenrerienerenienieereereeneeseensensensensessensens 77
25: Available code MOdEILSccoeiiiiiiiiiii e 80
26: Available data MOELSccceouevuieieieieieieeee et 81
27: Generating a list of dependencies (--dependencies) 82
28: Generating a compiler List file (-1) .cc.coevveririniniiiiiicccce 88
29: Directing preprocessor output to file (--Preprocess)cocoeveevererreereerreeenens 93
30: Specifying speed OptimiZation (=5)ceeeverreererreeieieiniereneeneetererereseeseesiesienne 95
31: Specifying Size OPtIMIZAtION (-Z) ...cooveververvineiniinieniinierieete et 96

Xi

Xii

SAMS IAR C Compiler
Reference Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

Extended keywords summary
#pragma directives summary

Predefined symbols summary

Intrinsic functions SUMMATYc..coceevererireeietertenienientere et ne

TAR CLIB Library header filesccccccoeorenninieieneineneeeeeeeeeeseeceeeee 128
Miscellaneous IAR CLIB Library header filesccccocvvvinicicrcinenencnecnene 128
#pragma directives in V1.x with new syntax
Assembler processor Option MAPPINGSceveveereereereereeienrerteriessessesesseresesenne
Compiler processor Option MAPPINGScververververererereereeneeneenuensenrenressessesenses
Compiler memory model option MAaAPPINgsc..ceceeerereeeeeneereenenrenrerrenenrenennes

Other compiler Option MAaPPINGSccceverveverrerireririirrerenerereneeereeeeeeeneseeennene

Message returned by SIEITOT()ecvevereereeruerieierierienenienienieniesteseesesesiesieereene

Preface

Welcome to the SAM8 |IAR C Compiler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the SAM8 IAR C Compiler to best suit your application requirements.
This guide also gives you suggestions on coding techniques so that you can
develop applications with maximum efficiency.

Who should read this guide

You should read this guide if you plan to develop an application using the C language

for the SAMS microcontroller and need to get detailed reference information on how to
use the SAMS8 IAR C Compiler. In addition, you should have a working knowledge of
the following:

e The architecture and instruction set of the SAMS8 microcontroller. Refer to the
documentation from Samsung for information about the SAMS8 microcontroller

o The C programming language

Application development for embedded systems

o The operating system of your host machine.

How to use this guide

When you start using the SAMS8 IAR C Compiler, you should read Part 1. Using the
compiler in this reference guide.

When you are thoroughly familiar with the compiler and have already configured your
project, you can focus more on Part 2. Compiler reference.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the SAMS8 IAR Embedded Workbench™ IDE User Guide. They give product
overviews, as well as tutorials that can help you get started. The SAMS IAR Embedded
Workbench™ IDE User Guide also contains a glossary.

xiii

What this guide contains

Xiv

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

SAMS IAR C Compiler
Reference Guide

Part 1. Using the compiler

Introduction gives an overview of the compiler techniques that allow an application
to take full advantage of the SAMS8 microcontroller: code and data storage features,
optimization techniques, and language extensions.

Customization describes the available customization options: code model, data
model, and runtime libraries.

Data storage describes how data can be stored in memory, with an emphasis on the
different memory types.

Functions describes the different ways code can be generated and introduces the
concept of code models. Special function types such as interrupt functions are also
covered.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention
and the runtime model attributes.

Segments and memory describes the concept of segments, introduces the linker
configuration file, and describes how code and data are placed in memory.
Runtime environment describes system initialization, introduces the cstartup file,
and describes some low-level I/O routines in the runtime library.

Programming hints gives hints about programming for the SAMS8 IAR C Compiler.

Part 2. Compiler reference

Data representation describes the available data types, pointers, and structure types.
Segment reference gives reference information about the compiler’s use of
segments.

Compiler options explains how to set the compiler options, gives a summary of the
options, and contains detailed reference information for each compiler option.
Extended keywords gives reference information about each of the SAMS-specific
keywords that are extensions to the standard C language.

#pragma directives gives reference information about the #pragma directives.
Predefined symbols gives reference information about the predefined preprocessor
symbols.

Intrinsic functions gives reference information about the functions that can use
SAMS-specific low-level features.

Library functions gives an introduction to the C library functions, and summarizes
the header files.

Diagnostics describes how the compiler’s diagnostic system works.

Preface __4

Part 3. Migration and portability

® Migrating to the SAMS IAR C Compiler V2.x gives hints for porting code written for
a version V1.x of the SAMS8 IAR C Compiler.

o Implementation-defined behavior describes how IAR C handles the
implementation-defined areas of the C language.

o AR C extensions describes the IAR extensions to the ISO/ANSI standard for the C
programming language.

Other documentation

The complete set of IAR Systems development tools for the SAM8 microcontroller is
described in a series of guides. For information about:

e Using the IAR Embedded Workbench™ IDE with the IAR C-SPY™ Debugger,
refer to the SAMS8 IAR Embedded Workbench™ IDE User Guide

e Programming for the SAMS8 IAR Assembler, refer to the SAMS8 IAR Assembler
Reference Guide

o Using the IAR XLINK Linker™, the IAR XAR Library Builder™, and the IAR
XLIB Librarian™, refer to the IAR Linker and Library Tools Reference Guide

e Using the IAR C Library, refer to the IAR C Library Functions Reference Guide,
available from the SAM8 IAR Embedded Workbench IDE Help menu.

All of these guides are delivered in PDF or HTML format on the installation media.
Some of them are also delivered as printed books.

FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

e Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O'Reilly & Associates.

e Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

o Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

e Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

e Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]

Xv

Document conventions

xvi

We recommend that you visit the websites of Samsung and IAR Systems:

e The Samsung website, www.samsung.com, contains information and news about
the SAMS microcontrollers.
o The IAR website, www.iar.com, holds application notes and other product

information.

Document conventions

SAMS IAR C Compiler
Reference Guide

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within or to another part of this guide.

(]

Identifies instructions specific to the versions of the IAR Systems tools
for the IAR Embedded Workbench interface.

Identifies instructions specific to the command line versions of IAR
Systems development tools.

Table 1: Typographic conventions used in this guide

Part |. Using the compiler

This part of the SAM8 |IAR C Compiler Reference Guide includes the

following chapters:

o Introduction

o Customization

e Data storage

e Functions

e Assembler language interface
e Segments and memory

e Runtime environment

e Programming hints.

- .ﬁhhhhhm

I

Introduction

The SAM8 IAR C Compiler supports the C language for Samsung’s SAM8
microcontroller family.

This chapter first introduces the concepts of compiling and linking when
describing how an application is built.

Then the compiler is introduced, including an overview of the techniques that
enable applications to take full advantage of the SAM8 microcontroller. In the
following chapters these techniques will be studied in more detail.

Building applications

A typical application is built from a number of source files and libraries. The source files
could be written in C, or assembler language and can be compiled into object files by
the SAMS IAR C Compiler or the SAM8 IAR Assembler.

A library is a collection of object files. A typical example of a library is the compiler
library containing the runtime environment and the C standard library. Libraries can also
be built using the IAR XAR Library Builder, the IAR XLIB Librarian, or be provided
by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker configuration file describing the available resources of the target system.
COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r18 using the default settings:

iccsam8 myfile.c

LINKING

The IAR XLINK Linker is used to build the final application. Normally XLINK requires
the following:

o A number of object files and possibly some libraries

o The standard library containing the runtime environment and the standard language
functions

o A linker configuration file that describes the memory layout of the target system.

Part |. Using the compiler

3

Data storage

4

In the IAR Embedded Workbench, XLINK is started automatically when you choose the
Build option.

In the command line interface, the following line can be used to start XLINK:
xlink myfile.r18 myfile2.r18 -f lnksam8.xcl clsam8ss.rl8

In this example, myfile.r18 and myfile2.r18 are object files, Inksams8 . xc1 is the
linker configuration file, and c1sam8ss.r18 is the runtime library.

Data storage

One of the characteristics of the SAM8 microcontroller is that there is a trade-off
regarding the way memory is accessed, ranging from cheap access to small memory
areas up to more expensive access methods that can access any location.

One of the decisions a developer of embedded systems must make is to decide where the
different memory access methods should be used.

The SAMS IAR C Compiler allows you to set a default memory access method by using
data models. The compiler also allows the access method to be specified explicitly for
each individual variable.

The Data storage chapter covers memory access methods in greater detail.

Code models

The SAMS8 IAR C Compiler supports the small and large code models.

For detailed information about the code models, see the Functions chapter.

Optimization techniques

SAMS IAR C Compiler
Reference Guide

The SAMS8 IAR C Compiler is a state-of-the-art compiler with a C level optimizer that
performs, among other things, dead-code elimination, constant propagation, inlining,
common sub-expression elimination, and precision reduction. It also performs loop
optimizations such as unrolling and induction variable elimination.

The user can control the level of optimization and decide if the basic approach is to
optimize for speed or for size. It is also possible to disallow individual optimizations.

For more information about optimization, see the chapter Programming hints.

Introduction __4

IAR language extension overview
This section briefly describes the extensions provided by the SAM8 IAR C Compiler to

support specific features of the SAM8 microcontroller.
SPECIAL FUNCTION TYPES

The special hardware features of the SAMS8 microcontroller are supported by the
compiler’s special function types: interrupt, fast, and monitor. These allow you to write
a complete application without having to write any part of it in assembler language.

For detailed information, see Special function types, page 21.

EXTENDED KEYWORDS

The SAM8 IAR C Compiler provides a set of keywords that can be used to control the
behavior of the program. There are, for example, keywords for controlling the memory
type for individual variables as well as for declaring special function types.

By default language extensions are always enabled in the IAR Embedded Workbench.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See page 85 for additional information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

#PRAGMA DIRECTIVES

The #pragma directives control the behavior of the compiler, for example how it
allocates memory, whether it allows extended keywords, and whether it issues warning
messages.

The #pragma directives are always enabled in the SAMS8 IAR C Compiler. They are
consistent with the ISO/ANSI C and are very useful when you want to make sure that
the source code is portable.

For detailed descriptions of the #pragma directives, see the chapter #pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example the code and data models.

For detailed descriptions of the predefined symbols, see the chapter Predefined symbols.

Part |. Using the compiler 5

Runtime libraries

6

INTRINSIC FUNCTIONS

The intrinsic functions provide direct access to low-level processor operations and can
be very useful in, for example, time-critical routines. The intrinsic functions compile
into in-line code, either as a single instruction or as a short sequence of instructions.

For detailed reference information, see the chapter Intrinsic functions.

INLINE ASSEMBLER

The asm keyword assembles and inserts the supplied assembler statement in-line, for
example:

asm("LD RO,R1");

Note: The asm keyword reduces the compiler’s ability to optimize the code. We
recommend the use of modules written in assembler language instead of inline
assembler, since the function call to an assembler routine causes less performance
reduction.

Runtime libraries

SAMS IAR C Compiler
Reference Guide

The SAMS IAR C Compiler supports the IAR CLIB Library, which is a small, efficient
library well-suited for 8- and 16-bit processors. This library is not fully compliant with
ISO/ANSI C, and does not fully support IEEE 754 floating-point numbers.

Customization

This chapter covers the configuration of the SAM8 IAR C Compiler including
an overview of the available code and data models. The last section describes
the standard runtime libraries that are included and how they correspond to
the compiler options.

You should read this chapter before you read the remaining chapters in Part [.
Using the compiler and the chapters in Part 2. Compiler reference.

Code model

The code model specifies the way in which code is generated and called. All object files
in an application must use the same code model.

The following code models are available:

Code model Max. stack size Description
Small (default) 256 bytes Internal stack
Large 64 Kbyte External stack

Not for SAM8xRI or SAM8xRCRI

Table 2: Code models

See the chapter General options in the SAM8 IAR Embedded Workbench™ IDE User
Guide for information about setting options in the IAR Embedded Workbench.

@I Use the - -code_model option to specify the code model for your project; see
--code_model, page 79.

Data model

The data model specifies the data memory which is used for storing:

e Non-stacked variables, that is, global data and variables declared as static
e Dynamically allocated data, for example data, allocated with malloc.

Note that if the data model and the code model differ, the default pointer will not be able
to point to stack objects.

Part |. Using the compiler

Runtime library

8

The following table summarizes the characteristics of the different data models:

Data model Default data memory attribute Default data pointer Description

Small __tiny __tinyp Internal RAM
(default)
Large __near __near External RAM

Table 3: Data models

Your program can only use one data model at a time, and the same model must be used
by all user modules and all library modules. If you do not specify a data model option,
the compiler will use the small data model.

The default memory attribute can—for each individual variable—be overridden by the
use of extended keywords or #pragma directives.

See the SAMS IAR Embedded Workbench™ IDE User Guide for information about
setting options in the IAR Embedded Workbench.

Use the --data_model option to specify the data model for your project; see
--data_model, page 81.

Runtime library

SAMS IAR C Compiler
Reference Guide

The runtime library includes the runtime environment and the C standard library. The
linker will include only those routines that are required—directly or indirectly—by your
application.

‘When building an application all parts must use the same customization settings. This
also applies to the runtime library. For the SAMS8 IAR C Compiler this means that there
is a runtime library for each combination of data and code models.

The runtime library names are constructed in the following way:
<type><cpu_variant><code model><data model><eeprom support>.rl8
where

<type> is c1 for the IAR CLIB library

<cpu_variants> 1S sam8/sam8x/sam8xri
<code_model> is one of s or 1 for small or large code
<data_models is one of s or 1 for small or large data
<eeprom_supports> is e if EEPROM support is enabled.

The following table shows the mapping of runtime libraries, cores, code models, data

models, and EEPROM support:

Customization ___4

Library Core Code model Data model EEPROM support
clsam8ss.rl8 sam8 Small Small No
clsam8xss.rl8 sam8x / sam8xrc Small Small No
clsam8xriss.r18 sam8xri/sam8xrcri Small Small No
clsam8sse.rl8 sam8 Small Small Yes
clsam8xsse.rl8 sam8x / sam8xrc Small Small Yes
clsam8xrisse.r18 sam8xri/sam8xrcri Small Small Yes
clsam81ll.r18 sam8 Large Large No
clsam8x1ll.r18 sam8x / sam8xrc Large Large No
clsam8xrill.r18 sam8xri/sam8xrcri Large Large No
clsam8lle.r18 sam8 Large Large Yes
clsam8xlle.rl8 sam8x / sam8xrc Large Large Yes
clsam8xrille.r18 sam8xri/sam8xrcri Large Large Yes
clsam8sl.r18 sam8 Small Large No
clsam8xsl.rl8 sam8x / sam8xrc Small Large No
clsam8xrisl.r18 sam8xri/sam8xrcri Small Large No
clsam8sle.rl18 sam8 Small Large Yes
clsam8xsle.rl8 sam8x / sam8xrc Small Large Yes
clsam8xrisle.r18 sam8xri/sam8xrcri Small Large Yes
clsam8ls.rl18 sam8 Large Small No
clsam8xls.rl8 sam8x / sam8xrc Large Small No
clsam8lse.rl8 sam8 Large Small Yes
clsam8xlse.rl8 sam8x / sam8xrc Large Small Yes

Table 4: Runtime libraries

Part |. Using the compiler

9

Runtime library

SAMS IAR C Compiler
10 Reference Guide

Data storage

This chapter starts by describing the fundamental ways data can be stored in
memory: on the stack, in static (global) memory, or in heap memory. Then the
different memory access methods and corresponding memory types are
described.

Memory types are discussed in relation to pointers, structures, and
non-initialized memory. Then placement in memory of global and static
variables is described. Finally, the structure types struct and union are
discussed.

Stack, static, and heap memory

Data can be stored in memory in three different ways:

e On the stack. This is memory space that can be used by a function as long as it is
executing. When the function returns to its caller, the memory space is no longer
valid.

e In static memory. This kind of memory is allocated once and for all; it remains valid
all through the execution of the application. Variables that are either global or
declared static are placed in this kind of memory.

e On the heap. Once memory has been allocated on the heap it remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using the heap in systems with a limited
amount of memory or systems that are expected to run for a long time.

THE STACK AND AUTO VARIABLES

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed on the stack. From a semantic point of view this is
equivalent. The main differences are that accessing registers is faster and that less
memory is required compared to when variables are located on the stack.

Auto variables live as long as the function executes; when the function returns, the
memory allocated on the stack is released.

Part |. Using the compiler 1

Stack, static, and heap memory

12

SAMS IAR C Compiler
Reference Guide

The stack can contain:

Local variables and parameters not stored in registers

Temporary results of expressions

The return value of functions (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the fop of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function may never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store its data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—what is called a recursive function—and each
invocation can store its own data on the stack.

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
programming mistake. It returns a pointer to the variable x, a variable that ceases to exist
when the function returns.

int * MyFunction ()
int x;
do something
return &x;

}

Data storage ___4

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack or when recursive functions—functions that call themselves either
directly or indirectly—are used.

STATIC MEMORY

All global and static variables will be placed in static memory. The word “static” in this
context means that the amount of memory allocated for this type of variables does not
change while the application is running.

The SAMS microcontroller can access memory in different ways. The access methods
range from generic but expensive methods that can access the full memory space, to
cheap methods that can access limited memory areas.

The following memory types and corresponding keywords exist:

Memory type Max. object size Name

IRAM Page 0 128 bytes __tiny
IRAM Page 0 64 bytes __tiny2
IRAM Page |-15, cannot be initialized 128 bytes __tinyp
IRAM Page |-15, cannot be initialized 64 bytes __tiny2p
IRAM Page n=1-15, cannot be initialized 128 bytes ___tinypn
IRAM Page n=1-15, cannot be initialized 64 bytes __tiny2pn
XRAM ___near

SFR area n=0, | __bankn
ROM __code

Table 5: Memory types and keywords

A variable can be placed in a non-default memory area by declaring it using extended
keywords or #pragma directives, as in these examples:

__tiny int x;

#pragma type_attribute=__near
int y;

See Memory access methods and memory types, page 14, for a description of the
limitations and advantages of each of these methods.

Part |. Using the compiler 13

Memory access methods and memory types

DYNAMIC MEMORY ON THE HEAP

Memory for objects allocated on the heap will live until they are explicitly released. This
type of memory storage is very useful for applications where the amount of data is not
known until runtime.

In C, memory is allocated using the standard library function malloc or one of the
related functions calloc and realloc. The memory is released again using free.

Potential problems

Systems that are using heap-allocated objects must be designed very carefully, since it
is easy to end up in a situation where it is not possible to allocate objects on the heap,

either because there is not enough free memory on the heap or because it has become

fragmented.

The heap can become exhausted because the system simply uses too much memory. It
can also become full if memory that no longer is in use has not been released back to the
system.

For each allocated memory block the system requires a few bytes of data for
administrative purposes. For applications that allocate a large number of small blocks
this administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
anew object if there is no piece of free memory that is large enough for the object, even
though the sum of the size of the free objects exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released.
Hence, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Memory access methods and memory types

This section describes the concept of access methods and the corresponding memory
types used by the SAMS8 IAR C Compiler to access data. For each memory type the
capabilities and limitations are discussed.

MEMORY ACCESS METHODS

The SAMS8 microcontroller has three separate memory spaces. Data memory, which
can be accessed efficiently, code memory, and external RAM, which requires more
code space and execution time to access. Code memory is only used for const-declared
variables, string literals, and initializer data. In the small data model, variables are

SAMS IAR C Compiler
14 Reference Guide

Data storage ___4

placed in data memory, and the resulting code is faster and more compact.
Const-declared variables can be placed in most memories by combining the const
keyword with a memory specifier, e.g. const __near int a=34; Notall memory
specifiers are allowed.

The data memory for SAMS is divided into different zones, depending on access
methods.

The code memory is a 64 kbytes large memory used for code, constants, and initializer
data. Data placed in code memory is accessed using LDC instructions. This type of
access is much slower than memory access in data memory, and should generally be
avoided to gain speed for the application.

Example

The example below defines three variables—alpha, beta, and gamma—to be placed
in near, tiny, and in the default memory type, respectively. Note that the #pragma
directive only controls the memory placement of the next defined variable.

int __ near alpha;

#pragma type attribute=__tiny
int beta;

int gamma;

MEMORY TYPES
Name Address range Object size Pointer size Description
__tiny 0x00-0xBF 128 bytes | byte IRAM Page 0
__tiny2 0xCO0-0xFF 64 bytes | byte IRAM Page 0
__tinyp 0x00-0xBF 128 bytes 2 bytes IRAM Page |-15
Cannot be initialized
__tiny2p O0xCO0-OxFF 64 bytes 2 bytes IRAM Page |-15
Cannot be initialized
__tinypn 0x00-OxBF 128 bytes | byte IRAM Page n=1-15
__tiny2pn 0xCO0-OxFF 64 bytes | byte IRAM Page n=1-15
__near 0-OxFFFF 32 Kbytes 2 bytes XRAM
__bankn 0xCO0-0xFF | byte SFR area n=0,1
___code 0-OxFFFF 32 Kbytes 2 bytes ROM
__generic 0x000000-0x000FFF 3 bytes IRAM
0x010000-0x0 | FFFF XRAM
0x020000-0x02FFFF ROM

Pointer only

Table 6: Memory types

Part |. Using the compiler

Structures and memory types

16

The chapter Assembler language interface covers this in more detail.

Structures and memory types

When a variable is defined, it will be placed in a memory of a certain type. Normally the
default memory type is used but another memory type can be specified. For structures,
the entire object is placed in the same memory type. It is not possible to place individual
structure members in different memory types.

Example

In the example below, the variable gamma is a structure placed in near memory.

struct MyStruct

{
int alpha;
int beta;
Vi

__near struct MyStruct gamma;
The following declaration is incorrect:

struct MySecondStruct

int blue;
__near int green; /* Error! */

}i

Non-initialized memory

SAMS IAR C Compiler
Reference Guide

Normally the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object attribute directive. The compiler places such variables in
separate segments, according to the specified memory keyword. See the chapter
Segments and memory for more information.

For _no init, the const keyword implies that an object is read only, rather than that
the object is stored in read-only memory. It is not possible to give a _no_init object
an initial value.

Variables declared using the _no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even with the application turned
off.

Data storage ___4

For information about the ~ no_init keyword, see page 105. Note that to use this
keyword, language extensions must be enabled; see -e, page 85. For information about
the #pragma object_attribute, see page 113.

Located variables

Global and static variables can be explicitly placed at absolute addresses or in named
segments using the @ operator or #pragma location. The variables must be declared
either no init or const. If declared const, it is legal for them to have initializers.

ABSOLUTE LOCATION PLACEMENT

To place a variable at an absolute address, the argument to the operator @ and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for this type of
variable.

Example

Assuming you are using the 1arge data model:

__no_init char alpha @ 0x2000; /* OK */

#pragma location=0x2002
const int beta; /* OK */

const int gamma @ 0x2004 = 3; /* OK */

int delta @ 0x2006; /* Error, neither */
/* " _ no init" nor "const". */
const int epsilon @ 0x2007; /* Error, misaligned. */

SEGMENT PLACEMENT

It is possible to place variables into named segments using either the @ operator or the
#pragma location directive. The segment is specified as a string literal.

For information about segments, see the chapter Segments and memory.

Example

__no_init int alpha @ "MYSEGMENT"; /* OK */

#pragma location="MYSEGMENT"
const int beta; /* OK */

Part |. Using the compiler 17

Anonymous structs and unions

const int gamma @ "MYSEGMENT" = 4; /* OK */
int delta @ "MYSEGMENT"; /* Error, neither */
/* " _ no_init" nor "const" */

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of SAMS derivatives are included in the SAMS8 IAR
C Compiler delivery. The header files are named iochip.h and define the
processor-specific special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. Example:

__no_init __ bank0 volatile union
{
unsigned char SYM;
struct
{
unsigned char IE
unsigned char FIE
unsigned char FILS
unsigned char
unsigned char TSE
} SYM bit;
} @ 0xDE;

[N SRR

By including the appropriate iochip.h file into the user code it is possible to access
either the whole register or any individual bit (or bitfields) from C code as follows:

// whole register access
SYM = 0x01;

// Bitfield accesses
SYM_bit.IE = 1;

You can also use the header files as templates when you create new header files for other
SAMS derivatives.

Anonymous structs and

SAMS IAR C Compiler
Reference Guide

unions

An anonymous struct or union is a struct or union object that is declared without
aname. Its members are promoted to the surrounding scope. An anonymous struct or
union must not have a tag.

Data storage ___4

Note that anonymous struct and union objects are only available when language
extensions are enabled in the SAMS8 IAR C Compiler.

In the AR Embedded Workbench, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 85, for
additional information.

Example

In the following example, the members in the anonymous union can be accessed, in
function £, without explicitly specifying the union name:

struct s

{

char tag;
union

{

long 1;
float f;

} st;

void £ ()

{
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in the following example:

st.1 = 5;

__no_init __bank0 volatile
union

unsigned char IOPORT;
struct

{

unsigned char way: 1;
unsigned char out: 1;

}i

} @ 0xE2;

This declares an I/O register byte TOPORT at address 0xE2. The I/O register has 2 bits
declared, way and out.

Part |. Using the compiler 19

Anonymous structs and unions

The following example illustrates how variables declared this way can be used:

void test ()
{
IOPORT=0;
way=1;
out=1;

SAMS IAR C Compiler
20 Reference Guide

Functions

This chapter contains information about functions. First the different ways
normal code can be generated and the concept of code models are
introduced. Then the special function types interrupt, monitor, and fast are
described. The last section describes how to place functions into named
segments.

Code models

The code model controls how code is generated for an application. All object files of a
system must be compiled using the same code model.

In the chapter Assembler language interface, the generated code is studied in more detail
when we describe how to call a C function from assembler language and vice versa.

The SAMS8 microcontroller can be used in two modes: small mode and large register
mode. The SAMS8 IAR C Compiler supports these modes by means of code models:

o The small code model, which is the default, uses the internal stack
o The large code model uses the external stack.

Special function types

This section describes the special function types interrupt, monitor, and fast. The SAMS8
IAR C Compiler allows an application to fully take advantage of these powerful SAMS8
features without forcing the developers to implement anything in assembler language.

INTERRUPT FUNCTIONS

In embedded systems, the use of interrupts is a method of detecting external events
immediately; for example, detecting that a button has been pressed.

In general, when an interrupt occurs in the code the microcontroller simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
imperative that the environment of the interrupted function is restored; this includes the
value of processor registers and the processor status register. This makes it possible to
continue the execution of the original code when the code that handled the interrupt has
been executed.

Part |. Using the compiler

21

Special function types

22

SAMS IAR C Compiler
Reference Guide

The SAMS8 microcontroller supports many interrupt sources. For each interrupt source,
an interrupt routine can be written. Each interrupt routine is associated with a vector
number which is specified in the SAMS8 microcontroller documentation from the chip
manufacturer. The iochip.h header file, which corresponds to the selected derivative,
contains predefined names for the existing exception vectors.

To define an interrupt function, the ~_ interrupt keyword and the #pragma vector
directive can be used, for example:

#pragma vector=0x1l4
__interrupt void my_interrupt_ routine()

{
}

Note: An interrupt function must have a return type of void and it cannot specify any
parameters.

/* Do something */

When an interrupt function is defined with a vector, the processor interrupt vector table
is populated. It is also possible to define an interrupt function without a vector. This is
useful if an application is capable of populating or changing the interrupt vector table at
runtime. See the chip manufacturer’s SAMS8 microcontroller documentation for more
information about the interrupt vector table.

The chapter Assembler language interface in this guide contains more information
about the runtime environment used by interrupt routines.

FAST FUNCTIONS

A fast function is a quicker type of interrupt function, used for fast function processing.
See the hardware manual.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status existing before the
function call is also restored.

For additional information, see __monitor, page 103.

Functions __4

Segment placement

It is possible to place functions into named segments using either the @ operator or the

#pragma location directive. When placing functions into segments the segment is

specified as a string literal.

Example

void £() @ "MYSEGMENT";
void g() @ "MYSEGMENT"
{
}

#pragma location="MYSEGMENT"
void h{() ;

Part |. Using the compiler

23

Segment placement

SAMS IAR C Compiler
24 Reference Guide

Assembler language
interface

Th

is chapter describes how to write library functions in assembler language

that work together with an application written in C.

Introduction

When an application is written partly in assembler language and partly in C, the
developers are faced with a number of questions.

How should the assembler code be written so that it can be called from C?
Where does the assembler code find its parameters and how is the return value
passed back to the caller?

How should assembler code call functions written in C?

How are global C variables accessed from code written in assembler language?
Why does not the debugger display the call stack when assembler code is being
debugged?

The first three items will be covered in the section Calling convention, page 27.

The section on memory access methods below will cover how data in memory is
accessed.

The answer to the question asked in the last item above is that the call stack can be
displayed when you run assembler code in the debugger. However, the debugger

requires information about the call frame, which must be supplied as annotations in the

assembler source file.

The section Runtime model attributes, page 25, covers how it is possible to prevent
incompatible modules from being linked together.

Finally, the section Function directives, page 35, covers some directives generated by

the

compiler that are not normally required when writing assembler code.

Runtime model attributes

This section introduces the concept of runtime attributes, a mechanism designed to

pre

vent incompatible modules from being linked together into an application.

Part |. Using the compiler

25

Runtime model attributes

26

SAMS IAR C Compiler
Reference Guide

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value.
Example

Study the object files below that could (but do not have to) define the two runtime
attributes color and taste:

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

file4d red spicy
files red lean

Table 7: Example of runtime model attributes

In this case £i1e1 cannot be linked with any of the other files, since the runtime attribute
color does not match. Also, file4 and £ile5 cannot be linked together since the
taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other and with either
file4 or £iles, but not both.

SPECIFYING RUNTIME ATTRIBUTES

Runtime attributes can be specified for a module written in assembler language by using
the RTMODEL directive. For detailed syntax information, see the SAMS IAR Assembler
Reference Guide.

Example

RTMODEL color, red

Note: IAR Systems’ own, built-in runtime attributes all start with two underscores. If
you want to eliminate the risk that any attribute names you specify yourself will be
identical to future IAR runtime attribute names, you should not specify them with two
initial underscores in the name.

Assembler language interface ___4

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the runtime model attributes that are available for the SAM8 IAR
C Compiler. These can be included in assembler code or in mixed C and assembler code,
and will at link time be used by the IAR XLINK Linker to ensure consistency between

modules.

Runtime model attribute Value Description

__rt_version n This runtime key is always present in all
modules generated by the SAM8 IAR C
Compiler. If a major change in the runtime
characteristics occurs, the value of this key
changes

__code_model small or large Corresponds to the code model used in the
project.

__data_model small or large Corresponds to the data model used in the
project.

Table 8: Runtime model attributes

The easiest way to find the proper settings of the RTMODEL directive is to compile a C
module and examine the list file.

If you are using assembler routines in the C code, refer to the chapter Assembler
directives in the SAMS IAR Assembler Reference Guide.

Calling convention

A calling convention is the way one function in a program calls another function. The
compiler handles this automatically, but if a function is written in assembler language
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers the result would be an incorrect program.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

Part |. Using the compiler 27

Calling convention

28

SAMS IAR C Compiler
Reference Guide

In the general case, this is the only knowledge that the compiler has about a function.
Hence it must be able to deduce the calling convention from this information, as
described below.

FUNCTION PARAMETERS

When deciding how to pass parameters to a function, each parameter is considered in
turn from left to right. The method selected is based on the type of the parameter.
Passing parameters in registers is faster than placing them on the stack.

Register parameters versus stack parameters

Parameters can be passed to a function using two basic methods: in registers or on the
stack. Clearly it is much more efficient to use registers than to take a detour via memory.
The calling convention is designed to utilize registers as much as possible. There is only
a limited number of registers that can be used for passing parameters; when no more
registers are available, the remaining parameters are passed on the stack. In addition, the
parameters are passed on the stack in the following cases:

e Structure types: struct and union greater than 4 bytes
e Unnamed parameters to variable length functions, in other words functions declared
as foo(parami, .. .), for instance printf.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters. If the function returns a structure larger than 4 bytes, the memory
location where to store the structure is passed in the register R15 or in the register RR14
as a hidden parameter depending on the size of the default pointer. The pointer is entered
as a hidden parameter before all others.

Register parameters

The assignment of registers to parameters is a straightforward process. Each parameter
is assigned to the first available register or registers. Should there be no more available
registers, the parameter is passed on the stack.

Stack parameters

Stack parameters are stored in the main memory starting at the location pointed to by
the stack pointer. Below the stack pointer (towards low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack, etc. It is the
responsibility of the caller to clean the stack after the called function has returned.

Assembler language interface ___4

High
address The caller’s stack frame

Parameter n

Parameter 2

Parameter | 44— Stack pointer
I;gc\:i’:'ess Free stack memory

RETURNING A VALUE FROM A FUNCTION

The return value of a function, if any, can be scalar (such as integers and pointers),
floating point, or a structure.

Return value pointer

If a structure greater than 4 bytes is returned, the caller passes a pointer to a location
where the called function should write the result.

The called function must return the pointer in the register R15 or in RR14, respectively.

PERMANENT VERSUS SCRATCH REGISTERS

Any of the registers R10-R15 as well as the return address registers can be used as a
scratch register by the function. This means that the original value does not have to be
preserved.

The registers R1, R4 -R9 through to, but not including, the return address registers, are
permanent registers. The values of permanent registers are assumed to survive a
function call. This means that if a function uses a permanent register, its original value
must be restored.

RETURN LOCATION

A number of registers are used by the system during function calls. If the return value is
a struct larger than 4 bytes, an extra ‘secret’ parameter is passed as the first parameter
containing the address of the result.

Part |. Using the compiler 29

Calling convention

30

SAMS IAR C Compiler
Reference Guide

In the small code model, R0 is used as the stack pointer if one is required, and in the large
code model, RR2 is used.

Size Small code model Large code model
Return register 8 R15 R15

16 RR14 RR14

24 RR14:R12 RR14:R12

32 RR12:RR14 RR12:RR14
Scratch register R1, R4-R9, plus any register parameters
Stack base pointer RO RR2

Table 9: Register use in different code models

EXAMPLES
The following section shows a series of examples of declarations and the corresponding
calling convention. The complexity of the examples increases towards the end.
Example |
Assume that we have the following function declaration:

int addil (int) ;

This function takes one parameter in register RR14 and the return value is passed back
to its caller in register RR14.

The following assembler routine is compatible with the declaration; it will return a value
that is one number higher than the value of its parameter:

INCW RR14
RET
Example 2

This example shows how structures are passed on the stack. Assume that we have the
following declarations:

struct a_struct { int a; long b; };
int a_function(struct a_struct x, int y);

The calling function must reserve six bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in register RR12.

Assembler language interface ___4

Example 3

The function below will return a struct. It is the responsibility of the calling function
to allocate a memory location for the return value and pass a pointer to it as a hidden
first parameter.

struct a_struct { int a; };
struct a_struct a_ function(int x);

The pointer to the location where the return value should be stored is passed in R15 in
the small data model and in R14 in the other models. The parameter x is passed in RR12.

Assume that the function instead would have been declared to return a pointer to the
structure:

struct a_struct * a_ function(int x);

In this case the return value is a scalar so there is no hidden parameter. The parameter x
is passed in RR14 and the return value is returned in R15 or RR14 depending on the code
model.

Calling assembler routines from C

An assembler routine that is to be called from C must:

e Conform to the calling convention described on page 27

e Have a PUBLIC entry-point label

o Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in the following examples:

extern int foo(void)
or
extern int foo(int i, int j)

One way of fulfilling these requirements is to create a skeleton code in C, compile it,
and study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source created by the C compiler. Notice
that you must create a skeleton for each function prototype.

Part |. Using the compiler 31

Calling assembler routines from C

SAMS IAR C Compiler
32 Reference Guide

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a double, and then returns an int:

extern int globInt;
extern double globDouble;

int func(int argl, double arg2)

{
int locInt = argl;
globInt = argl;
globDouble = arg2;
return locInt;

}

int main()

{

int locInt = globInt;
globInt = func(locInt, globDouble) ;
return 0;

}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

Compiling the code

In the AR Embedded Workbench, specify list options on file level. Select the file in the
Project window. Then choose Project>Options. In the ICCSAMS category, select
Override inherited settings. On the List page, deselect Output list file and instead
select the Output assembler file option and its suboption Include source. Also, be sure
to specify a low level of optimization.

Use the following options to compile the skeleton code:
iccsam8 shell -1A . -s3

The - 12 option creates an assembler language output file including C source lines as
assembler comments. The . (period) specifies that the assembler file should be named
in the same way as the C module, i.e. shell, but with the filename extension s18.
Remember also to specify the data model you are using.

The result is the assembler source shell . s18 containing the declarations, function call,
function return, and variable accesses.

Assembler language interface ___4

The output file
The output file contains the following important information:

The calling conventions

The return values

The global variables

The function parameters

How to create space on the stack (auto variables)
Call frame information.

The call frame information needed by the Call Stack window in the IAR C-SPY™
Debugger is described by the cFI assembler directive. This directive is described in the
SAMS IAR Assembler Reference Guide.

Call frame information

When debugging an application using C-SPY it is possible to view the call stack. The
compiler makes this possible by supplying debug information describing the layout of
the call frame, in particular information about where the return address is stored.

If the call stack should be available when debugging a routine written in assembler
language, equivalent debug information must be supplied by the author of the routine
using the assembler directive CFI. This directive is described in detail in the SAMS IAR
Assembler Reference Guide.

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

e Directives describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed and when
permanent registers are stored or restored on the stack.

The header file c£i.m18 contains the macros XCFI_NAMES and XCFI_COMMON which
declare a typical names block and a typical common block. These two macros declare a
number of resources, both concrete and virtual. The following are of particular interest:

Resource Description

CFA_SP The call frames of the regular stack and of the interrupt stack,
respectively

RO-R15 Normal registers

Table 10: Call frame information

Part |. Using the compiler 33

Call frame information

Resource Description
?RET The return address register
SP, SPL The stack pointer

Table 10: Call frame information (Continued)

Example

The following is an example of an assembler routine that stores a permanent register as
well as the return register to the stack:

PROGRAM cfiexample
PUBLIC cfiexample
RSEG CODE : CODE : NOROOT (0)

CFI Names myNames

CFI StackFrame CFA SPL IDATA

CFI Resource R8:8, R9:8, R14:8, R15:8
CFI VirtualResource ?RET:16

CFI Resource SPL:8

CFI EndNames myNames

CFI Common myCommon Using myNames
CFI CodeAlign 1

CFI DataAlign 1

CFI ReturnAddress ?RET CODE

CFI CFA SPL+2

CFI R8 Undefined

CFI R9 Undefined

CFI R14 Undefined

CFI R15 Undefined

CFI ?RET Frame (CFA, -2)
CFI EndCommon myCommon

CFI Block myBlock Using myCommon
CFI Function “cfiexample”

cfiexample:
PUSH R9
CFI R9 Frame (CFA, -3)
CFI CFA SPL+3

PUSH R8
CFI R8 Frame (CFA, -4)
CFI CFA SPL+4

SAMS IAR C Compiler
34 Reference Guide

Assembler language interface ___4

ADD R15,#12
ADC R14,#34
POP R8

CFI CFA SPL+3

POP R9
CFI CFA SPL+2

RET
CFI EndBlock myBlock

END

Function directives

The function directives are generated by the SAMS IAR C Compiler to pass information
about functions and function calls to the AR XLINK Linker. These directives can be
seen if you create an assembler list file by using the compiler option Assembler file
(-1n).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers. The SAM8 IAR C Compiler does not use static
overlay, as it has no use for it.

SYNTAX

FUNCTION <label>,<value>

ARGFRAME <segments>, <size>, <type>
LOCFRAME <segments>, <size>, <type>
FUNCALL <caller>, <callee>

PARAMETERS

label Label to be declared as function.

value Function information.

segment Segment in which argument frame or local frame is to be stored.
size Size of argument frame or local frame.

type Type of argument or local frame; either STACK or STATIC.
caller Caller to a function.

callee Called function.

Part |. Using the compiler 35

Function directives

36

SAMS IAR C Compiler
Reference Guide

DESCRIPTION

FUNCTION declares the 1abel name to be a function. value encodes extra information
about the function.

FUNCALL declares that the function caller calls the function callee. callee can be
omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LOCFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives
declaring argument frame usage of the called function.

Segments and memory

This chapter introduces the concept of segments and describe the different
segment groups and segment types. It also describes how they correspond to
the memory and function types and how they interact with the runtime
environment. The chapter also contains an overview of the linker
configuration file, which is used for controlling the placement of segments in
memory.

Note that the information in this chapter is conceptual; it is strictly generic and
not related to any particular compiler or microcontroller. For product-specific
details, see the linker configuration file included in your product package.

The intended readers of this chapter are the systems designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

What is a segment?

A segment is a piece of data or code that should be mapped to a physical location in
memory. The segment could either be placed in RAM or in ROM. Segments that are
placed in RAM do not have any content, they only occupy space.

The compiler has a number of predefined segments for different purposes. Each segment
has a name describing the contents of the segment. In addition, you can define your own
segments.

The IAR XLINK Linker™ is responsible for placing the segments in the physical
memory range in accordance with the rules specified in the linker configuration file. It
is important to remember that, from the linker's point of view, all segments are equal,
they are simply named parts of memory.

For detailed information about individual segments, see the Segment reference chapter
in Part 2. Compiler reference.

Part |. Using the compiler

37

Placing segments in memory

38

LINKER SEGMENT TYPE

XLINK assigns a segment type to each of the segments. In some cases, the individual
segments may have the same name as the segment type they belong to, for example
CODE. Make sure not to confuse the individual segment names with the segment types in
those cases.

XLINK supports a number of other segment types than the ones described below.
However, most of them exist to support other types of microcontrollers.

By default the compiler uses only the following XLINK segment types:

XLINK segment type Description

CODE Program memory (ROM)
IDATA Internal Page Memory (RAM)
DATA Internal Bank Memory (RAM)
XDATA External memory (RAM)

Table 11: XLINK segment types

PLACEHOLDER SEGMENTS

The runtime environment of the compiler uses placeholder segments, empty segments
that are used for marking a location in memory. Any type of segment can be used for
placeholder segments.

Placing segments in memory

SAMS IAR C Compiler
Reference Guide

The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker configuration file that contains command line options which specify the
locations where the segments can be placed, thereby assuring that your application fits
on the target chip.

Since the chip-specific details are specified in the linker configuration file and not in the
source code, the linker configuration file also ensures code portability. Basically, you
can use the same source code with different derivatives just by rebuilding the code using
an appropriate linker configuration file.

The config directory contains at least one ready-made linker configuration file. The
file contains the information required by the linker and is ready to be used. If, for
example, your application uses additional external RAM, you need to add details about
the external RAM memory area. Remember not to change the original file. We
recommend that you make a copy in the working directory, and modify the copy instead.

Notice that the supplied linker configuration file includes comments explaining the
entire contents.

Segments and memory ___4

THE CONTENTS OF THE LINKER CONFIGURATION FILE
In particular, the linker configuration file specifies:

o The placement of segments
o The stack size

Among other things, the linker configuration file contains three different types of
XLINK command line options:

o The CPU used: -cmy _cpu This specifies your target microcontroller.

e Definitions of constants used later in the file. These are defined using the -D option.

e The placement directives (the largest part of the linker configuration file). Segments
can be placed using the -z and - p options. The former will place the segment parts
in the order they are found, whereas the latter will try to rearrange them in order to
make better use of memory. The - P option is useful when the memory where the
segment should be placed is not continuous.

CUSTOMIZING A LINKER CONFIGURATION FILE

The examples below show the general principles for how to set up a linker configuration
file. The target system is assumed to have the following fictitious memory layout:

Range Type
0x0—0xXFFFF ROM
0x0000-0x1FFF XRAM
0x0—0xFF IRAM

Table 12: Linker configuration file example

The ROM can be used to store CONST and CODE memory. IRAM can be used to store
IDATA memory, and XRAM can be used to store XDATA memory.

The only change you will normally have to make to the supplied linker configuration file
is to suit the details of the target hardware memory map.
Example |

The following will place the segments MYSEGMENTA and MYSEGMENTB in CONST
memory (that is ROM) in the memory range of 0x2000—0xCFFF.

-Z (CONST) MYSEGMENTA, MYSEGMENTB=2000-CFFF

Two segments of different types can be placed in the same memory area by not
specifying a range for the second segment. In the following example the MYSEGMENTA
segment is first located in memory. Then the rest of the memory range could be used by
MYCODE.

Part |. Using the compiler 39

Data segments

40

-Z (CONST) MYSEGMENTA=2000-CFFF
-Z (CODE) MYCODE

Two memory ranges may overlap. This allows segments with different placement
requirements to share parts of the memory space, for example:

-Z (CONST) MYSMALLSEGMENT=2000-20FF
-Z (CONST) MYLARGESEGMENT=2000-CFFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the AR XLINK Linker will alert you if your segments do
not fit. If you do not specify the end of memory ranges, you will not be alerted by the
linker. See the IAR Linker and Library Tools Reference Guide for more details.

Example 2

The following example will place the data segment MYDATA in IDATA memory (that is,
in IRAM) in a fictitious memory range:

-P (IDATA) MYDATA=0-FF,100-1FF

If your application has an additional RAM area in the memory range 0x200-0x2FF, you
just add that to the original definition:

-P (IDATA) MYDATA=0-FF,200-2FF,100-1FF

Note the XLINK - P option, which will make efficient use of the memory area.

Data segments

SAMS IAR C Compiler
Reference Guide

This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or are declared static,
as described in Memory access methods and memory types, page 14.

This section describes how the segment types correspond to segment groups, and the
segments that are part of the segment groups.

Segments and memory ___4

Segment naming

The memory types in the fictitious example started in Customizing a linker
configuration file, page 39, can use the following ranges:

Memory type Range

BANKN 0xC0+n*0x100 to OxFF+n*0x100
NEAR 0x0000-0xFFFF

TINY 0x00-0xBF

TINY2 0xCO0-0xFF

TINYP 0x00-0xBF

TINY2P 0xCO-0xFF

TINYPN 0x00+n*0x100 to 0OxBF+n*0x100
TINY2PN 0xC0+n*0x100 to OXFF+n*0x100

Table 13: Memory types

The static memory types in this fictitious example correspond to the following basic
segment groups. The first part of the name of a segment in each segment group
corresponds to the segment keyword:

Segment group First part of name
Tiny TINY
Tiny2 TINY2

Table 14: Segment groups

The variables declared in each of the groups can be divided into the following
categories:

Variables that are initialized to non-zero values

Variables that should be initialized to zero

Variables that are declared as const and therefore can be stored in ROM

Variables defined with the no_init keyword, denoting that they should not be
initialized at all.

When an application is started, the cstartup module initializes memory in two steps:
1 It clears the memory of the variables that should be initialized to zero

2 Itinitializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM.

Part |. Using the compiler 41

Data segments

SAMS IAR C Compiler
42 Reference Guide

For each of the segment groups, some of the following segments exist:

Usage Type Suffix
Zero-initialized data DATA Z
Non-zero initialized data DATA I
Initializers for the above CONST ID
Constants CONST

Non-initialized data DATA

Absolute addressed data DATA

Table 15: Segments in segment groups

The names of the actual segments are NAME SUFFIX. For example, the segment
TINY2 Z contains the tiny2 variables that should be initialized to zero when the system
starts.

Initialized data

The data in the ROM segment with suffix ID is copied to the corresponding I segment
when the system starts.

This works only when both segments are placed in continuous memory.

Tiny
The TINY segments must be placed in the theoretical memory range 0x00-0xBF. In this
example these segments are placed in the available RAM area 0x00—0x1F.

The segment TINY ID can be placed anywhere in code memory.

Tiny2

The TINY2 segments data must be placed in the theoretical memory range 0xC0-0xFF,
which is anywhere in this example.

The segment TINY2 ID can be placed anywhere in code memory.

The linker configuration file

In this fictitious example the directives for placing the segments in the linker
configuration file would be:

// The ROM segments
-Z (CODE) CODE, TINY_ID,TINY2 ID,NEAR_ID,CONST C=100-FFFF

// The IRAM segments
-Z (IDATA) TINY I,TINY N,TINY Z,TINYP N,CSTACK+ CSTACK SIZE=00-BF

Segments and memory ___4

-Z (IDATA) TINY2 I,TINY2 N,TINY2 Z,TINY2P N,CSTACK2+_ CSTACK2 SIZE=
CO-FF

This gives the following placement of index segments:

ROM RAM
FF
TINY2_N
TINY2_Z
FFFF
CONST_C
TINY2_ID TINY2.
BF
TINY_ID
TINY_N
CODE
100
TINY_Z
TINY_I
0
THE STACK

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. There are two stacks
depending on the code model, small or large. The small code model stack comes in two
versions, one with and one without the reduced instruction set. The stack is a continuous
block of memory pointed to by the processor stack pointer register. The cstartup
module initializes the stack pointer to the end of the stack segment called CSTACK (small
code model, reduced instruction set), CSTACK2 (small code model, excluding reduced
instruction set), or CSTACKN (large code model).

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACKN SIZE=size
-D_CSTACK2_SIZE=size
-D_CSTACK_SIZE=size

Note that the size is written hexadecimally without the 0x notation.

At the end of the linker file the actual segment is defined in the memory area available
for the stack:

-Z (IDATA) CSTACK+_ CSTACK_ SIZE#start-end
-Z (IDATA) CSTACK2+_ CSTACK2_ SIZE#start-end
-Z (XDATA) CSTACKN+_CSTACKN_SIZE#start-end

Part |. Using the compiler 43

Data segments

44

SAMS IAR C Compiler
Reference Guide

Stack size

The compiler uses the internal data stack for a variety of user program operations, and
the required stack size depends heavily on the details of these operations. If the given
stack size is too small, the stack will normally overwrite the variable storage which is
likely to result in program failure. If the given stack size is too large, RAM will be
wasted.

THE HEAP

The heap contains data allocated by use of the C function malloc (or one of its
relatives).

The default heap size is 64 bytes for the small code model, and 512 bytes for the large
code model.
IAR CLIB Library

To change the heap size in the IAR CLIB Library you must include the file heap.c,
found in the src directory, into the application. When the file is compiled the size of the
heap is controlled by the preprocessor symbol MALLOC BUFSIZE.

IAR Embedded Workbench

Add the file heap. c to the project.

Select Project>Options. In the ICCSAMS category, define the preprocessor symbol
MALLOC_BUFSIZE on the Preprocessor page.

Command line

Compile the file heap . c using the command line option -DMALLOC_BUFSIZE=xxXx,
where xxx is the desired heap size.

Add the object file heap.r18 to the list of object files that is used for building the
application.

LOCATED DATA

A variable that has been explicitly placed at an address, for example by using the
compiler @ syntax, will be placed in either the CONST A or the TINY A segment. The
former is used for constant initialized data and the latter for items declared as
__no_init. The individual segment part of the segment knows its location in the
memory space and it does not have to be specified in the linker configuration file.

Segments and memory ___4

Code segments

This section contains descriptions of the segments used for storing code and the
interrupt vector table.
STARTUP CODE

The segment RESET contains code used during system setup. The startup code should
be placed at the location where the chip starts executing code after a reset.

In this example, the following line in the linker configuration file will place the RESET
segment at address 0x100:

-Z (CODE) RESET=100

NORMAL CODE

Code for normal functions is placed in the CODE segment. Again, this is a simple
operation in the linker configuration file:

-Z (CODE) CODE=2000-BFFF

EXCEPTION VECTORS

The exception vectors are typically placed in the segment INTVEC.

Part |. Using the compiler 45

Code segments

SAMS IAR C Compiler
46 Reference Guide

Runtime environment

This chapter describes the cstartup file which handles system initialization and
termination. It presents how an application can control what happens before
the start function main is called, by using either a custom __low_level_init or
a modified cstartup file.

The standard library uses a small set of low-level input and output routines as
a base for a wide range of I/O routines. This chapter describes how the
low-level routines can be replaced by an application, so that it can use the
standard function to, for example, communicate with the outside world or
providing a memory-based file system.

This chapter also covers the methods used for communicating with the IAR
C-SPY™ Debugger.

The cstartup.sl 8 file

This section will cover what actions the runtime environment performs during startup
and termination of applications. In the next couple of sections customization is
discussed.

SYSTEM STARTUP
When an application is initialized, a number of steps are performed:

The RESET vector for the SAM8 CPU1 chip is initialized if needed

The stack pointer is initialized

The EMT register stack area bit is initialized depending on the code model used

The custom-provided function _low level init is called, allowing the

application a chance to perform early initializations

e Static variables are initialized. This includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables

o The main function is called, which starts the application.

Part |. Using the compiler 47

__low_level_init

48

SYSTEM TERMINATION
An application can perform a normal termination in two different ways:

o Return from the main function
o Call the exit function.

Since the ISO/ANSI C standard states that the two methods should be equivalent, the
cstartup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is provided by the cstartup file.

An application can also exit by calling the abort function. The default function just
calls exit in order to halt the system without performing any type of cleanup.

__low_level init

Some applications may need to initialize I/O registers, or omit the default initialization
of data segments performed by cstartup.

You can do this by providing a customized version of the routine _low level init,
which is called from cstartup before the data segments are initialized.

The value returned by low level init determines whether or not data segments
are initialized. If the function returns 0, the data segment will not be initialized.

A skeleton for this function is supplied in the low level init.c file, which is
installed with the product.

Note: The file intrinsics.h must be included by low_level init.c to assure
correct behavior of the low level init routine.

Customizing cstartup.s|8

SAMS IAR C Compiler
Reference Guide

The cstartup.s18 file itself is well commented and is not described in detail in this
guide. However, this section presents some general techniques used in the file including
background information that might be useful if you need to modify the cstartup.s18
file. It then describes how the customized cstartup.s18 file could be used.

Note: Do not modify the cstartup. s18 file unless required by your application. Your
first option should always be to use a customized version of _low level init for
initialization code.

For information about assembler source files, see the SAM8 IAR Assembler Reference
Guide.

Runtime environment __4

MODULES AND SEGMENT PARTS

In order to understand how the cstartup code is designed, it is imperative to have a
clear understanding of modules and segment parts, and how the ITAR XLINK Linker™
treats them.

An assembler module starts with a MODULE directive and ends with an ENDMOD directive.
Inside the module a number of segment parts reside. Each segment part begins with an
RSEG directive.

When XLINK builds an application, it starts with a small number of modules that have
been declared as root. It then continues to include all modules that are referred from the
already included modules. XLINK then discards unused segment parts.

Segment parts, REQUIRE, and the falling-through trick

The cstartup.s18 file has been designed to use the mechanism described above so
that as little as possible of unused code will be included in the linked application.

For example, every piece of code used for initializing one type of memory is stored in a
segment part of its own. If a variable is stored in a certain memory type, the
corresponding initialization code will be referenced by the code generated by the
compiler and hence included in your application. Should no variables of a certain type
exist, the code is simply discarded.

A piece of code or data is not included if it is not used or referred to with the REQUIRE
assembler directive.

The segment parts of cstartup defined in the cstartup. s18 file are guaranteed to be
placed immediately after each other. XLINK will not change the order of the segment
parts or modules since the segments are placed using the -z option.

The above lets the cstartup.s18 file specify code in subsequent segment parts and
modules that are designed so that some of the parts may not be included by XLINK. The
following example shows this technique:

MODULE doSomething

RSEG MYSEG : CODE : NOROOT (1) // First segment part.
PUBLIC ?do_something

EXTERN ?end of test

REQUIRE ?end of test

?do_something: // This will be included if someone refers to
// ?do_something. If this is included then
// the REQUIRE directive above ensures that
// the JP instruction below is included.

Part |. Using the compiler 49

Customizing cstartup.s|8

50

SAMS IAR C Compiler
Reference Guide

RSEG MYSEG : CODE : NOROOT (1) // Second segment part.
PUBLIC ?do_something else

?do_something else:
// This will only be included in the linked
// application if someone outside this function
// refers to or requires ?do_something else

RSEG MYSEG : CODE : NOROOT (1) // Third segment part.
PUBLIC ?end of test

?end_of_ test:
Jp (?somewhere) // This is included if
// ?do_something above is
// included.
ENDMOD

CALL FRAME INFORMATION

When debugging an application, C-SPY is capable of displaying the call stack, that is,
the functions that have called the current function. In order to ensure that the call stack
is correctly displayed when executing code written in assembler language, information
about the call frame must be provided. This is done by use of the assembler directive
CFI, which is described in the SAMS IAR Assembler Reference Guide.

MODIFYING THE CSTARTUP.S18 FILE

As noted earlier, you should not modify the cstartup.s1s file if using a customized
version of _low level init is enough for your needs. However, if you do need to
modify the cstartup.s18 file, we recommend that you follow this overall procedure
for creating a modified copy of the file and adding it to your project.

In the IAR Embedded Workbench

Copy the assembler source file cstartup.s18, which is supplied in the product
directory, to your project directory. Make any required modifications to the copy and
save the file under the same name.

Select the appropriate code and data model options on the Target page in the General
category of project options. See the SAM8 IAR Embedded Workbench™ IDE User
Guide for additional information.

Add the file cstartup.s18 to your project.

Select the option Ignore CSTARTUP in library on the Include page in the XLINK
category of project options. See the SAMS IAR Embedded Workbench™ IDE User
Guide for additional information.

Runtime environment __4

Rebuild your project.

From the command line

Copy the assembler source file cstartup.s18, which is supplied in the product
directory, to your project directory. Make any required modifications to the copy.

Set the preprocessor symbol as specified in the tables below, to specify the data model.

Use one of the following preprocessor symbols to specify the appropriate code or data
model:

Model Preprocessor symbol

Small code model __CODE_MODEL_SMALL
Large code model __CODE_MODEL_LARGE
Small data model __DATA MODEL_ SMALL
Large data model __DATA MODEL LARGE

Table 16: Preprocessor symbols for code and data models

Use the assembler option -D to specify the data model symbol, for example:
asam8 cstartup -D__DATA MODEL_SMALL

This will create an object module file named cstartup.ris.

Specify the XLINK option - in front of the name of the library to ignore the standard
cstartup file that is part of the runtime library. See Linking, page 3. Then link your
application.

Input and output

The SAM8 IAR C Compiler package provides most of the important C library
definitions that apply to embedded systems. These are of three types: |

e Standard C library definitions available for user programs. These are documented in
this chapter.

® CSTARTUP, the single program module containing the start-up code. This is
described in the Run-time environment chapter.

e Intrinsic functions, allowing low-level use of SAMS features. See the chapter
Intrinsic functions for more information.

Part |. Using the compiler 51

Library definitions summary

LIBRARY OBJECT FILES

You must create an appropriate library object file for the chosen memory model and
pointer type. See the Run-time environment chapter for more information. The IAR
XLINK Linker includes only those routines that are required (directly or indirectly) by
the user’s program.

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. There are some 1/O-oriented
routines (such as putchar and getchar) that you may need to customize for your
target application.

HEADER FILES

The user program gains access to library definitions through header files, which it
incorporates using the #include directive. To avoid wasting time at compilation, the
definitions are divided into a number of different header files. Each of these covers a
particular functional area, letting you include just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do this can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

Library definitions summary

This section lists the header files. Header files may additionally contain target-specific

definitions.

Header file Description
assert.h Assertions.
ctype.h Character handling.
iccbutl.h Low-level routines.
math.h Mathematics.
setjmp.h Non-local jumps.
stdarg.h Variable arguments.
stdio.h Input/output.
stdlib.h General utilities.
string.h String handling.

Table 17: IAR C Library header files

SAMS IAR C Compiler
52 Reference Guide

Runtime environment __4

The following table shows header files that do not contain any functions, but specify
various definitions and data types:

Header file Description

errno.h Error return values.

float.h Limits and sizes of floating-point types.
limits.h Limits and sizes of integral types.

stddef.h Common definitions including size t, NULL,

ptrdiff t,and offsetof.

Table 18: Miscellaneous IAR C Library header files

C-SPY debugger interface

The low-level debugger interface is used for communicating between the debugged
application and the debugger itself. The interface is simple: C-SPY will place
breakpoints on certain assembler labels in the application. When code located at the
special labels is about to be executed, C-SPY will be notified and can perform an action.

THE DEBUGGER TERMINAL I/O WINDOW

When code at the labels ?C_PUTCHAR and ?C_GETCHAR is executed, data will be sent to
or read from the debugger window.

For the 2C_PUTCHAR routine, one character is taken from the output stream and written.
If everything goes well, the character itself is returned, otherwise -1 is returned.

When the label ?c_GETCHAR is reached, C-SPY returns the next character in the input
field. Should no input be given, C-SPY waits until the user has typed some input and
pressed the Return key.

To make the Terminal I/O window available, the application must be linked with the
XLINK option Debug info with terminal I/O selected. See the SAMS IAR Embedded
Workbench™ IDE User Guide.

Termination

The debugger stops executing when it reaches the special label 2C_EXIT.

Part |. Using the compiler 53

C-SPY debugger interface

SAMS IAR C Compiler
54 Reference Guide

Programming hints

This chapter provides hints on how to write efficient code.

General programming hints

This section contains general programming hints that will make your applications robust
by using the available resources in an efficient way.

FUNCTION PROTOTYPES

In Kernighan & Ritchie C (K&R C), it was not possible to declare a function prototype.
Instead an empty parameter list was used in the function declaration. Also, the definition
looked different. Even though the old system still is valid we do not recommend using
it since it makes it harder for the compiler to find problems in the application code. In

addition, the code could be less efficient since type promotion (implicit casting) often is
needed.

Examples

The following examples of a declaration and a definition show the differences between
the old Kernighan & Ritchie form and the modern ISO/ANSI version.

Kernighan & Ritchie system

int test(); /* o0ld declaration */
int test(a,b) /* o0ld definition */
char a;

int b;

{

1

ISO/ANSI system

int test (char, int); /* declaration */

int test (char a, int b) /* definition */

Part |. Using the compiler

55

Floating-point types

BITFIELDS

Using bitfields larger than 1 bit generates code that is both larger and slower than if
non-bitfields integers were used.

ARRAYS

When using arrays it is more efficient if the type of the index expression matches the
index type of the memory of the array.

Floating-point types
Using floating-point types on a microprocessor without a math co-processor is very

inefficient both in terms of code size and execution speed.

Consider replacing code using floating-point operations with code using integers since
these are more efficient.

Saving stack space and RAM memory

The following is a list of programming techniques that will, when followed, save
memory and stack space:

e If stack space is limited, avoid long call chains and recursive functions.

e Declare variables with a short life span as auto variables. When the life spans for
these variables end, the previously occupied memory can then be reused. Globally
declared variables will occupy data memory during the whole program execution.
Be careful with auto variables, though, as the stack size can exceed its limits.

e Avoid passing large non-scalar parameters to functions; in order to save stack space,
you should instead pass them as pointers.

Optimization techniques

The purpose of optimization is to reduce the code size and to improve the execution
speed. When only one of these goals can be satisfied, the compiler prioritizes according
to the settings specified by the user. Note that one optimization sometimes enables other
optimizations to be performed, and an application may become smaller even when
optimizing for speed rather than size.

SAMS IAR C Compiler
56 Reference Guide

Programming hints ___¢

A high level of optimization will result in increased compile time and may also make
debugging more difficult since it will be less clear how the generated code relates to the
source code. However, we have made an effort to make the compiler output as
debuggable as possible even at higher optimization levels. At any time, if you experience
difficulties when debugging your code, try lowering the optimization level.

SPECIFYING THE OPTIMIZATION TYPE AND LEVEL

The SAMS IAR C Compiler allows you to generate code that is optimized either for size
or for speed, at a selectable optimization level. Both compiler options and #pragma
directives are available for specifying the preferred type and level of optimization:

The chapter Compiler options in Part 2. Compiler reference contains reference
information about the command line options used for specifying optimization type
and level. Refer to the SAM8 IAR Embedded Workbench™ IDE User Guide for
information about the compiler options available in the IAR Embedded Workbench.
Refer to #pragma optimize, page 114, for information about the #pragma directives
that can be used for specifying optimization type and level. Normally you would use
the same optimization level for an entire project or file, but the #pragma optimize
directive allows you to fine-tune the optimization for a specific code section such as
a time-critical function.

OPTIMIZATION HINTS

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

The use of local variables is preferred over static or global variables. The reason is
that the optimizer must assume, for example, that called functions may modify
non-local variables.

Avoid taking the address of local variables using the & operator. There are two main
reasons why this is inefficient. First, the variable must be placed in memory and
thus cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster but often larger application. Also, inlining
may enable further optimizations. The compiler often inlines small functions
declared static. The use of the #pragma inline directive gives the application
developer fine-grained control. This feature can be disabled using the
--no_inline command line option; see --no_inline, page 91.

Part |. Using the compiler 57

Optimization techniques

o Avoid using inline assembler. Instead, try writing the code in C, use intrinsic
functions, or write a separate module in assembler language.

SAMS IAR C Compiler
58 Reference Guide

Part 2. Compiler
reference

This part of the SAM8 IAR C Compiler Reference Guide contains the

following chapters:

e Data representation
e Segment reference
o Compiler options

e Extended keywords
e ffpragma directives
o Predefined symbols
e Intrinsic functions
e Library functions

e Diagnostics.

‘*‘ .ﬁhhhhhm

AT

60

Data representation

This chapter describes the data types, pointers, and structure types supported
by the SAM8 IAR C Compiler.

See the chapter Programming hints for information about which data types and
pointers provide the most efficient code.

Alignment
The alignment of a data object controls how it will be stored in memory. The reason for
using alignment is that the SAMS8 microcontroller can access aligned objects more
efficiently than non-aligned objects.
Objects with alignment 2 must be stored at addresses dividable by 2.

Data types

The compiler supports all ISO/ANSI C basic data types.

INTEGER TYPES

The following table gives the size and range of each integer data type:
Data type Size Range Alignment
signed char 8 bits -128 to 127 |

unsigned char 8 bits 0 to 255 |

short, int 16 bits -32768 to 32767 2

unsigned short, unsigned int 16 bits 0 to 65535 2

long 32bits 23023l 2

unsigned long 32 bits 0to 2321 2

Table 19: Integer types

Signed variables are stored in the two’s complement form.

The enum type

ISO/ANSI C specifies that constants defined using the enum construction should be
representable using the type int. The compiler will use the shortest signed or unsigned
type required to contain the values.

Part 2. Compiler reference

61

Data types

62

SAMS IAR C Compiler
Reference Guide

When IAR Systems language extensions are enabled, the constant and enum types can
also be of the type 1ong or unsigned long.

Char type

The char type is by default unsigned in the compiler, but the - -char is signed
compiler option allows you to make it signed. Notice, however, that the library is
compiled with the char type as unsigned.

Bitfields

In ISO/ANSI C, int and unsigned int can be used as the base type for integer
bitfields. In the SAMS8 IAR C Compiler, any integer type can be used as the base type
when language extensions are enabled.

Bitfields in expressions will have the same data type as the integer base type.

By default the compiler places bitfield members from the least significant to the most
significant bit in the container type. By using the directive #pragma
bitfields=reversed the bitfield members are placed from the most significant to the
least significant bit.

FLOATING-POINT TYPES

Floating-point values are represented by 32-bit numbers in standard IEEE format.

The ranges and sizes for the different floating-point types are:

Type Size Range (+/-) Exponent Mantissa
float 32 bits +1.18E-38 to +3.39E+38 8 bits 23 bits
double 32 bits +1.18E-38 to +3.39E+38 8 bits 23 bits

Table 20: Floating-point types

32-bit floating-point format

The data type £1loat is represented by the 32-bit floating-point format. The
representation of a 32-bit floating-point number as an integer is:

3130 2322 0
| Sl Exponent Mantissa

The value of the number is:
(-1)S * 2 (Exponent-127) * 1l.Mantissa

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

Data representation ___4

Special cases

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

Pointers

The SAMS8 IAR C Compiler has two basic types of pointers: code pointers and data
pointers.

SIZE
The size of code pointers is always 16 bits and they can address the entire memory.

Data pointers have one of three sizes: 8, 16, or 24 bits.

CASTING
Casts between pointers have the following characteristics:

Casting an integer value to a pointer of a smaller size is performed by truncation
Casting an integer to a larger pointer id performed by zero extension

Casting a pointer type to a smaller integer type is performed by truncation

Casting a pointer to a larger integer type is performed by first casting the pointer to
the largest possible pointer that fits in the integer, and then, if necessary, zero
extended.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the SAMS IAR C Compiler, the size of size t is 16 bits.

ptrdiff_t

ptrdiff t isthe type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the SAMS8 IAR C Compiler, the size of
ptrdiff_t is 16 bits.

intptr_t

intptr tisasigned integer type large enough to contain a void *. In the SAMS IAR
C Compiler the size of intptr_t is 32 bits.

Part 2. Compiler reference 63

Structure types

64

uintptr_t

uintptr_t isequivalent to intptr t with the exception that it is unsigned.

Structure types

SAMS IAR C Compiler
Reference Guide

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types inherit the alignment requirements of their members. In
addition, the size of a struct is adjusted to allow arrays of aligned structure objects.

GENERAL LAYOUT

Members of a struct (fields) are always allocated in the order given in the declaration.
The members are placed in memory according to the given alignment (offsets).

Example

struct {
short s; /* stored in byte 0 and 1 */
char c; /* stored in byte 2 */
long 1; /* stored in byte 4, 5, 6, and 7 */
char c2; /* stored in byte 8 */
}osi

The following diagram shows the layout in memory:

s.s s.c pad sl s.c2 pad
2 bytes | byte | byte 4 bytes | byte | | byte

The alignment of the structure is 2 bytes and its size is 10 bytes.

Segment reference

The SAM8 IAR C Compiler places code and data into named segments which
are referred to by the IAR XLINK Linker™. Details about the segments are
required for programming assembler language modules, and are also useful
when interpreting the assembler language output from the compiler.

For information about how to define segments in the linker configuration file,
see Customizing a linker configuration file, page 39.

Summary of segments

The table below lists the segments that are available in the SAM8 IAR C Compiler.
Notice that located denotes absolute location using the @ operator or the #pragma
location directive. The linker segment type CODE, CONST, or DATA indicates whether
the segment should be placed in ROM or RAM memory areas; see Table 11, XLINK
segment types, page 38.

Segment Description Type
BANKn_A Holds the SFRs, system registers and working registers. DATA
CALLT C Holds __tiny func function addresses. CODE
CODE Holds user program code. CODE
CONST Holds constants. CODE
CSTACK Holds the internal stack in the small code model, including the IDATA

reduced instruction set.

CSTACK2 Holds the internal stack in the small code model, except for the IDATA
reduced instruction set.

CSTACKN Holds the internal stack in the large code model. XDATA

INTVEC Holds the interrupt vectors generated by use of the interrupt CODE
extended keyword.

NEAR_C Used for storing __near constant data. XDATA

NEAR I Holds __ near static variables declared with non-zero initial values. XDATA

NEAR_ID Holds initial values for variables located in the NEAR I segment. =~ CODE

NEAR_N Holds __near variables to be placed in non-volatile memory. XDATA

Table 21: Segment summary

Part 2. Compiler reference

65

Descriptions of segments

66

Segment Description Type

NEAR Z Holds __near variables with static storage declared without initial XDATA
values or with zero values.

RESET Holds the startup code. CODE

TINY I Holds __tiny static variables declared with non-zero initial values. IDATA

TINY ID Holds initial values for variables located in the TINY I segment. =~ CODE

TINY N Holds __ tiny variables to be placed in non-volatile memory. IDATA

TINY Z Holds __tiny variables with static storage declared without initial IDATA
values or with zero values.

TINY2 I Holds __tiny?2 static variables declared with non-zero initial IDATA
values.

TINY2 ID Holds initial values for variables located in the TINY2_ I segment. CODE

TINY2 N Holds __ tiny2 variables to be placed in non-volatile memory. IDATA

TINY2 Z Holds __tiny?2 variables with static storage declared without initial IDATA
values or with zero values.

TINYP N Holds __tinyp variables to be placed in non-volatile memory. IDATA

TINYPI N Holds __ tinypi variables to be placed in non-volatile memory. IDATA

TINY2P N Holds __tiny2p variables to be placed in non-volatile memory. ~ IDATA

TINY2Pi N Holds __tiny2pi variables to be placed in non-volatile memory. IDATA

Table 21: Segment summary (Continued)

Descriptions of segments
The following section gives reference information about each segment. Many of the
extended keywords supported by the compiler are mentioned here. For detailed
information about the keywords, see the chapter Extended keywords.

SAMS IAR C Compiler
Reference Guide

BANKO A

Holds the SFRs, system registers, and working registers.

Linker segment type

DATA

Memory range

0xCO—0xFF

Segment reference ___4

BANK1_A Holds the SFRs, system registers, and working registers.

Linker segment type

DATA

Memory range

0x1CO0—-0x1FF

CALLT_C Holds __tiny_func function addresses.

Linker segment type

CODE

Memory range

0x00—0xFF

CODE Holds user program code.

Linker segment type

CODE

Memory range

0x0000—0OxXFFFF

CONST Holds constants.

Linker segment type

CODE

Memory range

0x0000—0OxXFFFF

Part 2. Compiler reference 67

Descriptions of segments

CSTACK Holds the internal data stack in the small code model, including the reduced instruction
set.

Linker segment type

IDATA

Memory range

0—0xBF

CSTACK2 Holds the internal data stack in the small code model, except the reduced instruction set.

Linker segment type

IDATA

Memory range

0x00—0xFF

CSTACKN Holds the internal data stack in the large code model.

Linker segment type

XDATA

Memory range

0x0000—0OxXFFFF

INTVEC Holds the interrupt vectors generated by the use of the interrupt extended keyword.

Linker segment type

CODE

Memory range

0x00—0xFF

SAMS IAR C Compiler
68 Reference Guide

Segment reference ___4

NEAR_C Used for storing __near constant data.

Linker segment type

XDATA

Memory range

0x0000—0xXFFFF

NEAR_I Holds near static variables that have been declared with non-zero initial values. The
initial values are copied from the NEAR ID segment by cstartup during initialization.

Linker segment type

XDATA

Memory range

0x0000—0OxXFFFF

NEAR_ID Holds initial values for variables located in the NEAR I segment. These values are
copied from NEAR I by cstartup during initialization.

Linker segment type

CODE

Memory range

0x0000—0OxXFFFF

NEAR_N Holds near variables to be placed in non-volatile memory. These have been allocated
by the compiler, declared ~ no _init, orcreated no init by use of the #pragma
memory directive.

Linker segment type

XDATA

Memory range

0x0000—0xXFFFF

Part 2. Compiler reference 69

Descriptions of segments

NEAR_Z Holds near variables with static storage that were declared without initial values or
with zero values. Standard C specifies that such variables be set to zero before they are
encountered by the program, so they are set to zero by cstartup during initialization.

Linker segment type

XDATA

Memory range

0x0000—0OxXFFFF

RESET Holds the startup code.

Linker segment type

CODE

Memory range

0x0000—0OxXFFFF

TINY_I Holds _tiny static variables that have been declared with non-zero initial values. The
initial values are copied from the TINY ID segment by cstartup during initialization.

Linker segment type

IDATA

Memory range

0x00—0xBF

TINY_ID Holds initial values for variables located in the TINY I segment. These values are
copied from TINY I by cstartup during initialization.

Linker segment type

CODE

Memory range

0x0000—0xXFFFF

SAMS IAR C Compiler
70 Reference Guide

Segment reference ___4

TINY N Holds tiny variables to be placed in non-volatile memory. These have been allocated
by the compiler, declared = no init,orcreated no init by use of the #pragma
memory directive.

Linker segment type

IDATA

Memory range

0x00—0xBF

TINY_Z Holds _tiny variables with static storage that were declared without initial values or
with zero values. Standard C specifies that such variables be set to zero before they are
encountered by the program, so they are set to zero by cstartup during initialization.

Linker segment type

IDATA

Memory range

0x00—0xBF

TINY2_I Holds tiny2 static variables that have been declared with non-zero initial values.
The initial values are copied from the TINY2 ID segment by cstartup during
initialization.

Linker segment type

IDATA

Memory range

0xCO—0xFF

TINY2_ID Holds initial values for variables located in the TINY2 I segment. These values are
copied from TINY2 I by cstartup during initialization.

Linker segment type

CODE

Part 2. Compiler reference 71

Descriptions of segments

72

SAMS IAR C Compiler
Reference Guide

TINY2 N

TINY2 Z

TINYP N

Memory range

0x0000—0OxXFFFF

Holds __ tiny?2 variables to be placed in non-volatile memory. These have been
allocated by the compiler, declared ~ no init, orcreated no_ init by use of the
#pragma memory directive.

Linker segment type

IDATA

Memory range

0xCO—0xFF

Holds __tiny2 variables with static storage that were declared without initial values or
with zero values. Standard C specifies that such variables be set to zero before they are
encountered by the program, so they are set to zero by cstartup during initialization.

Linker segment type

IDATA

Memory range

0xCO—0xFF

Holds __ tinyp variables to be placed in non-volatile memory. These have been
allocated by the compiler, declared ~ no_init, orcreated no_ init by use of the
#pragma memory directive.

Linker segment type

IDATA

Memory range

0x00—0xBF, 0x100—-0x1BF, ..., OXFOO—0xXFBF

Segment reference ___4

TINYPi_N Holds tinypi variables to be placed in non-volatile memory. These have been
allocated by the compiler, declared ~ no init, orcreated no_init by use of the
#pragma memory directive.

Linker segment type

IDATA

Memory range

0xi00—0xiBF, where i=1t0F

TINY2P_N Holds tiny2p variables to be placed in non-volatile memory. These have been
allocated by the compiler, declared ~ no init, orcreated no_ init by use of the
#pragma memory directive.

Linker segment type

IDATA

Memory range

0xCO0—0xFF, 0Xx1CO0—0x1FF, ..., OXFCO—OXFFF

TINY2Pi_N Holds tiny2pi variables to be placed in non-volatile memory. These have been
allocated by the compiler, declared ~ no init, orcreated no_init by use of the
#pragma memory directive.

Linker segment type

IDATA

Memory range

0xiC0—0xiFF, where i=1t0F

Part 2. Compiler reference 73

Descriptions of segments

SAMS IAR C Compiler
74 Reference Guide

Compiler options

This chapter explains how to set the compiler options from the command line,
and gives detailed reference information about each option.

Refer to the SAM8 IAR Embedded Workbench™ IDE User Guide for information
about the compiler options available in the IAR Embedded Workbench and
how to set them.

Setting command line options

To set compiler options from the command line, include them on the command line after
the iccsam8 command, either before or after the source filename. For example, when
compiling the source prog. c, use the following command to generate an object file
with debug information:

iccsam8 prog --debug

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a listing to the file 1ist.1st:

iccsam8 prog -1 list.lst

Some other options accept a string that is not a filename. The string is included after the
option letter, but without a space. For example, to define a symbol:

iccsam8 prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

Notice that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -e

o A long name consists of one or several words joined by underscores, and it may
have parameters. You specify it with double dashes, for example
--warnings_are_errors.

Part 2. Compiler reference

75

Setting command line options

76

SAMS IAR C Compiler
Reference Guide

SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, it can be specified either
immediately following the option or as the next command line argument.

For instance, an include file path of \usr\include can be specified either as:
-I\usr\include

or as

-I \usr\include

Note: / can be used instead of \ as directory delimiter.

Additionally, output file options can take a parameter that is a directory name. The
output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be specified either
immediately after the equal sign (=) or as the next command line argument, for example:

--diag suppress=Pe0001
or
--diag suppress Pe0001

The option --preprocess is, however, an exception as the filename must be preceded
by space. In the following example comments are included in the preprocessor output:

--preprocess=Cc prog

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

iccsam8 prog -1

A file specified by ' - ' is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes;
the following example will create a list file called -x:

iccsam8 prog -1 ---r

Compiler options ___o

SPECIFYING ENVIRONMENT VARIABLES

Compiler options can also be specified in the ccsaMs environment variable. The
compiler automatically appends the value of this variable to every command line, so it
provides a convenient method of specifying options that are required for every
compilation.

The following environment variables can be used with the SAM8 IAR C Compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded
workbench 3.n\sam8\inc;c:\headers

QCCSAMS Specifies command line options; for example: QCCSAM8=-1A
asm.Ist -z9

Table 22: Environment variables

ERROR RETURN CODES

The SAMS IAR C Compiler returns status information to the operating system which
can be tested in a batch file.

The following command line error codes are supported:

Code Description

0 Compilation successful, but there may have been warnings.
| There were warnings, provided that the option --warnings_affect_exit_code was used.
2 There were non-fatal errors or fatal compilation errors making the compiler abort.

3 There were crashing errors.

Table 23: Error return codes

Options summary

The following table summarizes the compiler command line options:

Command line option Description

--char_is signed ‘char’ is ‘signed char’
--code _model {small|large} Specifies the code model
--core = Specifies the processor core

{sam8|sam8x | sam8xri|sam8xrc | sam8xrcri }
-Dsymbol [=valuel Defines preprocessor symbols

--data _model {small|large} Specifies the data model

Table 24: Compiler options summary

Part 2. Compiler reference 77

Options summary

78

SAMS IAR C Compiler
Reference Guide

Command line option

Description

- -debug

--dependencies=[i] [m] {filename|directory}
--diag_error=tag, tag, ...
--diag_remark=tag, tag, . ..

--diag suppress=tag, tag, ...

--diag _warning=tag, tag, . ..

--diagnostics_tables

-e

--enable_eeprom_support

--enable_multibytes

-f filename

--generate_ tinyfunc runtime library calls

--header_context

-Ipath

-1l[c|c|a|a] [N] [H] {filename|directory}

--library module

--migration_preprocessor_extensions

--module name=name

--no_code_motion

--no_cse

--no_inline
--no_unroll

--no_warnings

--no_wrap_diagnostics

-o {filename|directory}

--omit_types

--only stdout

Generates debug information
Lists file dependencies

Treats these as errors

Treats these as remarks
Suppresses these diagnostics
Treats these as warnings
Lists all diagnostic messages
Enables language extensions
Enables EEPROM support

Enables support for multibyte
characters

Extends the command line

Generates __tiny func
runtime library calls

Lists all referred source files
Includes file path

Creates list file

Makes library module
Extends the preprocessor
Sets object module name
Disables code motion
optimization

Disables common
sub-expression elimination
Disables function inlining
Disables loop unrolling
Disables all warnings

Disables wrapping of
diagnostic messages

Sets object filename
Excludes type information

Uses standard output only

Table 24: Compiler options summary (Continued)

Command line option

Compiler options ___o

Description

--place_constants_in_rom

--preprocess [=[c] [n] [1]] {filename|directory}

--public_equ symbol [=value]

-r
--remarks
-s[2]3]6]9]
--silent

--strict_ansi

--warnings_affect_ exit code

--warnings_are_errors

-z[2]3]6]9]

Places constants and string
literals in code memory

Generates preprocessor
output

Defines a global, named
assembler label

Generates debug information
Enables remarks

Optimizes for speed

Sets silent operation

Enables strict ISO/ANSI
Warnings affects exit code

Warnings are treated as
errors

Optimizes for size

Table 24: Compiler options summary (Continued)

Descriptions of options

--char is signed

--code_model

The following section gives detailed reference information about each compiler option.

--char is signed

By default the compiler interprets the char type as unsigned. The - -char is_ signed
option causes the compiler to interpret the char type as signed instead. This can be
useful when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the - -char is signed option. If you
use this option, you may get type mismatch warnings from the IAR XLINK Linker since

the library uses unsigned chars.

To set the equivalent option in the IAR Embedded Workbench, select

Project>Options>ICCSAMS8>Language.

--code _model {small|large}

The SAMS microcontroller can be used in two modes: normal mode and short register
mode. The SAMS IAR C Compiler supports these models by means of code models.

Part 2. Compiler reference 79

Descriptions of options

80

SAMS IAR C Compiler
Reference Guide

--core

Use this option to select the code model for which the code is to be generated. The
following code models are available:

Code model Description
small (default) Supports the tiny stack
large Supports the near stack

Table 25: Available code models

If you do not include any of the code model options, the compiler uses the small code
model as default.

Note that all modules of your application must use the same code model.

Example
For example, use the following command to specify the short code model:
--code_model small

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>General>Target.

--core = {sam8|sam8x|sam8xri|sam8xrc|sam8xrcri}

This option selects the processor core. (The default is sams.)

-Dsymbol [=value]
-D symbol[=valuel]

Use this option to define a preprocessor symbol with the name symbol and the value
value. If no value is specified, 1 is used.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

In order to get the equivalence of:

#define foo

specify the = sign but nothing after, for example:

-Dfoo=

This option can be used one or more times on the command line.

--data_model

- -debug,

-r

Compiler options ___o

Example

You may want to arrange your source to produce either the test or production version of
your program depending on whether the symbol TESTVER was defined. To do this you
would use include sections such as:

#ifdef TESTVER
additional code lines for test version only
#endif

Then, you would select the version required on the command line as follows:

Production version: iccsam8 prog
Test version: iccsam8 prog -DTESTVER

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Preprocessor.

--data_model {small]|large}

Use this option to select the data model for which the code is to be generated:

Data model Default memory attribute
small (default) __tiny
large __near

Table 26: Available data models

If you do not include any of the data model options, the compiler uses the small data
model as default.

Note that all modules of your application must use the same data model.

Example
For example, use the following command to specify the large data model:
--data_model large

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>General>Target.

- -debug
-r

Use the - -debug or the -r option to make the compiler include information required
by the IAR C-SPY™ Debugger and other symbolic debuggers in the object modules.

Part 2. Compiler reference 81

Descriptions of options

82

--dependencies

SAMS IAR C Compiler
Reference Guide

Note: Including debug information will make the object files become larger than
otherwise.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Output.

--dependencies=[1i] [m] {filename|directory}

When you use this option, each source file opened by the compiler is listed in a file. The
following modifiers are available:

Option modifier Description
i Include only the names of files (default)
m Makefile style

Table 27: Generating a list of dependencies (--dependencies)
If a filename is specified, the compiler stores the output in that file.

Ifa directoryis specified, the compiler stores the output in that directory, in a file with
the extension i. The filename will be the same as the name of the compiled source file,
unless a different name has been specified with the option -o, in which case that name
will be used.

To specify the working directory, replace directory with a period (.).

If - -dependencies or --dependencies=i is used, the name of each opened source
file, including the full path if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If - -dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is output. Each line consists of the name of
the object file, a colon, a space, and the name of a source file. For example:

foo.r18: c:\iar\product\include\stdio.h
foo.r18: d:\myproject\include\foo.h

Example |
To generate a listing of file dependencies to the file 1isting. i, use:

iccsam8 prog --dependencies=i listing

--diag_error

--diag remark

Compiler options ___o

Example 2

To generate a listing of file dependencies to a file called 1isting.i in the mypath
directory, you would use:

iccsam8 prog --dependencies \mypath\listing

Note: Both \ and / can be used as directory delimiters.

Example 3
An example of using - -dependencies with gmake:
Set up the rule for compiling files to be something like:

%.rl8 : %.cC
$(ICC) S$(ICCFLAGS) $< --dependencies=m $*.d

That is, besides producing an object file, the command also produces a dependency
file in makefile style (in this example using the extension .d).

Include all the dependency files in the makefile using for example:
-include $ (sources:.c=.d)

Because of the - it works the first time, when the . d files do not yet exist.

--diag_error=tag, tag, ...

Use this option to classify diagnostic messages as errors. An error indicates a violation
of the C language rules, of such severity that object code will not be generated, and the
exit code will not be 0.

Example

The following example classifies warning Pe117 as an error:

--diag_error=Pell?7

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--diag remark=tag, tag, ...

Use this option to classify diagnostic messages as remarks. A remark is the least severe
type of diagnostic message and indicates a source code construct that may cause strange
behavior in the generated code.

Part 2. Compiler reference 83

Descriptions of options

84

--diag suppress

--diag warning

--diagnostics_tables

SAMS IAR C Compiler
Reference Guide

Example
The following example classifies the warning Pe177 as a remark:
--diag remark=Pel77

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--diag suppress=tag, tag, ...

Use this option to suppress diagnostic messages.

Example
The following example suppresses the warnings Pe117 and Pe177:
--diag_suppress=Pell7,Pel77

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--diag warning=tag, tag, ...

Use this option to classify diagnostic messages as warnings. A warning indicates an
error or omission that is of concern, but which will not cause the compiler to stop before
compilation is completed.

Example

The following example classifies the remark Pe826 as a warning:

--diag warning=Pe826

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--diagnostics_tables {filename|directory}

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

If a £ilename is specified, the compiler stores the output in that file.

Compiler options ___o

If a directoryis specified, the compiler stores the output in that directory, in a file with
the name diagnostics_tables.txt. To specify the working directory, replace
directory with a period (.).

Example |

To output a list of all possible diagnostic messages to the file diag. txt, use:

--diagnostics_tables diag

Example 2

If you want to generate a table to a file diagnostics_tables.txt in the working
directory, you could use:

--diagnostics_tables

Both \ and / can be used as directory delimiters.

-e -e

In the command line version of the SAM8 IAR C Compiler, language extensions are
disabled by default. If you use language extensions such as SAM8-specific keywords
and anonymous structs and unions in your source code, you must enable them by using
this option.

Note: The -e option and the --strict_ansi option cannot be used at the same time.
For additional information, see IAR language extension overview, page 5.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Language.

--enable eeprom_ support --enable eeprom support
This option enables EEPROM support.

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>General>Target.

--enable multibytes --enable multibytes

By default, multibyte characters cannot be used in C source code. If you use this option,
multibyte characters in the source code are interpreted according to the host computer’s
default setting for multibyte support.

Part 2. Compiler reference 85

Descriptions of options

86

--generate_ tinyfunc runtime_
library calls

SAMS IAR C Compiler
Reference Guide

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

To set the equivalent option in the TAR Embedded Workbench, choose
Project>Options>ICCSAMS8>Language.

-f filename
Reads command line options from the named file, with the default extension xc1.

By default the compiler accepts command parameters only from the command line itself
and the QcCcsaM8 environment variable. To make long command lines more
manageable, and to avoid any operating system command line length limit, you use the
- £ option to specify a command file, from which the compiler reads command line
items as if they had been entered at the position of the option.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines since the newline character acts just as a
space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave as in the
Microsoft Windows command line environment.

Example

For example, you could replace the command line:

iccsam8 prog -r "-DUsername=John Smith" -DUserid=463760

with

iccsam8 prog -r -f userinfo

and the file userinfo.xcl containing:

"-DUsername=John Smith"
-DUserid=463760

--generate_tinyfunc runtime library calls
This option generates __tiny func runtime library calls.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Language.

--header context

Compiler options ___o

--header context

Occasionally, it is necessary to know which header file that was included from what
source line, to find the cause of a problem. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

-Ipath

Use this option to specify paths for #include files. This option may be used more than
once on a single command line.

Following is the full description of the compiler’s #include file search procedure:

e If the name of the #include file is an absolute path, that file is opened.
o When the compiler encounters the name of an #include file in angle brackets such
as:

#include <stdio.h>
it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified.

2 The directories specified using the C_INCLUDE environment variable, if any.

o When the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last. For example:

src.c in directory dir
#include "src.h"

src.h in directory dir\h
#include "io.h"

When dir\exe is the current directory, use the following command for compilation:

iccsam8 ..\src.c -I..\dir\include

Part 2. Compiler reference 87

Descriptions of options

88

SAMS IAR C Compiler
Reference Guide

Then the following directories are searched for the io.h file, in the following order:

dir\h Current file.
dir File including current file.
dir\include As specified with the -I option.

Use angle brackets for standard header files like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Preprocessor.

-llc|C|a|a]l [N] [H] {filename|directory}

By default the compiler does not generate a listing. Use this option to generate a listing
to a file.

The following modifiers are available:

Option modifier Description

a Assembler file

A (N is implied) Assembler file with C source as comments

c C list file

C (default) C list file with assembler source as comments

N No diagnostics in file

H Include source lines from header files in output. Without this option

only source lines from the primary source file are included.

Table 28: Generating a compiler list file (-1)
If a £ilename is specified, the compiler stores the output in that file.

If a directoryis specified, the compiler stores the output in that directory, in a file with
the extension 1st. The filename will be the same as the name of the compiled source
file, unless a different name has been specified with the option -o, in which case that
name will be used.

To specify the working directory, replace directory with a period (.).

Example |
To generate a listing to the file 1ist.1lst, use:

iccsam8 prog -1 list

--library module

--migration_ preprocessor

extensions

--module_name

Compiler options ___o

Example 2

If you compile the file mysource . c and want to generate a listing to a file
mysource . lst in the working directory, you could use:

iccsam8 prog -1
Note: Both \ and / can be used as directory delimiters.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>List.

--library module

Use this option to make the compiler treat the object file as a library module rather than
as a program module. A program module is always included during linking. A library
module will only be included if it is referenced in your program.

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Output.

--migration preprocessor extensions

Migration preprocessor extensions extend the preprocessor in order to ease migration of
code from earlier IAR compilers. The preprocessor extensions include:

o The availability of floating point in preprocessor expressions.

o The availability of basic type names and sizeof in preprocessor expressions.

o The availability of all symbol names (including typedefs and variables) in
preprocessor expressions.

If you need to migrate code from an earlier IAR C or C/EC++ compiler, you may want
to enable these preprocessor extensions.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
may be removed in future compiler versions.

--module_name=name

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name.

Part 2. Compiler reference 89

Descriptions of options

90

--no_code_motion

SAMS IAR C Compiler
Reference Guide

--no_cse

To set the object module name explicitly, use the option - -module name=name, for
example:

iccsam8 prog --module name=main

This option is useful when several modules have the same filename, since the resulting
duplicate module name would normally cause a linker error; for example, when the
source file is a temporary file generated by a preprocessor.

Example

The following example—in which %1 is an operating system variable containing the
name of the source file—will give duplicate name errors from the linker:

preproc %1l.c temp.c ; preprocess source,
; generating temp.c
iccsam8 temp.c ; module name is

; always 'temp'

To avoid this, use - -module name=name to retain the original name:

preproc %$l.c temp.c ; preprocess source,
; generating temp.c
iccsam8 temp.c --module name=%1 ; use original source

; name as module name
Note: In the above example, preproc is an external utility.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Output.

--no_code_motion

Use this option to disable optimizations that move code. These optimizations, which are
performed at optimization levels 6 and 9, normally reduce code size and execution time.
The resulting code may however be difficult to debug.

Note: This option has no effect at optimization level 3.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

- -no_cse

Use - -no_cse to disable common sub-expression elimination.

--no_inline

--no_unroll

Compiler options ___o

On optimization levels 6 and 9, the compiler avoids calculating the same expression
more than once. This optimization normally reduces both code size and execution time.
The resulting code may however be difficult to debug.

Note: This option has no effect at optimization level 3.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

--no_inline
Use --no_inline to disable function inlining.

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level 9, normally reduces
execution time and increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed.

Note: This option has no effect at optimization levels 3 and 6.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

--no_unroll
Use this option to disable loop unrolling.

The code body of a small loop, whose number of iterations can be determined at compile
time, is duplicated to reduce the loop overhead.

For small loops, the overhead required to perform the looping can be large compared to
the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities, for
example the instruction scheduler.

This optimization, which is performed at optimization level 9, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Part 2. Compiler reference 91

Descriptions of options

92

--no_warnings

--no_wrap_diagnostics

SAMS IAR C Compiler
Reference Guide

Note: This option has no effect at optimization levels 3 and 6.

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

--no_warnings

By default the compiler issues standard warning messages. Use this option to disable all
warning messages.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--no_wrap_ diagnostics

By default, long lines in compiler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

-o {filename|directory}
Use the -o option to specify an output file.
If a £ilename is specified, the compiler stores the object code in that file.

If a directory is specified, the compiler stores the object code in that directory, in a
file with the same name as the name of the compiled source file, but with the extension
r18. To specify the working directory, replace directory with a period (.).

Example |

To store the compiler output in a file called obj . r18 in the mypath directory, you
would use:

iccsam8 prog -o \mypath\obj

Example 2

If you compile the file mysource . c and want to store the compiler output in a file
mysource.rl8 in the working directory, you could use:

iccsam8 prog -o .
Note: Both \ and / can be used as directory delimiters.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>General>QOutput Directories.

Compiler options ___o

--omit_types --omit_ types

By default, the compiler includes type information about variables and functions in the
object output.

Use this option if you instead want the compiler to ignore such type information in the
output. The object file will then only contain type information that is a part of a symbol’s
name. This means that the linker cannot check symbol references for type correctness,
which is useful when you build a library that should not contain type information.

--only stdout --only stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

--place_constants_in rom --place_constants_in rom

Use this option to place constants and string literals in code memory, in the segment
CONST_C. These are otherwise placed in data memory, in the segments TINYP_ I or
NEAR_I.

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Language.

--preprocess --preprocess[=[c] [n] [1]] {filename|directory}
Use this option to direct preprocessor output to a named file.

The following table shows the mapping of the available preprocessor modifiers:

Command line option Description
--preprocess=c Preserve comments
--preprocess=n Preprocess only
--preprocess=1 Generate #1ine directives

Table 29: Directing preprocessor output to file (--preprocess)
If a £ilename is specified, the compiler stores the output in that file.

Ifa directoryis specified, the compiler stores the output in that directory, in a file with
the extension i. The filename will be the same as the name of the compiled source file,
unless a different name has been specified with the option -o, in which case that name
will be used.

To specify the working directory, replace directory with a period (.).

Part 2. Compiler reference 93

Descriptions of options

94

SAMS IAR C Compiler
Reference Guide

--public_equ

-r, --debug

--remarks

Example |
To store the compiler output with preserved comments to the file output. i, use:

iccsam8 prog --preprocess=c output

Example 2

If you compile the file mysource. c and want to store the compiler output with #1ine
directives to a file mysource. i in the working directory, you could use:

iccsam8 prog --preprocess=1 .
Note: Both \ and / can be used as directory delimiters.

To set the equivalent option in the AR Embedded Workbench, select
Project>Options>ICCSAMS8>Preprocessor.

--public_equ symbol[=value]

This option is equivalent to defining a label in assembler language by using the EQU
directive and exporting it using the PUBLIC directive.

-r
- -debug

Use this option to make the compiler include information required by the IAR C-SPY
Debugger and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become larger than
otherwise.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Output.

--remarks

The least severe diagnostic messages are called remarks (see Severity levels, page 131).
A remark indicates a source code construct that may cause strange behavior in the
generated code.

By default the compiler does not generate remarks. Use this option to make the compiler
generate remarks.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

-S

--silent

--strict_ansi

Compiler options ___o

-s[2]3]6]9]
Use this option to make the compiler optimize the code for maximum execution speed.

If no optimization option is specified, the compiler will use the size optimization -z2
by default. If the -s option is used without specifying the optimization level, speed
optimization at level 2 is used by default.

The following table shows how the optimization levels are mapped:

Option modifier Optimization level
2 None*

3 Low

6 Medium

9 High

Table 30: Specifying speed optimization (-s)

*The most important difference between -s2 and -s3 is that at level 2, all non-static variables
will live during their entire scope.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and conversely a high level of optimization makes it relatively hard.

Note: The -s and -z options cannot be used at the same time.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

--silent

By default the compiler issues introductory messages and a final statistics report. Use
- -silent to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

--strict_ansi

By default the compiler accepts a relaxed superset of ISO/ANSI C (see the chapter IJAR
C extensions). Use --strict_ansi to ensure that the program conforms to the
ISO/ANSI C standard.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Language.

Part 2. Compiler reference 95

Descriptions of options

96

--warnings_affect exit code

--warnings_are_errors

SAMS IAR C Compiler
Reference Guide

--warnings_affect exit code

By default the exit code is not affected by warnings, only errors produce a non-zero exit
code. With this option, warnings will generate a non-zero exit code.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the compiler
option --diag warning orthe #pragma diag warning directive will also be treated
as errors when - -warnings_are errors is used.

For additional information, see --diag_warning, page 84 and #pragma diag_warning,
page 112.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Diagnostics.

-z[2]3]6]9]

Use this option to make the compiler optimize the code for minimum size. If no
optimization option is specified, -z2 is used by default.

The following table shows how the optimization levels are mapped:

Option modifier Optimization level
2 None*

3 Low

6 Medium

9 High

Table 31: Specifying size optimization (-z)

*The most important difference between -z2 and - z3 is that at level 2, all non-static variables
will live during their entire scope.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and conversely a high level of optimization makes it relatively hard.

Note: The -s and -z options cannot be used at the same time.

Compiler options ___o

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCSAMS8>Code.

Part 2. Compiler reference 97

Descriptions of options

SAMS IAR C Compiler
98 Reference Guide

Extended keywords

This chapter describes the extended keywords that support specific features
of the SAM8 microcontroller, the general syntax rules for the keywords, and
a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

Summary of extended keywords

The following table summarizes the extended keywords that are available to the SAMS8

IAR C Compiler:
Extended keyword Description Type
__bankn Defines the SFR area, n=0, | Data storage
__code Places a variable in the code area (ROM) Data storage
__fast Enables fast interrupt support. Special function

Not for SAM8xRI or SAM8xRCRI. object attribute
___generic A pointer that can point to all data memory types Data storage

(IRAM, XRAM, ROM)
__interrupt Supports interrupt functions Special function type

__intrinsic Reserved for compiler internal use only -

__monitor Supports atomic execution of a function Special function type
__near Storage and pointer modifier (XRAM) Data storage
__no_init Supports non-volatile memory Data storage
__root Ensures that a function or variable is included in -

the object code even if unused
__tiny Storage and pointer modifier (IRAM Page 0) Data storage

__tiny func Callable from any segment. -
Gives a 2 byte vectored CALL instruction.
Not for SAM8xRI or SAM8xRCRI.

__tiny2 Storage and pointer modifier (IRAM Page 0) Data storage

__tinyp Storage and pointer modifier (IRAM Page 0-15) Data storage
Cannot be initialized.

Table 32: Extended keywords summary

Part 2. Compiler reference

99

Using extended keywords

100

Extended keyword Description Type

__tiny2p Storage and pointer modifier (IRAM Page 0-15) Data storage
Cannot be initialized.

__tinypn Storage and pointer modifier Data storage
(IRAM Page n = |-15)
Cannot be initialized.

__tiny2pn Storage and pointer modifier Data storage
(IRAM Page n = I-15)
Cannot be initialized.

Table 32: Extended keywords summary (Continued)

Using extended keywords

SAMS IAR C Compiler
Reference Guide

This section covers how extended keywords can be used when declaring and defining
data and functions. The syntax rules for extended keywords are also described.

In addition to the rules presented here—to place the keyword directly in the code—the
directives #pragma type attribute and #pragma object attribute can be used
for specifying the keywords. Refer to the chapter #pragma directives for details about
how to use the extended keywords together with #pragma directives.

The keywords and the @ operator are only available when language extensions are
enabled in the SAMS8 IAR C Compiler.

In the IAR Embedded Workbench, language extensions are enabled by default.

Use the - e compiler option to enable language extensions. See -e, page 85 for additional
information.

DATA STORAGE

The extended keywords that can be used for data can be divided into four groups that
control the following:

o The memory type of objects and pointers: __tiny, tiny2, tinyp,
__tinypn, tiny2p, tiny2pn, near,and _code

e Other characteristics of objects: _root and __no_init

e Pointer type only: generic

e Mem type only: bank0, bankl

See the chapter Data storage in Part 1. Using the compiler for more information about
memory types.

Extended keywords ___4

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
following declarations place the variable i and j in near memory. The variables k and
1 behave in the same way:

__near int i, j;
int _ near k, 1;

Notice that the keyword affects both identifiers.

Pointers

A keyword that is followed by an asterisk (*), affects the type of the pointer being
declared. A pointer to external RAM memory is thus declared by:

char __near * p;

Notice that the location of the pointer variable p is not affected by the keyword. In the
following example, however, the pointer variable p2 is placed in tiny memory. Like p,
p2 points to a character in near memory.

char _ _near * __tiny p2;

Type definitions

Storage can also be specified using type definitions. The following two declarations are
equivalent:

typedef char __ near Byte;
typedef Byte *BytePtr;
Byte b;

BytePtr bp;

and

__near char b;
char _ near *bp;

FUNCTIONS

The extended keywords that can be used when functions are declared can be divided into
three groups:

e Keywords that control the type of the functions. Keywords of this group must be
specified both when the function is declared and when it is defined: __interrupt
and _monitor.

o A keyword that controls the behavior of the functions. This keyword is only
necessary when the function is defined: _ fast.

o Keywords that only control the defined function: ~_root and __noadjust.

Part 2. Compiler reference 101

Descriptions of extended keywords

102

Syntax
The extended keywords are specified before the return type, for example:
__interrupt void alpha(void) ;

The keywords that are type attributes must be specified both when they are defined and
in the declaration. Object attributes only have to be specified when they are defined
since they do not affect the way an object or function is used.

Descriptions of extended keywords

__bankn

__code

__fast

__generic

__interrupt

SAMS IAR C Compiler
Reference Guide

The following sections give detailed information about each extended keyword.

The bankn extended keyword defines the SFR area, where n can be either 0 or 1.

The code extended keyword places a variable in the code area (ROM from 0 to
O0XFFFF).

Maximum object size

32 Kbytes.

The fast extended keyword enables fast interrupt support.

This keyword cannot be used with the SAM8xRI or SAM8xRCRI cores.

The generic extended keyword is a data pointer type that can point to all data
memory areas.

The __interrupt keyword specifies interrupt functions. The #pragma vector
directive can be used for specifying the interrupt vector. An interrupt function must have
a void return type and cannot have any parameters.

The following example declares an interrupt function with interrupt vector with offset
0x14 in the INTVEC segment:

#pragma vector=0x14
__interrupt void my interrupt handler (void) ;

An interrupt function cannot be called directly from a C program. It can only be
executed as a response to an interrupt request.

Extended keywords ___4

It is possible to define an interrupt function without a vector, but then the compiler will
not generate an entry in the interrupt vector table. For additional information, see
INTVEC, page 68.

The range of the interrupt vectors depends on the device used.

The iochip.h header file, which corresponds to the selected derivative, contains
predefined names for the existing interrupt vectors.

For additional information, see Interrupt functions, page 21.

__intrinsic The _intrinsic keyword is reserved for compiler internal use only.

__monitor The _monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the monitor keyword is equivalent to any other function in all other respects.

Avoid using the __monitor keyword on large functions since the interrupt will
otherwise be turned off for too long.

For additional information, see the intrinsic functions __disable_interrupt, page 124,
and __enable_interrupt, page 124.

Example

In the following example a semaphore is implemented using one static variable and two
monitor functions. A semaphore can be locked by one process and is used for preventing
processes to simultaneously use resources that can only be used by one process at a time,
for example a printer.

/* When the lock is non-zero, someone owns the lock. */
static unsigned int volatile the lock = 0;

/* get_lock -- Try to lock the lock.
* Return 1 on success and 0 on failure. */

__monitor int get lock(void)

{

if (the lock == 0)

{

/* Success, we managed to lock the lock. */
the lock = 1;
return 1;

}

else

Part 2. Compiler reference 103

Descriptions of extended keywords

104

SAMS IAR C Compiler
Reference Guide

__near

{

/* Failure, someone else has locked the lock. */
return O0;

}
}

/* release lock -- Unlock the lock. */

__monitor void release lock(void)

{

the_lock = 0;

}

The following is an example of a program fragment that uses the semaphore:

void my program(void)

{

if (get_lock())

{

/* ... Do something ... */

/* When done, release the lock. */
release_lock() ;

}
}

The near extended keyword is a storage and pointer modifier.

In the small memory model, the compiler normally places data objects in the tiny
segment (internal RAM 0x00 to 0xBF), accessing them by 8-bit addressing, and also
allocates space for a __tiny address in pointers to such data objects.

The near modifier allows you to place a data object in external RAM, or to specify
that a pointer is to point to a data object in external RAM using 16-bit addressing.

When using the large memory model, near is the default.

Maximum object size

32 Kbytes.

__no_init

__root

__tiny

Extended keywords ___4

The no_ init keyword is used for suppressing initialization of a variable at system
startup.

The no_init keyword is placed in front of the type. In this example, settings is
placed in the non-initialized segment:

__no_init int settings[10];

The #pragma object_attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object attribute=__no init
int settings[10];

Note: The no_init keyword cannot be used in typedef£s.

The root attribute can be used on either a function or a variable to ensure that, when
the module containing the function or variable is linked, the function or variable is also
included, whether or not it is referenced by the rest of the program.

By default only the part of the runtime library calling main and any interrupt vectors are
root. All other functions and variables are included in the linked output only if they are
referenced by the rest of the program.

The root keyword is placed in front of the type, for example to place settings in
non-volatile memory:

__root int settings[10];

The #pragma object attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__root
int settings[10];

Note: The _root keyword cannot be used in typedefs.

The tiny extended keyword is a storage and pointer modifier.

When using the large memory model, the compiler normally places data objects in the
near segment (external RAM 0 to 0xFFFF), accessing them by 16-bit addressing, and
allocating space fora __near address in pointers to such data types.

The _tiny modifier allows you to place a data object in internal RAM (0x00 to 0xBF,
page 0), so it is accessed by the more efficient 8-bit addressing, or to specify that a
pointer is to point to a data object in internal RAM. This lets you place
frequently-accessed variables so they will be accessed more efficiently, and so that
pointers to them will occupy 8 rather than 16 bits.

Part 2. Compiler reference 105

Descriptions of extended keywords

When using the small memory model, _ tiny is the default.

Maximum object size
128 bytes.

__tiny func The tiny func extended keyword is callable from any segment and gives a 2 byte
vectored CALL instruction.

This keyword cannot be used with the SAM8xRI or SAM8xRCRI cores.

__tiny2 The tiny2 extended keyword is a storage and pointer modifier.
The tiny2 modifier allows you to place a data object in the tiny2 segment (internal
RAM o0xCo0 to 0xFF, page 0). Data objects of this type can only be accessed indirectly.
Maximum object size
64 bytes.

__tinyp The tinyp extended keyword is a storage and pointer modifier.
The tinyp modifier allows you to place a data object in the t inyp segment (internal
RAM 0x00 to 0xBF, page 0 to 15).
Maximum object size
128 bytes.

__tiny2p The tiny2p extended keyword is a storage and pointer modifier.
The tiny2p modifier allows you to place a data object in the tiny2p segment
(internal RAM 0xCo0 to 0xFF, page 0 to 15).
Maximum object size
64 bytes.

__tinypn The tinypnextended keyword is a storage and pointer modifier.

The tinypn modifier allows you to place a data object in the tinypn segment
(internal RAM 0x00 to 0xBF, page n, n =1 to 15).

SAMS IAR C Compiler
106 Reference Guide

Extended keywords ___4

Maximum object size
128 bytes.

__tiny2pn The tiny2pnextended keyword is a storage and pointer modifier.

The __tiny2pn modifier allows you to place a data object in the tiny2pn segment
(internal RAM 0xC0 to 0xFF, page n,n =1 to 15).

Maximum object size
64 bytes.

Part 2. Compiler reference 107

Descriptions of extended keywords

SAMS IAR C Compiler
108 Reference Guide

#pragma directives

This chapter describes the #pragma directives of the SAM8 IAR C Compiler.

The #pragma directives control the behavior of the compiler, for example how

it allocates memory, whether it allows extended keywords, and whether it

outputs warning messages. The #pragma directives are preprocessed, which

means that macros are substituted in a #pragma directive.

The #tpragma directives are always enabled in the compiler. They are

consistent with ISO/ANSI C and are very useful when you want to make sure

that the source code is portable.

Summary of #pragma directives

The following table shows the #pragma directives of the compiler:

#pragma directive

Description

#pragma bitfields
#pragma constseg
#pragma dataseg
#pragma diag default
#pragma diag error
#pragma diag remark
#pragma diag suppress
#pragma diag warning
#pragma inline
#pragma language
#pragma location
#pragma message
#pragma object attribute
#pragma optimize
#pragma required

#pragma rtmodel

Controls the order of bitfield members

Places constant variables in a named segment
Places variables in a named segment

Changes the severity level of diagnostic messages
Changes the severity level of diagnostic messages
Changes the severity level of diagnostic messages
Suppresses diagnostic messages

Changes the severity level of diagnostic messages
Inlines a function

Controls the IAR language extensions

Specifies the absolute address of a variable

Prints a message

Changes the definition of a variable or a function
Specifies type and level of optimization
Introduces a requirement

Inserts a runtime model attribute

Table 33: #pragma directives summary

Part 2. Compiler reference

109

Descriptions of #pragma directives

#pragma directive Description

#pragma segment Specifies a segment name

#pragma type attribute Changes the declaration and definitions of a variable or
function

#pragma vector Specifies the vector of an interrupt or trap function

Table 33: #pragma directives summary (Continued)

Note: For portability reasons, some old-style #pragma directives are recognized but
will give a diagnostic message. It is important to be aware of this if you need to port
existing code that contains any of those #pragma directives. For additional information,
see the chapter Migrating to the SAM8 IAR C Compiler V2.x.

Descriptions of #pragma directives

This section gives detailed information about each #pragma directive.

All #pragma directives using = for value assignment should be entered like:
#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

#pragma bitfields #pragma bitfields={reversed|default}
The #pragma bitfields directive controls the order of bitfield members.

By default the SAMS8 IAR C Compiler places bitfield members from the least significant
bit to the most significant bit in the container type. Use the #pragma
bitfields=reversed directive to place the bitfield members from the most
significant to the least significant bit. This setting remains active until you turn it off
again with the #pragma bitfields=default directive.

#pragma constseg The #pragma constseg directive places constant variables in a named segment. Use
the following syntax:

#pragma constseg=MY CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

The segment name must not be a predefined segment; see the chapter Segment reference
for more information.

SAMS IAR C Compiler
110 Reference Guide

#pragma dataseg

#pragma diag default

#pragma diag error

#pragma directives ___4

The memory in which the segment resides is optionally specified using the following
syntax:

#pragma constseg=__code MyOtherSeg

All constants defined following this directive will be placed in the segment
MyOtherSeg and accessed using near addressing.

The #pragma dataseg directive places variables in a named segment. Use the
following syntax:

#pragma dataseg=MY SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

The segment name must not be a predefined segment, see the chapter Segment reference
for more information. The variable myBuf fer will not be initialized at startup and must
thus not have any initializer.

The memory in which the segment resides is optionally specified using the following
syntax:

#pragma dataseg=__near MyOtherSeg

All variables in MyotherSeg will be accessed using near addressing.

#pragma diag default=tag, tag, ...

Changes the severity level back to default or as defined on the command line for the
diagnostic messages with the specified tags. See the chapter Diagnostics for more
information about diagnostic messages.

Example

#pragma diag default=Pell?

#pragma diag error=tag, tag, ...

Changes the severity level to error for the specified diagnostics. See the chapter
Diagnostics for more information about diagnostic messages.

Example

#pragma diag error=Pell?7

Part 2. Compiler reference 111

Descriptions of #pragma directives

112

#pragma diag remark

#pragma diag suppress

#pragma diag warning

#pragma inline

#pragma language

SAMS IAR C Compiler
Reference Guide

#pragma diag remark=tag, tag, ...
Changes the severity level to remark for the specified diagnostics. For example:
#pragma diag remark=Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag suppress=tag, tag, ...
Suppresses the diagnostic messages with the specified tags. For example:
#pragma diag suppress=Pell7,Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag warning=tag, tag, ...
Changes the severity level to warning for the specified diagnostics. For example:
#pragma diag warning=Pe826

See the chapter Diagnostics for more information about diagnostic messages.

#pragma inline [=forced]

The #pragma inline directive advises the compiler that the function whose

declaration follows immediately after the directive should be inlined—that is, expanded
into the body of the calling function. Whether the inlining actually takes place is subject

to the compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in

C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
the inlining. If the inlining fails for some reason, for example if it cannot be used with

the function type in question—Ilike print f—an error message is emitted.

#pragma language={extended|default}

The #pragma language directive is used for turning on the IAR language extensions

or for using the language settings specified on the command line:

extended Turns on the IAR language extensions and turns off the
--strict_ansi command line option.

default Uses the settings specified on the command line.

#pragma location

#pragma message

#pragma object_attribute

#pragma directives ___4

#pragma location=address

The #pragma location directive specifies the location—the absolute address—of the
variable whose declaration follows the #pragma directive. For example:

#pragma location=0xFF2000
char PORT1; /* PORT1D is located at address 0xFF2000 */

The directive can also take a string specifying the segment placement for either a
variable or a function, for example:

#pragma location="foo"

For additional information and examples, see Absolute location placement, page 17 and
Segment placement, page 17.

#pragma message (message)
Makes the compiler print a message on stdout when the file is compiled. For example:

#ifdef TESTING
#pragma message ("Testing")
#endif

#pragma object_ attribute=keyword

The #pragma object attribute directive affects the declaration of the identifier that
follows immediately after the directive.

The following keyword can be used with #pragma object_attribute for a variable:

__no_init Suppresses initialization of a variable at startup.

The following keyword can be used with #pragma object_attribute for a function
or variable:

__root Ensures that a function or data object is included in the linked
application even if not referenced.

Example
In the following example, the variable bar is placed in the non-initialized segment:

#pragma object_attribute=__no_init
char bar;

Part 2. Compiler reference 113

Descriptions of #pragma directives

114

#pragma optimize

SAMS IAR C Compiler
Reference Guide

Unlike the directive #pragma type_attribute that specifies the storing and accessing
of a variable, it is not necessary to specify an object attribute in declarations. The
following example declares bar without a #pragma object_attribute:

__no_init char bar;

#pragma optimize=token token token

where token is one or more of the following:

s
z

2|3|6]9
no_cse
no_inline
no_unroll

no_code_motion

Optimizes for speed

Optimizes for size

Specifies level of optimization

Turns off common sub-expression elimination
Turns off function inlining

Turns off loop unrolling

Turns off code motion.

The #pragma optimize directive is used for decreasing the optimization level or for
turning off some specific optimizations. This #pragma directive only affects the
function that follows immediately after the directive.

Notice that it is not possible to optimize for speed and size at the same time. Only one
of the s and z tokens can be used.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the #pragma

directive is ignored.

Example

#pragma optimize=s 9
int small and used_often()

{
}

#pragma optimize=z 9
int big and seldom_used()

{
}

#pragma directives ___4

#pragma required #pragma required

The #pragma required directive will introduce a requirement from a symbol to
another symbol. That is, if the first symbol is in the produced output when linking, the
other symbol should also be in that output. This is useful if, for example, a function that
handles certain data should only be used if there is any data to handle.

Syntax
#pragma required=symbol

where symbol is any statically linked function or variable. The #pragma must be placed
in front of a symbol definition.

Example

void f (void)

{

// handle segment S here

}
#pragma required=f // 1 requires £
long 1 @ “S”; // 1 resides in S

#pragma rtmodel #pragma rtmodel ("key", "value")

The #pragma rtmodel directive inserts the runtime model attribute key with the
value value. It must be followed by a variable, since the pragma directive is
associated with a variable. Keys beginning with __ are reserved by the compiler.

#pragma rtmodel ("myattr", "blue")
char is_blue=1;

The runtime model attribute is then passed to the linker. If the same key is found in
another file, it must have the same value, otherwise it will not link. See RTMODEL in
the SAMS8 IAR Assembler Reference Guide for a more detailed explanation.

#pragma segment #pragma segment=<name> [<memory>]

The #pragma segment directive declares a segment name that can be used in the
segment operators __segment beginand _segment _end. The optional <memory>
must, if present, be a memory attribute and will be used in the return type of the
operators.

__segment_begin (<name>)
__segment_end (<name>)

Part 2. Compiler reference 115

Descriptions of #pragma directives

116

#pragma type_ attribute

SAMS IAR C Compiler
Reference Guide

Example
__segment_begin (*“MYSEG")

The segment begin operator denotes the start address of the segment with the
name <name>, which must be a string literal, and must have been declared in a segment
pragma at an earlier point in the compilation unit. The _segment end operator
denotes the address immediately after the last byte in the segment. The type of these
operators is pointer to void. If a memory attribute was entered in the segment pragma
declaring the segment, the type is pointer to <memory> void, otherwise the type is a
default pointer to void. The operator given in the example has the type “void

__huge *”.

#pragma type_ attribute=keyword

The #pragma type attribute directive affects the declaration of the identifier, the
next variable, or the next function, that follows immediately after the #pragma directive.
It only affects the variable, not its type.

All memory attributes can be used with the #pragma type attribute directive for a
variable.

The following keywords can be used with #pragma type attribute directive for a
function:

__interrupt Specifies interrupt functions. Use the #pragma vector
directive to specify the interrupt vector; see page 117.

__monitor Specifies a monitor function

For interrupt and trap, use the #pragma vector directive to specify the exception
vector.

Example

In the following example, myBuf fer is placed in near memory, whereas the variable i
is not affected by the #pragma directive.

#pragma type attribute=_near

char inBuffer[10];

int i;

The following declarations, which use extended keywords, are equivalent. See the
chapter Extended keywords for more details.

__tiny char inBuffer[10];
int i;

#pragma directives ___4

In the small data model, the default pointer is __tiny. In the following example, the
pointer is located in near memory, pointing at __ tiny:

#pragma type attribute=_near
int * pointer;

#fpragma vector #pragma vector=vector

The #pragma vector directive specifies the vector of an interrupt or trap function
whose declaration follows the #pragma directive.

Example

#pragma vector=0x14
__interrupt void my_handler (void) ;

Part 2. Compiler reference 117

Descriptions of #pragma directives

SAMS IAR C Compiler
118 Reference Guide

Predefined symbols

This chapter gives reference information about the predefined preprocessor

symbols that are supported in the SAM8 IAR C Compiler. These symbols

allow you to inspect the compile-time environment, for example the time and

date of compilation.

Summary of predefined symbols

The following table summarizes the predefined symbols:

Predefined symbol

Identifies

__CODE_MODEL__
__CORE__
__DATA_MODEL__
__DATE__

__FILE _

__IAR SYSTEMS ICC _

__ICCSAM8
__LINE__
__LITTLE ENDIAN _
__STDC__
__STDC_VERSION _
__TID _

__TIME__

__VER_

The code model in use

The chip core in use

The data model in use

The date of compilation

The name of the file being compiled

The IAR compiler platform

The SAM8 IAR C Compiler

The current source line number

The byte order used

ISO/ANSI Standard C

The version of ISO/ANSI Standard C in use
The target processor of the IAR compiler in use
The time of compilation

The version number of the IAR compiler in use

Table 34: Predefined symbols summary

Note: The predefined symbol TID is available for backwards compatibility. We
recommend that you use the symbols CODE MODEL__, CORE
__DATA MODEL__ ,and ICCSAM8 _ instead.

Part 2. Compiler reference

19

Descriptions of predefined symbols

Descriptions of predefined symbols

The following section gives reference information about each predefined symbol.

__CODE_MODEL__ Use this symbol to identify the used code model.

The value of this symbol iS CODE MODEL SMALL _ or _CODE MODEL LARGE
for the small and large code models, respectively.

Example

#if __ CODE_MODEL__==__CODE_MODEL_SMALL__
int my arrayl[10];

#else

int my_arrayl[20];

#endif

__CORE__ Identifies the chip core used.

This can be either of SAM8 , SAM8X , SAM8S8XRC__, SAMSXRI _,Or
__SAM8XRCRI_ .

__DATA MODEL__ Use this symbol to identify the used data model.

The value of this symbol iS DATA MODEL SMALL _ Oor DATA MODEL LARGE
for the small and large data models, respectively.

Example

#1f _ DATA MODEL__==__DATA MODEL_SMALL__
code used in small data model only

#endif

__DATE__ Use this symbol to identify when the file was compiled. This symbol expands to the date
of compilation which is returned in the form "Mmm dd yyyy", for example "Nov 30
2003".

__FILE__ Use this symbol to identify which file is currently being compiled. This symbol expands
to the name of that file.

SAMS IAR C Compiler
120 Reference Guide

Predefined symbols ___4

__IAR _SYSTEMS_ICC__ This predefined symbol expands to a number that identifies the IAR compiler platform.
The current identifier is 5. Note that the number could be higher in a future version of
the product.

This symbol can be tested with #ifdef to detect that the code was compiled by a
compiler from IAR Systems.

__Iccsams__ This predefined symbol expands to the number 1 when the code is compiled with the
SAMS IAR C Compiler.

__LINE__ This predefined symbol expands to the current line number of the file currently being
compiled.

__LITTLE_ENDIAN__ This predefined symbol expands to O (false), as SAMS is big endian.

__STDC__ This predefined symbol expands to the number 1. This symbol can be tested with
#ifdef to detect that the compiler in use adheres to ISO/ANSI C.

__STDC_VERSION__ ISO/ANSI C and version identifier.

This predefined symbol expands to the number 199409L.

_TID__ Target identifier for the SAMS IAR C Compiler.

Included, but obsolete. In this version, the symbols CODE _MODEL __, CORE__,
__DATA MODEL__,and _ICCSAM8 _ are used instead.

__TiME__ Current time.

Expands to the time of compilation in the form hh:mm:ss.

__VER__ Compiler version number.

Expands to an integer representing the version number of the compiler.

Part 2. Compiler reference 121

Descriptions of predefined symbols

Example

The example below prints a message for version 3.34:

#if _ VER _ == 334
#pragma message ("Compiler version 3.34")
#endif

SAMS IAR C Compiler
122 Reference Guide

Intrinsic functions

This chapter gives reference information about the intrinsic functions.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into in-line code, either as a single instruction or as a short
sequence of instructions.

Intrinsic functions summary

The following table summarizes the intrinsic functions:

Intrinsic function Description
__disable_interrupt Disables interrupts

__enable interrupt Inserts an EI instruction
__get_interrupt_state Returns the interrupt state

__idle Inserts an idle instruction
__no_operation Generates a NOP instruction
__segment_begin Returns the start address of a segment
__segment_end Returns the end address of a segment
__set_interrupt state Restores the interrupt state
__stop Inserts a STOP instruction
__wait_for_ interrupt Inserts a WFI instruction

Table 35: Intrinsic functions summary
To use intrinsic functions in an application, include the header file intrinsics.h.
Note that the intrinsic function names start with double underscores, for example:

__enable interrupt

Part 2. Compiler reference 123

Descriptions of intrinsic functions

Descriptions of intrinsic functions

The following section gives reference information about each intrinsic function.

__disable_interrupt void __disable_ interrupt (void) ;

Disables interrupts by inserting the DI instruction.

___enable interrupt void _ enable_ interrupt (void) ;

Enables interrupts by inserting the EI instruction.

__get_interrupt_state istate_t __get_ interrupt_ state(void);

The return value is a target-specific value that specifies the current state of global
interrupts. For the simplest targets, it will only be the value of a global interrupt bit. The
only intended use for the return value is to be a parameter to

__set interrupt state(istate_ t), which will restore the interrupt state.

__idle wvoid __idle(void);

Inserts an idle instruction.

__no_operation void __no_operation(void) ;

Generates a NOP instruction.

___segment _begin __ segment begin (segment) ;

Returns the address of the first byte of the named segment. The named segment must
be a string literal that has been declared earlier with the #pragma segment directive.
See #pragma segment, page 115.

If the segment was declared with a memory attribute memattr, the type of the
__segment_begin function is pointer to memattr void. Otherwise, the type is a
default pointer to void.

SAMS IAR C Compiler
124 Reference Guide

Intrinsic functions ___4

Example
#pragma segment="MYSEG" __ huge
__segment_begin ("MYSEG")

Here the type of the _segment begin intrinsic function is void __huge *.

__segment_end __ segment end(segment) ;

Returns the address of the first byte after the named segment. The named segment
must be a string literal that has been declared earlier with the #pragma segment
directive. See #pragma segment, page 115.

If the segment was declared with a memory attribute memattr, the type of the
__segment_end function is pointer to memat tr void. Otherwise, the type is a default
pointer to void.

Example

#pragma segment="MYSEG" _ huge

__segment_end ("MYSEG")

Here the type of the _segment_end intrinsic function is void __huge *.

__set_interrupt state void __ set interrupt state(istate t);

Restores the interrupt status that was saved by __get interrupt state(void).

__stop void __stop(void);

Inserts a stop instruction.

__wait for interrupt void _ wait for_ interrupt (void) ;

Inserts a WFI instruction.

Part 2. Compiler reference 125

Descriptions of intrinsic functions

SAMS IAR C Compiler
126 Reference Guide

Library functions

This chapter gives an introduction to the C library functions. It also lists the
header files used for accessing library definitions.

For detailed information about the library functions, see the online
documentation supplied with the product.

The SAM8 IAR C Compiler provides one library: the IAR CLIB Library. The
list of header files provided by this library is presented in this chapter.

Introduction

One library is provided by the SAMS8 IAR C Compiler:

e IAR CLIB Library is the traditional C library used by IAR Systems. Basically it
implements the free-standing part of C. This library is not fully
ISO/ANSI-compliant.

IAR CLIB library

The SAM8 IAR C Compiler package provides most of the important C library
definitions that apply to embedded systems. These are of the following types:

e Standard C library definitions available for user programs. These are documented in
this chapter.

® CSTARTUP, the single program module containing the start-up code. It is described
in the Runtime environment chapter in this guide.

e Runtime support libraries; for example, low-level floating-point routines.

e Intrinsic functions, allowing low-level use of SAMS features. See the chapter
Intrinsic functions for more information.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. There are some I/O-oriented
routines (such as putchar and getchar) that you need to customize before using them
in your target application.

Part 2. Compiler reference

127

IAR CLIB library

128

SAMS IAR C Compiler
Reference Guide

HEADER FILES

The user program gains access to library definitions through header files, which it
incorporates using the #include directive. The definitions are divided into a number of
different header files each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do this can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY DEFINITIONS SUMMARY

This section lists the header files that may contain additional target-specific definitions.

Header file Description
assert.h Assertions.
ctype.h Character handling.
iccbutl.h Low-level routines.
math.h Mathematics.
setjmp.h Non-local jumps.
stdarg.h Variable arguments.
stdio.h Input/output.
stdlib.h General utilities.
string.h String handling.

Table 36: IAR CLIB Library header files

The following table shows header files that do not contain any functions, but specify
various definitions and data types:

Header file Description

errno.h Error return values.

float.h Limits and sizes of floating-point types.
limits.h Limits and sizes of integral types.

stddef.h Common definitions including size t, NULL,

ptrdiff t,and offsetof.

Table 37: Miscellaneous IAR CLIB Library header files

Library functions __4

RESTRICTIONS ON ANSI C LIBRARIES
The default data pointer cannot point to a variable on the stack when:

o the code model is small and the data model is large
o the code model is large and the data model is small.

When a program uses the default data pointer to point to a stack element, the compiler
will generate an error.

Because of this, the following C library functions:

log
printf
gsort
scanf
sinus
sprintf
sgrt
sscanf
tan

are not available in the following libraries:

clsam8sl.rl18
clsam8sle.rl8
clsam8xsl.rl8
clsamB8xsle.rl8
clsam8xrisl.rl8
clsam8xrisle.rl8
clsam8ls.rl8
clsam8xls.rl8
clsam8lse.rl8
clsam8xlse.rl8

Part 2. Compiler reference 129

IAR CLIB library

SAMS IAR C Compiler
130 Reference Guide

Diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber level[tag]: message

where £ilename is the name of the source file in which the error was encountered;
linenumber is the line number at which the compiler detected the error; level is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Severity levels

The diagnostics are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued but can be enabled, see --remarks, page 94.

Warning

A diagnostic that is produced when the compiler finds a programming error or omission
which is of concern but not so severe as to prevent the completion of compilation.
Warnings can be disabled by use of the command-line option - -no_warnings, see
page 92.

Error

A diagnostic that is produced when the compiler has found a construct which clearly
violates the C language rules, such that code cannot be produced. An error will produce
a non-zero exit code.

Part 2. Compiler reference

131

Severity levels

132

SAMS IAR C Compiler
Reference Guide

Fatal error

A diagnostic that is produced when the compiler has found a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the diagnostic has been issued, compilation terminates. A fatal error will
produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic can be suppressed or the severity level can be changed for all diagnostics
except for fatal errors and some of the regular errors.

See Options summary, page 77, for a description of the compiler options that are
available for setting severity levels.

See the chapter #pragma directives, for a description of the #pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler. It is produced using the following form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

Your license number

The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

Part 3. Migration and
portability

This part of the SAM8 IAR C Compiler Reference Guide contains the
following chapters:

e Migrating to the SAM8 IAR C Compiler V2.x
o Implementation-defined behavior

e IAR C extensions.

.ﬁhhhhhm

133

AT

134

Migrating to the SAMS8 IAR
C Compiler V2.x

C source code that was originally written for the SAM8 |IAR C Compiler V1.x
can also be used with the SAM8 IAR C Compiler V2.x, although some
modifications may be required.

This chapter very briefly describes issues to keep in mind when migrating from
VI.x to V2.x.

Differences

e V2.x is by default more strictly ISO/ANSI-compliant than V1.x.

o The following V1.x preprocessor functions are no longer supported in V2.x:

- using the sizeof () operator
- using floats in #1i f£-statements
- using all symbol names

o The following keywords in V1.x are supported in V2.x, but are prefixed with double
underscores:
code, fast, generic, interrupt, monitor, near, no_init, tiny, tiny2,
tinyp, tiny2p, and tiny func
For example, the keyword near in V1.x isnow __near in V2.x.

o The following #pragma directives in V1.x have a new syntax in V2.x:

#pragma The new syntax uses:

memory type attribute, object attribute, constseg, or dataseg
function type_attribute or object_attribute

warnings diag xxx, where xxx is one of suppress, remark, warning,
error, or default

codeseg location

Table 38: #pragma directives in V1.x with new syntax

Part 3. Migration and portability

135

Differences

136

SAMS IAR C Compiler
Reference Guide

o The following keywords/constructions in V1.x are no longer supported in V2.x:

sfr, sfrp Declaration of SFRs is done by using absolute declarations with the @ or
#pragma location syntax.

interrupt [nn] The vector number [nn] has to be declared using the
#pragma vector directive.

o The following files from V1.x need to be modified for use in V2.x:

- Linker files (the segment names are changed)
- Make files for the command line tools (the command line options are changed)

o The memory model is split into code and data model

o The V1.x assembler processor variant options, -v0 to -v5, have been changed to:

Vl.x assembler V2.x assembler
-v0 -v0
-vl -vo0
-v2 -v3
-v3 -vl
-v4 -vl
-v5 -v2
nfa -v4

Table 39: Assembler processor option mappings

o The V1.x compiler processor variant options, -v0 to -v5, have been changed to:

VI.x compiler V2.x compiler

-vo0 --core SAMS8

-v1l --core SAM8 --enable_eeprom_support
-v2 --core SAMS8XRI

-v3 --core SAMS8x

-v4 --core SAM8x --enable_eeprom_ support
-v5 --core SAM8XRC

n/a --core SAM8XRCRI

Table 40: Compiler processor option mappings

Migrating to the SAM8 IAR C Compiler V2.x __ 4

o The V1.x compiler memory model options, -ms and -m1, have been changed to:

VI1.x compiler V2.x compiler

-ms --code_model small --data_model small
(internal stack, internal data)

-ml --code_model_large --data_model_large
(external stack, external data)

nfa --code_model_small --data_model_large
(internal stack, external data)

nfa --code_model_large --data_model_small
(external stack, internal data)

Table 41: Compiler memory model option mappings

o A few other V1.x compiler options have been changed:

VI1.x compiler V2.x compiler

-h --generate_tinyfunc_runtime_ library calls
-u n/a

-E{wod} n/a

-3 n/a

Table 42: Other compiler option mappings

Part 3. Migration and portability 137

Differences

SAMS IAR C Compiler
138 Reference Guide

Implementation-defined
behavior

This chapter describes how IAR C handles the implementation-defined areas
of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment |:1994,
Technical Corrigendum [, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: IAR C adheres to a freestanding implementation of the ISO standard for
the C programming language. This means that parts of a standard library can
be excluded in the implementation.

Descriptions of implementation-defined behavior

This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)
IAR C produces diagnostics in the form:
filename, linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered;
linenumber is the line number at which the compiler detected the error; level is the
level of seriousness of the message (remark, warning, error, or fatal error); tag is a
unique tag that identifies the message; message is an explanatory message, possibly
several lines.

Part 3. Migration and portability 139

Descriptions of implementation-defined behavior

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

In IAR C, the function called at program startup is called main. There is no prototype
declared for main, and the only definition supported for main is:

int main(void)

To change this behavior, see Customizing cstartup.s18, page 48.

Interactive devices (5.1.2.3)

IAR C treats the streams stdin and stdout as interactive devices.
IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

IAR C treats identifiers with external linkage as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. In
IAR C, the source character set is the standard ASCII character set.

The execution character set is the set of legal characters that can appear in the execution
environment. In IAR C, the execution character set is the standard ASCII character set.
Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR BIT. The
standard include file 1imits.h defines CHAR BIT as 8.

SAMS IAR C Compiler
140 Reference Guide

Implementation-defined behavior ___¢

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way, i.e. using the same
representation value for each member in the character sets, except for the escape
sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant, generates a diagnostic and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character, generates a
diagnostic message.
Converting multibyte characters (6.1.3.4)

The current and only locale supported in IAR C is the ‘C’ locale.

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.
INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, O for positive and zero.

See Data types, page 61, for information about the ranges for the different integer types:
char, short, int, and long.

Part 3. Migration and portability 141

Descriptions of implementation-defined behavior

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length the bit-pattern remains the same, i.e. a large enough value will be converted into
a negative value.

Signed bitwise operations (6.3)
Bitwise operations on signed integers work the same as bitwise operations on unsigned
integers, i.e. the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)
The result of a right shift of a negative-valued signed integral type, preserves the
sign-bit. For example, shifting 0xFFo0 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 62, for information about the ranges and sizes for the
different floating-point types: £1loat and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded(up or down) to the nearest
suitable value.

SAMS IAR C Compiler
142 Reference Guide

Implementation-defined behavior ___¢

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 63, for information about size t in IAR C.

Conversion from/to pointers (6.3.4)

See Casting, page 63, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff _t, page 63, for information about the ptrdiff t in [AR C.
REGISTERS

Honoring the register keyword (6.5.1)

IAR C does not honor user requests for register variables. Instead it makes it own
choices when optimizing.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union get its value stored through a member and is then accessed using a member of
a different type, the result is solely dependent on the internal storage of the first member.

Padding and alignment of structure members (6.5.2.1)

See the section Data types, page 61, for information about the alignment requirement
for data objects in IAR C.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain’ int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the bitfield integer type chosen.

Part 3. Migration and portability 143

Descriptions of implementation-defined behavior

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.
DECLARATORS

Maximum numbers of declarators (6.5.4)

IAR C does not limit the number of declarators. The number is limited only by the
available memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

IAR C does not limit the number of case statements (case values) in a switch statement.
The number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain’ character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A "parent" file is the file that has the #include directive.
Instead, it begins by searching for the file in the directories specified on the compiler
command line.

SAMS IAR C Compiler
144 Reference Guide

Implementation-defined behavior ___¢

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename were enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized #pragma directives (6.8.6)
The following #pragma directives are recognized in IAR C:

alignment
ARGSUSED
baseaddr
bitfields
can_instantiate
codeseg
constseg
dataseg

define_ type_ info
diag_default
diag_error
diag_remark
diag_suppress
diag_warning
do_not_instantiate
function
hdrstop

inline
instantiate
language
location
memory

message

none

no_pch
NOTREACHED

Part 3. Migration and portability 145

Descriptions of implementation-defined behavior

object_attribute
once

optimize
__printf args
__scanf args
type_attribute
VARARGS

vector

warnings

For a description of the #pragma directives, see the chapter #pragma directives.

Default __DATE__and __TIME__ (6.8.8)

The definitions for _TIME and DATE _ are always available.
C LIBRARY FUNCTIONS

NULL macro (7.1.6)

The NULL macro is defined to (void *) 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
Assertion failed: expression, file Filename, line linenumber

when the parameter evaluates to zero.

Domain errors (7.5.1)

HUGE VAL, the largest representable value in a double floating-point type, will be
returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to £fmod () is zero, the function returns zero (it does not change
the integer expression errno).

signal() (7.7.1.1)
IAR C does not support the signal part of the library.

SAMS IAR C Compiler
146 Reference Guide

Implementation-defined behavior ___¢

Terminating newline character (7.9.2)

Stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written out to the stdout stream immediately before a newline
character are preserved. There is no way to read in the line through the stream stdin
that was written out through the stream stdout in IAR C.

Null characters appended to data written to binary streams (7.9.2)

There are no binary streams implemented in IAR C.

Files (7.9.3)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

remove() (7.9.4.1)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

rename() (7.9.4.2)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to print£ () is treated as
having the type 'char *'. The value will be printed as a hexadecimal number, similar
to using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts that into a value with the type 'void *'.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated explicitly as a - character.

Part 3. Migration and portability 147

Descriptions of implementation-defined behavior

File position errors (7.9.9.1, 7.9.9.4)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Message generated by perror() (7.9.10.4)

perror () is not supported in IAR C.

Allocating zero bytes of memory (7.10.3)

The calloc(),malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files, since
this is an unsupported feature in IAR C.

Behavior of exit() (7.10.4.3)

The exit () function does not return in IAR C.

Environment (7.10.4.4)

An environment is not supported in IAR C.

system() (7.10.4.5)

The system() function is not supported in IAR C.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument are:

Argument Message

EZERO no error
EDOM domain error
ERANGE range error
<0 || »99 unknown error
all others error No.xx

Table 43: Message returned by strerror()

SAMS IAR C Compiler
148 Reference Guide

Implementation-defined behavior ___¢

The time zone (7.12.1)

The time zone function is not supported in IAR C.

clock() (7.12.2.1)

The clock () function is not supported in IAR C.

Part 3. Migration and portability 149

Descriptions of implementation-defined behavior

SAMS IAR C Compiler
150 Reference Guide

IAR C extensions

This chapter describes IAR extensions to the ISO/ANSI standard for the C
programming language.

In the IAR Embedded Workbench™ IDE, language extensions are enabled by
default.

@ See the compiler options -e on page 85 and --strict_ansi on page 95 for
information about enabling and disable language extensions from the
command line.

Why should language extensions be used?

By using language extensions, you gain full control over the resources and features of
the target microcontroller, and can thereby fine-tune your application.

If you want to use the source code with different compilers, note that language
extensions may cause minor modifications before the code can be compiled. A compiler
typically supports microcontroller-specific language extensions as well as
vendor-specific ones.

Descriptions of language extensions

The language extensions can be categorized into different groups according to their
functionality.

Memory, type, and object attributes

Entities such as variables and functions may be declared with memory, type, and object
attributes. The syntax follows the syntax for qualifiers—such as const—but the
semantics is different.

o A memory attribute controls the placement of the entity. There can be only one
memory attribute.

e A type attribute controls other aspects of the object. There can be many different
type attributes and they must be included when the object is declared.

o An object attribute only has to be specified at the definition but not at the
declaration of an object.

See the Extended keywords chapter for a complete list of attributes.

Part 3. Migration and portability 151

Descriptions of language extensions

Absolute placement

The operator @ or the directive #pragma location can be used for specifying either the
location of an absolute addressed variable or the segment placement of a variable or
function. For example:

no_init int x @ 0x1000;

void test(void) @ "MYOWNSEGMENT"

{
}

_Pragma

The preprocessor operator _Pragma can be used in defines and has the equivalent effect
of the pragma directive. The syntax is:

_Pragma ("string")
where string follows the syntax for the corresponding pragma directive. For example:

#if NO_OPTIMIZE

#define NOOPT _Pragma ("optimize=2")
#else

#define NOOPT
#endif

See the chapter Pragma directives.

Variadic macros

Variadic macros are the preprocessor macro equivalent to printf£ style functions.

Syntax
#define P(...) __VA ARGS_ _
#define P(x,y,...) X + Yy + VA ARGS

Here, va ArGS _ will contain all variadic arguments concatenated together,
including the separating commas.

Example

#if DEBUG

#define DEBUG_TRACE(...) printf (S, _VA ARGS__)
#else

#define DEBUG_TRACE(...)
#endif

SAMS IAR C Compiler
152 Reference Guide

IAR C extensions ___o

DEBUG_TRACE ("The value is:%d\n",value);
will result in:

printf ("The value is:%d\n",value) ;

Inline assembler

Inline assembler can be used for inserting assembler instructions into the generated
function. This is seldom needed since almost all can be expressed in C with the help of
intrinsic functions.

The syntax for inline assembler is:
asm("LD R4,R7") ;

In strict ISO/ANSI mode the use of inline assembler is disabled.

C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;
__ALIGNOF__

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, say four, it must be stored on an address
that is dividable by four.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction but only
when the memory read is placed on an address dividable by 4. Then 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment the
alignment for a 4-byte 1ong integer might be 2.

A structure type will inherit the alignment from its components.

All objects must have a size that is a multiple of the alignment. If is not true, only the
first element of an array would be placed in accordance with the alignment
requirements.

In the example below, the alignment of the structure is 4, under the assumption that 1ong
has alignment 4. Its size is 8, even though only 5 bytes are effectively used.

Part 3. Migration and portability 153

Descriptions of language extensions

struct str {
long a;
char b;

In standard C, the size of an object can be accessed using the sizeof operator.

The ALIGNOF _ operator can be used to access the alignment of an object. It can take
two forms:

® ALIGNOF__ (type)
® ALIGNOF _ (expression)

In the second form the expression is not evaluated.

Anonymous structs and unions

C++ includes a feature named anonymous unions. The IAR Systems compilers allow a
similar feature for both structs and unions.

An anonymous structure type (i.e. one without a name) defines an unnamed object (and
not a type) whose members are promoted to the surrounding scope. External anonymous
structure types are allowed.

For example, the structure str below contains an anonymous union. The members of
the union are accessed using the names b and c, for example obj . b.

Without anonymous structure types the union would have to be named—for example
u—and the member elements accessed using the syntax obj.u.b.

struct str

int a;
union

{
int b;
int c¢;

1

}i

struct str obj;

Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR extensions
any integer type and enums may be used.

For example, in the following structure an unsigned char is used for holding three
bits. The advantage is that the struct will be smaller.

SAMS IAR C Compiler
154 Reference Guide

IAR C extensions ___o

struct str

{

unsigned char bitOne : 1;
unsigned char bitTwo : 1;
unsigned char bitThree : 1;

i
This matches G.5.8 in the appendix of the ISO standard, ISO Portability Issues.

Incomplete arrays at end of structs

The last element of a st ruct may be an incomplete array. This is useful since one chunk
of memory can be allocated for the st ruct itself and for the array, regardless of the size
of the array.

Note: The array may not be the only member of the st ruct. If that were the case, then
the size of the st ruct would be zero, which is not allowed in ISO/ANSI C.

Example

struct str

{

char a;
unsigned long bl[];

}i

struct str * GetAStr(int size)

{

return malloc (sizeof (struct str)
+ sizeof (unsigned long) *size) ;

}

void UseStr(struct str * s)

{
}

The struct will inherit the alignment requirements from all elements, including the
alignment of the incomplete array. The array itself will not be included in the size of the
struct. However, the alignment requirements will ensure that the struct will end exactly
at the beginning of the array; this is known as padding.

s->b[10] = 0;

In the example above the alignment of struct str will be 4 and the size is also 4.
(Assuming a processor where the alignment of unsigned long is 4.)

Part 3. Migration and portability 155

Descriptions of language extensions

156

SAMS IAR C Compiler
Reference Guide

The memory layout of struct str is:

a pad pad pad
byte byte byte

First long element of b

Second long element of b

Arrays of incomplete types

An array may have an incomplete st ruct, union, or enum type as its element type. The
types must be completed before the array is used (if it is), and by the end of the
compilation unit if it is not.

Empty translation units

A translation unit (source file) is allowed to be empty, i.e. it does not contain any
declarations.

In strict ISO/ANSI mode a warning is issued if the compilation unit is empty.

Example

The following source file is only used in a debug build. (In a debug build the NDEBUG
preprocessor flag is undefined.) Since the entire content of the file is conditionally
compiled using the preprocessor, the translation unit will be empty when the application
is compiled in release mode. Without this extension, this would be considered an error.

#ifndef NDEBUG

void PrintStatusToTerminal ()

{
}

#endif

/* Do something */

IAR C extensions ___o

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless strict ISO/ANSI mode is used. This language extension exists to support
compilation of old legacy code; we do not recommend you to write new code in this
fashion.

Example

#ifdef FOO
something

#endif FOO /* This is allowed but not recommended. */

Forward declaration of enums

The IAR Systems language extensions allow that you first declare the name of an enum
and later resolve it by specifying the brace-enclosed list.

Extra comma at end of enum list

Itis allowed to place an extra comma at the end of an enum list. In strict ISO/ANSI mode
a warning is issued.

Note: ISO/ANSI C allows extra commas in similar situations, for example after the last
element of the initializers to an array. The reason is that it is easy to get the commas
wrong if parts of the list are moved using a normal cut-and-paste operation.

Example

enum

{

kOne,
kTwo, /* This is now allowed. */

}i
Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a st ruct or union specifier is missing.

NULL and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C some operators allow such things,
while others do not allow them.

Part 3. Migration and portability 157

Descriptions of language extensions

A label preceding a "}"

In ISO/ANSI C, a label must be followed by at least one statement. Hence it is illegal to
place the label at the end of a block. In the SAMS8 IAR C Compiler, a warning is issued.

To create a standard-compliant C program (so that you will not have to see the warning)
you can place an empty statement after the label. An empty statement is a single ;
(semi-colon).

Example

void test ()

{

if (...) goto end;
/* Do something */

end: /* Illegal at the end of block. */

}

Note: This also applies to the labels of switch statements.
The following piece of code will generate the warning.

switch (x)

{

case 1:
A

break;

default:

}

A good way to convert this into a standard-compliant C program is to place a break;
statement after the default: label.

Empty declarations

An empty declaration (a semicolon by itself) is allowed but a remark is issued (provided
that remarks are enabled).

This is useful when preprocessor macros are used that could expand to nothing.
Consider the following example. In a debug build the macros DEBUG_ENTER and
DEBUG_LEAVE could be defined to something useful. In a release build, however, they
could expand into nothing, leaving the ; character in the code.

void test ()

{

DEBUG_ENTER () ;

SAMS IAR C Compiler
158 Reference Guide

IAR C extensions ___o

do_something () ;

DEBUG_LEAVE () ;
}
Single value initialization

ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions should be enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is issued.

Example
In the SAMS8 IAR C Compiler, the following expression is allowed:
struct str
{
int a;
} x = 10;
Casting pointers to integers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it.

In the example below we assume that pointers to __near and __huge are 16 and 24
bits, respectively. The first initialization is correct since it is possible to cast the 16-bit
address to a 16-bit unsigned short variable. However, it is illegal to use the 32-bit
address of b as initializer for a 16-bit value.

__near int a;

__huge int b;
unsigned short ap = (unsigned short)&a; /* Correct */
unsigned short bp = (unsigned short)&b; /* Error */

Casting integers to pointers and back in constant expressions

In constant integer expressions, it is allowed to cast an integer to a pointer and back.

Hexadecimal floating point constants

Floating point constants can be given in hexadecimal style. The syntax is

0xMANTp{ +| - } EXP where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and ExP is the exponent with decimal digits, representing an
exponent of 2.

Part 3. Migration and portability 159

Descriptions of language extensions

Examples
0x1p0is 1

0xA.8p218 10.5*2"2

Taking the address of a register variable

In ISO/ANSI C it is illegal to take the address of a variable specified as a register
variable.

The SAMS8 IAR C Compiler allows this but a warning is issued.

Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

"long float" means "double"

long float is accepted as synonym for double.

Repeated typedefs

Redeclarations of typedef that occur in the same scope are allowed, but a warning is
issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and no
warning will be produced.

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).Itis also
allowed to compare and take the difference of such pointers.

Declarations in other scopes

External and static declarations in other scopes are visible. In the following example the
variable y can be used at the end of the function, even though it should only be visible
in the body of the if statement. A warning is issued.

SAMS IAR C Compiler
160 Reference Guide

IAR C extensions °

int test (int x)

{

if (x)

{

extern int y;
y = 1;

}

return y;

}

Non-lvalue arrays

A non-1lvalue array expression is converted to a pointer to the first element of the array
when it is used.

Part 3. Migration and portability 161

Descriptions of language extensions

SAMS IAR C Compiler
162 Reference Guide

A

absolute location.c.o i 17
#ipragmalocation............. 113
addressing. See memory types
alignment 61
anoNyMmMOUS SIIUCTULES oottt et e et ee e 18
applications
building 3
intializing 47
terminating.ovutt e 48
architecture, SAMS. Xiii
ARGFRAME (compiler function directive) 35
arrays
hints. . ..o 56
implementation-defined behavior. 143
asm (inline assembler) 6
assembler directives
CFEL ..o 33,50
ENDMOD 49
EQU. ... 94
MODULE ...t 49
PUBLIC.o e 94
REQUIRE o 49
RSEG. ... oo 49
RTMODELt 26
assembler instructions
DL . 124
El. .o 124
NOP. ... 124
WAIT. .o e 125
assembler labels
PC EXIT .o 53
7C_GETCHAR 53
7C_PUTCHAR i 53
assembler language interface 25
creating skeletoncode 31
assembler listfile 35
assembler routines, calling fromC 31

Index __4

assembler,inline. 6, 58
assert.h (library header file) 52,128
assumptions (programming eXperience) xiii
atomic operations, performing 103
autovariables 11-12

saving stack Spacec. ... 56
_ _bankn (extended keyword)., 102
BANKO_A (segment)vniternininnenenan.. 66
BANKI_A(segment)ouuuiininininenennn.. 67
bitfields

data representation. 62

hints. ... 56

implementation-defined behavior. 143
bitfields (#pragma directive).................... 62,110
_ _CODE_MODEL._ _ (predefined symbol). 120
_ _CORE_ _ (predefined symbol). 120
Ccallingconvention.c.cuuiinnenenn.. 27
C library

general definitions 51

introduction 51
callchains.......... 56
call frame information 33,50
call stack. 33

displaying i 50
callee-save registers, stored on stack. 12
calling convention

C o 27
calloc (standard library function) 14
CALLT _C(segment)c.uueumununenenenan.. 67
casting, of pointers and integers 63
CFI (assembler directive) 33,50
char (data type), signed and unsigned. 62,79
characters, implementation-defined behavior 140

163

164

CLIB. 127
documentation 127
headerfiles. 128
heapsizeo 44
library objectfiles 127

code
excluding when linking 49
placementof L i 65
portability 38
SEATTUD &« o v vt vttt e 45

_ _code (extended keyword) 102

codeexecution 4

codemodels 4,7
characteristics 7
default 7
large. . ..o 7,21
OVEIVIEWttt 21
small 7,21
specifying on command line 79

code motion, disabling 90

CODE (Segment)c.oeueuenenenennenenn 45,67

--code_model (compiler option) 79

_ _code_model (runtime model attribute) 27

common sub-expression elimination, disabling 90

compiler environment variables 77

compiler error return codes. 77

compiler listing, generating. 88

compiler object file
including debug information 81,94
specifying filename 92

compiler options
SELHNE . oottt 75
specifying parameters 76
SUMIMALY © ¢ vov et e e et et et e e e e eee e ann 77
typographic convention XVi
S 80
T 85
S P 86

SAMS IAR C Compiler
Reference Guide

P 87
P 32,88
S0 92
e S 81, 94
S e 95
/A 96
--char_is_signed. 79
-—code-model L il 79
SCOT . ottt e e e e 80
-—-data_model il 81
——debug. ... 81,94
--dependencies. i 82
--diagnostics_tables L oL, 84
——diag error 83
--diag_remark i 83
--diag_SUPPIESS .. v vt 84
-—diag_warning.l 84
--enable_eeprom_support., 85
--enable_multibytes oL L. 85
--generate_tinyfunc_runtime_library_calls 86
--header_context 87
-library module 89
--migration_preprocessor_extensions. 89
--module_name 89
--no_code_motion 90
FTI0_CSE e vt e e e e e e 90
—no_dnline 91
—no_unroll. 91
SSNO_WAIMINGS .« o vv ettt et 92
--no_wrap_diagnostics. 92
S—OME_EYPES. « o v e vttt et 93
——only_stdout 93
--place_constants_in_rom 93
SPIEPIOCESS . o v v v vt et et e e 93
—public_equ.......... 94
—remarks ... 94
—silent ... 95
—SHEACE_ANST . o oot 95
--warnings_affect_exit_code 77,96

--Warnings_are_EIrorS o.vuvenenenenen.n. 96
compiler versionnumber L. 121
compiling, from the command line.................... 3
computer style, typographic convention XVi
ConfiguIation.ovtntt e 7
consistency, module 25
CONST (segment)vuiriininenenenenann. 67
constseg (#pragma directive), 110
conventions, typographic XVvi
COpyright NOtICe oottt ii
--core (compileroption) L. 80
core, specifying on command line. 80
CSTACK (segment)c.uuieiinenenenennnn. 68

example 43

See also stack
CSTACKN (segment)oovvvni e 68

example 43
CSTACK2 (segment)c.ouvevenenenenenannn 68

example 43
cstartup, CuStomizingeuoenen... 48, 50-51
estartup.SI18. 47
ctype.h (library header file). 52,128
CUStOMUZALIONottt ettt 7

CSEATTUD ..ottt 48, 50-51

_dow level dnit.......... 48
C-SPY, low-level interface 53
7C_EXIT (assembler label). 53
7C_GETCHAR (assembler label).................... 53
C_INCLUDE (environment variable).............. 77, 87
7C_PUTCHAR (assemblerlabel).................... 53
--data_model (compileroption) 81
_ _DATA_MODEL_ _ (predefined symbol)........... 120
data

alignmentof............ L . 61

excluding when linking 49

placementof 65

Index __4

Specifyingcoi i 7
data memory, specifying. i 7
data models
characteristics L. 7
memory attribute, default. 8
pointer size, default L 8
datarepresentation 61
data Storage. 4,11
extended keywords. oL 100
datatypes . .« ov e 61
floatingpoint 62
INEEEETS © o v v vttt et e e e e 61
dataseg (#pragma directive) 111
_ _data_model (runtime model attribute) 27
_ _DATE_ _ (predefined symbol) 120
--debug (compiler option). 81, 94
debug information, including in objectfile.......... 81,94
declaration, of functions 27
declarators, implementation-defined behavior 144
--dependencies (compiler option) 82
DI (assembler instruction). 124
diagnostic MESSAZES . . . oottt 131
classifyingaserrors, 83
classifying asremarks 83
classifying as warnings 84
disabling warnings. 92
disabling wrappingof, 92
enablingremarks oL 94
SUPPIESSING .« . o v vttt et et 84
diagnostics, listing allused 84
--diagnostics_tables (compiler option) 84
diag_default (#pragma directive) 111
--diag_error (compileroption) 83
diag_error (#pragma directive) 111
--diag_remark (compiler option). 83
diag_remark (#pragma directive) 112
--diag_suppress (compiler option) 84
diag_suppress (#pragma directive) 112
--diag_warning (compiler option). 84

165

166

diag_warning #pragma directive) 112
directives

function 35
HPragma. . ..ottt 5, 109
_disable_interrupt (intrinsic function) 124
disclaimer. ii
document CONVENtONS.o vvvi e i e XVi
documentation, library 127
double (datatype)......... ... 62
dynamic memoryo 14

E

eeprom support

specifying on commandline 85
EI (assembler instruction). 124
--enable_eeprom_support (compiler option). 85
_ _enable_interrupt (intrinsic function). 124
--enable_multibytes (compiler option) 85
ENDMOD (assembler directive). 49
enumerations, implementation-defined behavior. 143
enum, data representationa..... 61
environment
implementation-defined behavior. 140
TUNLIME. © o\ttt et e e e e et e e e s 47
environment variables. 77
CINCLUDE. 77, 87
QCCSAMS . .. 77
EQU (assembler directive)cooveiina... 94
errno.h (library header file). 53, 128
EITOT MESSAZES .« o oot v vt e et e e e et 131
classifying 83
EITOT TetUIN COAES . . . vt o vttt e 77
EXCEPHON VECIOIS . .o\ v vttt et e enn 45
EXPerience, Programmingcuerenenenn... xiii
extendedkeywordsol 99
data storage 100
enabling. 85
functions i 101

SAMS IAR C Compiler
Reference Guide

overriding default behaviors. 8
OVEIVIEWttt 5
SUMMATY « e vov et e tee et e et ee e eeen e 99

13 117 GO P 101
USINE .« oe ettt et e e e 100
bankn L 102
code ... 102

fast ... 102
__GBNETIC .ottt e 102
_Nterrupt L. 22,102
using in #pragma directives. 116-117
_Ntrinsic. 103

L _MONIEOT . .ottt 103
using in #pragma directives. 116

1 A 104
CNO_INIt. ot 16, 105
using in #pragma directives. 113

TOOL . o vttt e et e e 105

using in #pragma directives. 113

Y o« 105
151017 o TP 106
CHNYPD . 106
_tiny_func. 106
Y2 106
CHNY2D e 106
HNy2pn ..o 107

-f (compileroption). i 86
_ _fast (extended keyword). L. 102
fastfunctions. L i 22
fatal error messages 132
_ _FILE_ _ (predefined symbol). 120
file dependencies, tracking 82
file paths, specifying for #include files................ 87
filename, of objectfile, 92
float (data type).o v it 62

floating-point constants

hexadecimal notation. 159
floating-point format. L L. 62
hints. 56
implementation-defined behavior. 142
special cases. 63
32-DIts oo 62
float.h (library header file) 53, 128
formats
floating-point values 62
standard IEEE (floating point) 62
fragmentation, of heapmemory 14
free (standard library function) 14
FUNCALL (compiler function directive) 35
function directives. i i 35
function inlining, disabling 91
function prototypes.coven i 55
function type information, omitting in object output. 93
FUNCTION (compiler function directive) 35
functions
declaring 27
EXECULING . o vttt e e e 11
extended keywords. Lol 101
faSt. oo 22
INEEITUPL .« oottt et e e e 21-22
INMINSIC « o vt e e 6,58
VO . 51
1001071V 170] o 22
omitting typeinfo L .. 93
OVETVIEW . ettt ettt et e et et e ie e e e 21
PArAMELerSot 28
placinginsegmentsot 23
TECUISIVE. « .t ve ettt ettt e e e ie e e e 56
storing dataonstack 12-13
return values from L L oL 29
special function types.c. ... 21

Index __4

G

--generate_tinyfunc_runtime_library_calls

(compileroption) i 86
_ _generic (extended keyword). 102
_ _get_interrupt_state (intrinsic function)............. 124
gloSSary. . . vt xiii
guidelines, reading, xiii
headerfiles........... 52
assert.h.......... 52,128
CLIB ... e 128
ctypeh. ..o 52,128
errnoh 53,128
floath. 53,128
iccbutlh. ... o o 52,128
limits.h. . ..o oo 53,128
mathh ... 52,128
sejmp.h. 52,128
special functionregisters 18
stdarg.h L 52,128
stddefh ... 53,128
stdioh ... 52,128
stdlibh.. ... o 52,128
string.h. ... 52,128
using as templates 18
--header_context (compiler option). 87
heap 14
SIZE. . ot 44
storingdata 11
hidden parameters. 28
hints
00T Fa 210 10 | LU P 135
OptMIZAtON. . ..o vt 57
PrOgrammingooveveneneneneneennnennn. 55

167

168

-I (compileroption). i 87
IAR CLIB Library. See CLIB
IAR Technical Support................ 132
_ _IAR_SYSTEMS_ICC_ _ (predefined symbol) 121
iccbutlh (library header file). 52,128
_ _ICCSAMS_ _ (predefined symbol) 121
identifiers, implementation-defined behavior 140
_ _idle (intrinsic function) 124
IEEE format, floating-point values 62
implementation-defined behavior 139
initialization, modifying cstartup 50-51
inlineassembler, 6, 58
See also assembler language interface
inline (#pragma directive)., 112
input functions, in standard library 51
instruction set, SAMS xiii
Nt (datatype) . ..o v et e 61
INEEZEIS -« v e ettt e et e e e 61
CaStINE . o vttt e 63
implementation-defined behavior. 141
111 015 AP 63
ptrdiff_t. 63
SIZE L.ttt 63
10T 01013 ol P 64
internal error. o 132
_ _interrupt (extended keyword) 22,102
using in #pragma directives 116-117
interrupt functions. L oLl 21
placementin memory. 45
interrupt vectortable. L L L. 22
INTVECsegmentouuienenon... 68
interrupt vectors, specifying with #pragma directive. 117
interrupts
disabling i 103
disabling during function execution. 22
PrOCESSOT STALE . . . v o vttt et e e 12
INtPtr_t (INLEZET LYPL) - v v v o e e et e e e e 63

SAMS IAR C Compiler
Reference Guide

intrinsic (extended keyword) 103

intrinsic functions L L L ool 58
OVEIVIEWttt 6
SUMMATLY . e v e vetetee et e e e e e eaenen 123
_ _disable_interrupt 124
__enable_interrupt 124
__get interrupt_state. 124
_dle 124
_ _NO_OPETation . . . v v v ettt 124
__segment_begin 124

_osegment_end. 125
__set_interrupt_state.t 125
SO e e e e 125
_wait_for_interrupt. 125
intrinsics.h (header file) 123
INTVEC (segment). . ..ot 45, 68
ISO/ANSI C
language extensions. i 151
specifying strict usagec.ouiieninn... 95
I/Ofunctions. 51
keywords, extended. 5,99
-1 (compiler option). il 32, 88
language extensions
anonymous structs and unions 19
descriptionst 151
enabling. 85
OVEIVIEWttt 5
using anonymous structures and unions. 19
language (#pragma directive) 112
large (codemodel) 7,21
large (datamodel). i i 8
libraries. 3
TUNGIME. . .ottt e e e 8

library documentation. 127
library functions i i 127
SUMMATY « o v v vttt ettt ee e eeene 52,128
library modules, creating 89
library object files, CLIB 127
--library_module (compiler option) 89
limits.h (library header file) 53, 128
_ _LINE_ _ (predefined symbol) 121
linker configuration files
CONENLS .« . v vv et ettt et e et 39
CUSIOMIZING .« . vttt 39-45
Introductionc. i 38
template. 38
linking, from the command line 4
listing, generatingutii i 88
literature, recommended, XV
_ _LITTLE_ENDIAN_ _ (predefined symbol)......... 121
location (#pragma directive) 17,23, 113
LOCFRAME (compiler function directive) 35
long (datatype).cooovrininn i 61
loop unrolling, disabling. 91
low-level processor operations 6, 123
_ _low_level_init, customizing 48
macros
variadic 152
malloc (standard library function). 14
math.h (library header file) 52,128
memory
accessmethods. i 14
ACCESSING . o\ vttt ettt e e 4
AynamicC.oi i e 14
heap.t 14
non-initialized 16
RAM, Savingot vt 56
stack. ... 11
stack, saving. 56

Index __4

SEALIC ..ttt 11, 13
used by executing functions. 11
used by global or static variables 13
MEMOTY TYPES - « - e e oe et e e e e e e eeen 13-14
SITUCTULES & ¢ . v ettt e et e e e e 16
SUMMATY © e vov et ete ettt e e ee e eeen e 15
message (#pragma directive). 113
migration
from SAMS IAR C Compiler V1.xto V2.x...... 89, 135
--migration_preprocessor_extensions (compiler option). . . 89
module consistency. 25
module name, specifying 89
MODULE (assembler directive). 49
modules, assembler. 49
--module_name (compiler option) 89
_ _monitor (extended keyword) 103
using in #pragma directives 116
monitor functions 22,103
multibyte character support., 85
name, specifying for objectfile. 92
_ _near (extended keyword) 104
NEAR_C(segment)cuuuirnunininenenan.. 69
NEAR_I(segment).ouuuiununininenenan.. 69
NEAR_ID (segment)ouuuiunininenennn.. 69
NEAR_N(segment)c.uuininnnninnenennn.. 69
NEAR_Z (segment)cuuuirninininenenan.. 70
non-initialized variables 16
non-scalar parameters. 56
NOP (assembler instruction). 124
--no_code_motion (compiler option) 90
--no_cse (compileroption) 90
_ _no_init (extended keyword) 16, 105
using in #pragma directives 113
--no_inline (compiler option) 91
_ _no_operation (intrinsic function) 124
--no_unroll (compileroption) 91

169

170

--no_wrap_diagnostics (compiler option) 92
NULL. ..o e 53,128
-0 (compileroption) i 92
object filename, specifying. 92
object module name, specifying 89
object_attribute (#pragma directive) 16, 113
offsetof 53,128
--omit_types (compiler option) 93
--only_stdout (compiler option) 93
operators, @ 17,23
optimization
code motion, disabling. 90
common sub-expression elimination, disabling 90
function inlining, disabling 91
hints.o ot 57
loop unrolling, disabling 91
size, specifying il 96
speed, specifying L 95
techniques i 4,56
typesandlevels L. 57
optimize (#pragma directive) 114
options summary, compiler. 77
output functions, in standard library 51
OULPUL, PIEPIOCESSOL & . v v v ve et e et e et e eeeeenen s 93
parameters
function L i 28
hidden o i 28
non-scalar L L i 56
TEZISIET . . o v vttt e 28
specifying ... 76
Stack. 28
typographic convention XVi

SAMS IAR C Compiler
Reference Guide

Permanent regisSters. . . . oo v v v vt 29
placeholder segments 38
placementof codeanddata. 65
--place_constants_in_rom (compiler option). 93
pointers
CASHING .« o v e vt et e e 63
implementation-defined behavior. 143
sizeof 63
using instead of large non-scalar parameters 56
porting,of code. 38
containing #pragma directives 110
_Pragma (preprocessor operator) 152
predefined symbols
backward compatibility 119
OVEIVIEWttt 5
SUMMATY .« e v e vet et et et e et e e eeeaene 119
__CODE_MODEL_ _c.coiiiiiiinn... 120
__CORE_ _. . i 120
__DATA_MODEL_ _.............coiiii... 120
__DATE_ ... 120
__FILE ... 120
_ _JAR SYSTEMS_ ICC_ _ iiat. 121
__ICCSAMS_ _ . 121
C LINE_ 121
_ _LITTLE ENDIAN_ _.......c.oiiiniinnn.n. 121
_ STDC_ e 121
__STDC_VERSION_ _, 121
L TID . 121
CTIME_ oo 121
__VER 121
--preprocess (compileroption) 93
preprocessing directives
implementation-defined behavior. 144
PIeprocessor OULPUL. . . .o v v v e et e et ee e 93
preprocessor symbols 51
defining 80
preprocessor, extending.l 89
prerequisites (programming experience). xiii
processor operations, low-level. 6,123
programming experience, required Xiii

Index __4

programming hints oL, 55 RSEG (assembler directive) 49
ptrdiff_t (integertype). 53,63, 128 RTMODEL (assembler directive) 26
PUBLIC (assembler directive) 94 rtmodel (#pragma directive) 115
--public_equ (compiler option) 94 _ _rt_version (runtime model attribute). 27
runtime environment.o.vuve et 47
Q runtime libraries 8
introductionc.. i 127
QCCSAMS (environment variable). 77 Naming CONVention. 8
qualifiers, implementation-defined behavior. 144 SUMMALY . ovvvee e 9
runtime model attributes L oL 25
__code_model......... i 27
R __datamodel 27
-r (compileroption).o 81,94 S PLVEISION .. 21
RAM memory, saving., 56
reading guidelines. i xiii S
reading, recommended XV
realloc (standard library function). 14 -s (compiler option) 95
recursive functions Lol 56 SAMS
storing data on stack 12-13 architectureot xiii
reference information, typographic convention. Xvi code execution. ... 4
TeISer PATAMELESo\ o\ oo e e 28 INSIUCHON SEL. .« v v v et e e e e e e xiii
registered trademarks oL ii MEMOTY dCCESS. . ..o 4
registers SAMS IAR C Compiler
assigning to parametersueunan... 28 migrating from VIxto V2x................. 89,135
callee-save, stored on StaCK ovreerennn ... 12 SCratCch registersovt it 29
implementation-defined behavior. 143 segment parts, unused. ... 49
PEIMANENLottt e e e 29 segment types, in XLINK. ... 38
SCIALCh . ..ottt 29 segment (#pragma directive)., 115
remark (diagnostic message). 131 SEEMENLS . . . vttt e et e 65
Classifyingo 83 introductionc.. i 37
enabling 94 placeholder 38
--remarks (compiler option) 94 SUMIMALY . .vvvvvtve e 65
REQUIRE (assembler directive). 49 BANKO_A. .. 66
required (#pragma directive). 115 BANKI_A.......ooooo 67
RESET (SEZMeNnt)o vvvee e 45,70 CALLT_C ... 67
return values, from functions 29 CODE ...t 45, 67
_ _root (extended keyword) 105 CONST .. 67
using in #pragma directives 113 CSTACK ... 68
routines, time-critical 6,123 example. ... 43

171

172

CSTACKN. 68

example. 43
CSTACK2 ..o 68
example. 43
INTVEC ... 45, 68
NEAR C ... 69
NEAR L. ... oo 69
NEAR ID ... 69
NEAR No 69
NEAR Z ... 70
RESET. ... o 45,70
TINYPiLN. ... 73
TINYP_N .. 72
TINY I .o 70
TINY_ID ... 70
TINY_N. o 71
TINY Z. .o 71
TINY2PiN 73
TINY2P_N .. 73
TINY2 L .o 71
TINY2ID ..o 71
TINY2 N o e 72
TINY2 Z. oo 72

_ _segment_begin (intrinsic function). 124
_ _segment_end (intrinsic function) 125
semaphores, Operations onc...... 103
setjmp.h (library header file). 52,128
_ _set_interrupt_state (intrinsic function) 125
severity level, of diagnostic messages................ 131
specifying 132
SFR (special function registers) 18
shortregistermode 79
short (datatype)coviuiiniinnnnnenenn .. 61
signed char (datatype) 61-62
specifying 79
--silent (compiler option) 95
silent operation, specifying. 95
size optimization, specifying. 96
size_t (Integertype)c.oeueunnnn.. 53,63, 128

SAMS IAR C Compiler
Reference Guide

skeleton code, creating for assembler language interface . .31

small (codemodel) 7,21
small (datamodel) 8
source files
listallreferred i n... 87
special function registers (SFR) 18
special function types i 21
OVEIVIEW . e\ttt ettt e e e 5
speed optimization, specifying 95
StacK . .. 11
advantages and problems using 12
contents Of 12
functionusagel 11
internaldata.......... il 68
SAVING SPACE. + « v v v ettt e e 56
SIZE. vt e e 44
stack parameters 28
stack pointerot 12
standard €ITor 93
standard output, specifying. 93
StArtupP COde. . . v v v 45
See also RESET
SEArtuP, SYStEIM & . o\ vttt et e 47
statements, implementation-defined behavior. 144
N F1HTo8 11155 1110) o /20U 11,13
stdarg.h (library header file) 52,128
STDC _ (predefined symbol)................... 121
_STDC_VERSION_ _ (predefined symbol) 121
stddef.h (library header file) 53,128
SEACIT. . ottt e 93
stdio.h (library header file) 52,128
stdlib.h (library header file). 52,128
SEAOUL .« .\t 93
_ _stop (intrinsic function) 125
--strict_ansi (compiler option). 95
string.h (library header file) 52,128
structure types
alignment. 64
layout. 64

structures

ANONYIMOUS. « « .« v v ete e et e e e et e e e 18

implementation-defined behavior. 143

placing in memory type 16
Support, Technical 132
symbols

predefined

overviewof i L 5

preprocessor, defining L 80
syntax, extended keywords L L. 101
SYSEM STATtUP . « o v v ettt e 47
System terminationvuvevunenenenenn. 48
Technical Support, IAR 132
Terminal I/O window, in C-SPY 53
termination, SYStem.ottt 48
terminology. . .. oot xiii
32-bit (floating-point format) 62
_ _TID_ _ (predefined symbol). 121
_ _TIME_ _ (predefined symbol) 121
time-critical routines. 6, 123
_ _tiny (extended keyword). 105
_ _tinyp (extended keyword). 106
TINYPi_N(segment)couuinenunnenenen.. 73
_ _tinypn (extended keyword). 106
TINYP_N (segment).ooiuninenennnnennn.. 72
_ _tiny_func (extended keyword) 106
TINY_I(segment).o.vuinininenanenennnn.. 70
TINY_ID (segment)c.vvnninnineenennn... 70
TINY_N(segment).ouuenenenenennenennn.. 71
TINY_Z(Segment)o.vuuinenenenannnnnnnn.. 71
_ _tiny2 (extended keyword). 106
_ _tiny2p (extended keyword). 106
TINY2Pi_N(segment)cvuninenennnnenen.. 73
_ _tiny2pn (extended keyword). 107
TINY2P_N (segment).ovuenenenenaneenenen.. 73
TINY2_I(segment).ouueenenenennnnennn.. 71

Index __4

TINY2_ ID (segment)ovvenennnnninenenan.n 71
TINY2 N (segment).couuiunininenenennn.. 72
TINY2 Z(segment)c.ouiuiunnninenenennn.. 72
tipS, ProOgramming. o.vvn vt e et e 55
trademarks L L ii
translation, implementation-defined behavior. 139
trap vectors, specifying with #pragma directive 117
type information, omitting 93
type_attribute (#pragma directive) 116
typographic conventions Xvi
uintptr_t (INteer type)ovvvvnn e 64
unions
ANONYIMOUS. .« .ottt et ettt et e et e e 18
implementation-defined behavior. 143
unsigned char (datatype) 61-62
changing tosignedchar............ 79
unsigned int (data type). 61
unsigned long (datatype) 61
unsigned short (datatype)............... 61
variable type information, omitting in object output. 93
variables
AULO . ottt 11-12, 56
defined inside afunction, 11
global
placementinmemory 13
local. See auto variables
non-initialized o L L 16
omitting typeinfo 93
placing at absolute addresses 17
placing in named segments 17
placinginsegments 17
static, placement in memory 13
vector (#pragma directive) 22,117

173

VER_ _ (predefined symbol) 121

version, of compiler L L L. 121
WAIT (assembler instruction). 125
_ _wait_for_interrupt (intrinsic function) 125
WAIMINGZS . ¢ . oottt e e et e 131

classifying 84

disabling 92

eXitCode. . ..ot 96
--warnings_affect_exit_code (compiler option) 77
--warnings_are_errors (compiler option) 96
XLINK segment typescueuenenennnnennn.. 38
-z (compileroption) i 96

Symbols

#include files, specifying 87
#pragma direCtivest 5
bitfields 62,110
COMSESEZ .+ oot ettt ettt e e 110
dataseg. . .ot e 111
diag_default. L. 111
diag error 111
diag_ remark. i 112
diag SUPPIESS. . o\ vttt e 112
diag_ warningt 112
Ilneo 112
language.o 112
location, 17,23,113
INESSAZE « .« vt ee ettt e e 113
object_attribute 16,113

SAMS IAR C Compiler
174 Reference Guide

OPHMUIZE vttt e 114
overriding default behaviors. 8
required 115
rtmodel. 115
SEEMENL .« . v\ vttt ettt e e e 115
SUMMATLY « e v e vetete e et e e e e e e 109
13 117 G P 110
type_attribute. 116
VECHOT . vttt et e e e s 22,117
-D (compileroption). i 80
-e (compileroption) i 85
-f (compileroption). 86
-I (compileroption). i 87
-1 (compiler option). i 32, 88
-0 (compileroption)c. i 92
-r (compiler option). 81,94
-s (compiler option) i 95
-z (compileroption) i 96
--char_is_signed (compiler option). 79
--code_model (compileroption) 79
--core (compiler option) 80
--data_model (compileroption) 81
--debug (compiler option). 81,94
--dependencies (compiler option) 82
--diagnostics_tables (compiler option) 84
--diag_error (compileroption) 83
--diag_remark (compiler option). 83
--diag_suppress (compiler option) 84
--diag_warning (compiler option). 84
--enable_eeprom_support (compiler option). 85
--enable_multibytes (compiler option) 85
--generate_tinyfunc_runtime_library_calls
(compiler option)c.o.iiiiiii 86
--header_context (compiler option). 87
--library_module (compiler option) 89
--migration_preprocessor_extensions (compiler option). . . 89
--module_name (compiler option) 89
--no_code_motion (compiler option) 90
--no_cse (compileroption) 90
--no_inline (compileroption) 91

--no_unroll (compileroption) 91
--no_warnings (compiler option) 92
--no_wrap_diagnostics (compiler option) 92
--omit_types (compiler option) 93
--only_stdout (compileroption) 93
--place_constants_in_rom (compiler option). 93
--preprocess (compiler option) 93
--remarks (compileroption) 94
--silent (compiler option) 95
--strict_ansi (compiler option). 95
--warnings_affect_exit_code (compiler option) 77,96
--warnings_are_errors (compiler option) 96
?C_EXIT (assemblerlabel). 53
?7C_GETCHAR (assemblerlabel). 53
?7C_PUTCHAR (assemblerlabel).................... 53
@ (OPETaAtOL) . o v v v et ettt e e et 17,23
_ _bankn (extended keyword). 102
_ _code (extended keyword) 102
_ _code_model (runtime model attribute) 27
_ _CODE_MODEL_ _ (predefined symbol). 120
_ _CORE_ _ (predefined symbol). 120
_ _data_model (runtime model attribute) 27
_ _DATA_MODEL_ _ (predefined symbol)........... 120
_ _DATE_ _ (predefined symbol)................... 120
_ _disable_interrupt (intrinsic function) 124
_ _enable_interrupt (intrinsic function). 124
_ _fast (extended keyword). oL 102
_ _FILE_ _ (predefined symbol). 120
_ _generic (extended keyword) 102
_ _get_interrupt_state (intrinsic function)............. 124
_ _IAR_SYSTEMS_ICC_ _ (predefined symbol) 121
_ _ICCSAMS_ _ (predefined symbol) 121
_ _idle (intrinsic function) 124
_ _interrupt (extended keyword). 22,102

using in #pragma directives 116-117
_ _intrinsic (extended keyword) 103
_ _LINE_ _ (predefined symbol) 121
_ _LITTLE_ENDIAN_ _ (predefined symbol)......... 121
_ _low_level_init, customizing 48

Index __4

_ _monitor (extended keyword) 103

using in #pragma directives 116
_ _near (extended keyword) 104
_ _no_init (extended keyword) 16, 105

using in #pragma directives 113
_ _no_operation (intrinsic function) 124
_ _root (extended keyword) 105

using in #pragma directives 113
_ _rt_version (runtime model attribute). 27
_ _segment_begin (intrinsic function). 124
_ _segment_end (intrinsic function) 125
_ _set_interrupt_state (intrinsic function) 125
_ _STDC_ _ (predefined symbol). 121
_ _STDC_VERSION_ _ (predefined symbol) 121
_ _stop (intrinsic function) 125
_ _TID_ _ (predefined symbol). 121
_ _TIME_ _ (predefined symbol) 121
_ _tiny (extended keyword). oLl 105
_ _tinyp (extended keyword). L. 106
_ _tinypn (extended keyword). 106
_ _tiny_func (extended keyword) 106
_ _tiny2 (extended keyword). 106
_ _tiny2p (extended keyword). 106
_ _tiny2pn (extended keyword). 107
_ _VER_ _ (predefined symbol) 121
_ _wait_for_interrupt (intrinsic function) 125
_Pragma (preprocessor operator) 152

Numerics

32-bit (floating-point format) 62

175

SAMS IAR C Compiler
176 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Further reading

	Document conventions
	Typographic conventions

	Part 1. Using the compiler
	Introduction
	Building applications
	Compiling
	Linking

	Data storage
	Code models
	Optimization techniques
	IAR language extension overview
	Special function types
	Extended keywords
	#pragma directives
	Predefined symbols
	Intrinsic functions
	Inline assembler

	Runtime libraries

	Customization
	Code model
	Data model
	Runtime library

	Data storage
	Stack, static, and heap memory
	The stack and auto variables
	Advantages
	Potential problems

	Static memory
	Dynamic memory on the heap
	Potential problems

	Memory access methods and memory types
	Memory access methods
	Memory types

	Structures and memory types
	Non-initialized memory
	Located variables
	Absolute location placement
	Segment placement
	Accessing special function registers

	Anonymous structs and unions

	Functions
	Code models
	Special function types
	Interrupt functions
	Fast functions
	Monitor functions

	Segment placement

	Assembler language interface
	Introduction
	Runtime model attributes
	Specifying runtime attributes
	Predefined runtime attributes

	Calling convention
	Function declarations
	Function parameters
	Register parameters versus stack parameters
	Hidden parameters
	Register parameters
	Stack parameters

	Returning a value from a function
	Return value pointer

	Permanent versus scratch registers
	Return location
	Examples

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Call frame information
	Function directives
	Syntax
	Parameters
	Description

	Segments and memory
	What is a segment?
	Linker segment type
	Placeholder segments

	Placing segments in memory
	The contents of the linker configuration file
	Customizing a linker configuration file

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Tiny
	Tiny2
	The linker configuration file

	The stack
	Stack size

	The heap
	IAR CLIB Library

	Located data

	Code segments
	Startup code
	Normal code
	Exception vectors

	Runtime environment
	The cstartup.s18 file
	System startup
	System termination

	_�_low_level_init
	Customizing cstartup.s18
	Modules and segment parts
	Segment parts, REQUIRE, and the falling-through trick

	Call frame information
	Modifying the cstartup.s18 file
	In the IAR Embedded Workbench
	From the command line

	Input and output
	Library object files
	Header files

	Library definitions summary
	C-SPY debugger interface
	The debugger terminal I/O window
	Termination

	Programming hints
	General programming hints
	Function prototypes
	Examples

	Bitfields
	Arrays

	Floating-point types
	Saving stack space and RAM memory
	Optimization techniques
	Specifying the optimization type and level
	Optimization hints

	Part 2. Compiler reference
	Data representation
	Alignment
	Data types
	Integer types
	The enum type
	Char type
	Bitfields

	Floating-point types
	32-bit floating-point format
	Special cases

	Pointers
	Size
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout

	Segment reference
	Summary of segments
	Descriptions of segments
	BANK0_A
	Linker segment type
	Memory range

	BANK1_A
	Linker segment type
	Memory range

	CALLT_C
	Linker segment type
	Memory range

	CODE
	Linker segment type
	Memory range

	CONST
	Linker segment type
	Memory range

	CSTACK
	Linker segment type
	Memory range

	CSTACK2
	Linker segment type
	Memory range

	CSTACKN
	Linker segment type
	Memory range

	INTVEC
	Linker segment type
	Memory range

	NEAR_C
	Linker segment type
	Memory range

	NEAR_I
	Linker segment type
	Memory range

	NEAR_ID
	Linker segment type
	Memory range

	NEAR_N
	Linker segment type
	Memory range

	NEAR_Z
	Linker segment type
	Memory range

	RESET
	Linker segment type
	Memory range

	TINY_I
	Linker segment type
	Memory range

	TINY_ID
	Linker segment type
	Memory range

	TINY_N
	Linker segment type
	Memory range

	TINY_Z
	Linker segment type
	Memory range

	TINY2_I
	Linker segment type
	Memory range

	TINY2_ID
	Linker segment type
	Memory range

	TINY2_N
	Linker segment type
	Memory range

	TINY2_Z
	Linker segment type
	Memory range

	TINYP_N
	Linker segment type
	Memory range

	TINYPi_N
	Linker segment type
	Memory range

	TINY2P_N
	Linker segment type
	Memory range

	TINY2Pi_N
	Linker segment type
	Memory range

	Compiler options
	Setting command line options
	Specifying parameters
	Specifying environment variables
	Error return codes

	Options summary
	Descriptions of options
	--char_is_signed
	--code_model
	--core
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	-e
	--enable_eeprom_support
	--enable_multibytes
	-f
	--generate_tinyfunc_runtime_ library_calls
	--header_context
	-I
	-l
	--library_module
	--migration_preprocessor_ extensions
	--module_name
	--no_code_motion
	--no_cse
	--no_inline
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-o
	--omit_types
	--only_stdout
	--place_constants_in_rom
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	-s
	--silent
	--strict_ansi
	--warnings_affect_exit_code
	--warnings_are_errors
	-z

	Extended keywords
	Summary of extended keywords
	Using extended keywords
	Data storage
	Syntax

	Functions
	Syntax

	Descriptions of extended keywords
	_�_bankn
	_�_code
	Maximum object size

	_�_fast
	_�_generic
	_�_interrupt
	_�_intrinsic
	_�_monitor
	_�_near
	Maximum object size

	_�_no_init
	_�_root
	_�_tiny
	Maximum object size

	_�_tiny_func
	_�_tiny2
	Maximum object size

	_�_tinyp
	Maximum object size

	_�_tiny2p
	Maximum object size

	_�_tinypn
	Maximum object size

	_�_tiny2pn
	Maximum object size

	#pragma directives
	Summary of #pragma directives
	Descriptions of #pragma directives
	#pragma bitfields
	#pragma constseg
	#pragma dataseg
	#pragma diag_default
	#pragma diag_error
	#pragma diag_remark
	#pragma diag_suppress
	#pragma diag_warning
	#pragma inline
	#pragma language
	#pragma location
	#pragma message
	#pragma object_attribute
	#pragma optimize
	#pragma required
	#pragma rtmodel
	#pragma segment
	#pragma type_attribute
	#pragma vector

	Predefined symbols
	Summary of predefined symbols
	Descriptions of predefined symbols
	_�_CODE_MODEL_�_
	_�_CORE_�_
	_�_DATA_MODEL_�_
	_�_DATE_�_
	_�_FILE_�_
	_�_IAR_SYSTEMS_ICC_�_
	_�_ICCSAM8_�_
	_�_LINE_�_
	_�_LITTLE_ENDIAN_�_
	_�_STDC_�_
	_�_STDC_VERSION_�_
	_�_TID_�_
	_�_TIME_�_
	_�_VER_�_

	Intrinsic functions
	Intrinsic functions summary
	Descriptions of intrinsic functions
	_�_disable_interrupt
	_�_enable_interrupt
	_�_get_interrupt_state
	_�_idle
	_�_no_operation
	_�_segment_begin
	_�_segment_end
	_�_set_interrupt_state
	_�_stop
	_�_wait_for_interrupt

	Library functions
	Introduction
	IAR CLIB library
	Library object files
	Header files
	Library definitions summary
	Restrictions on ANSI C libraries

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Part 3. Migration and portability
	Migrating to the SAM8 IAR C Compiler V2.x
	Differences

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized #pragma directives (6.8.6)
	Default _�_DATE_�_ and _�_TIME_�_ (6.8.8)

	C library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR C extensions
	Why should language extensions be used?
	Descriptions of language extensions
	Memory, type, and object attributes
	Absolute placement
	_Pragma
	Variadic macros
	Inline assembler
	C++ style comments
	_�_ALIGNOF_�_
	Anonymous structs and unions
	Bitfields and non-standard types
	Incomplete arrays at end of structs
	Arrays of incomplete types
	Empty translation units
	Comments at the end of preprocessor directives
	Forward declaration of enums
	Extra comma at end of enum list
	Missing semicolon at end of struct or union specifier
	NULL and void
	A label preceding a "}"
	Empty declarations
	Single value initialization
	Casting pointers to integers
	Casting integers to pointers and back in constant expressions
	Hexadecimal floating point constants
	Taking the address of a register variable
	Duplicated size and sign specifiers
	"long float" means "double"
	Repeated typedefs
	Mixing pointer types
	Non-top level const
	Declarations in other scopes
	Non-lvalue arrays

	Index

