IAR C/C++ Development Guide
Compiling and Linking

for the Renesas
SH Microcomputer Family

:
by
R
P
:

©IAR

DSH-2 SYSTEMS

COPYRIGHT NOTICE
Copyright © 1999-2013 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of AR Systems. While the information contained
herein is assumed to be accurate, [AR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, I-jet, I-scope, IAR, and the logotype of IAR Systems are trademarks
or registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Technology Corporation. SH is a
trademark of Renesas Technology Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: October 2013

Part number: DSH-2

This guide applies to version 2.x of IAR Embedded Workbench® for SH.

The IAR C/C++ Development Guide for SH replaces all versions of the SH IAR C/C++
Compiler Reference Guide and the IAR Linker and Library Tools Reference Guide

Internal reference: M2/M14, 1JOA.

Brief contents

TADIES ..o 25
Preface ... 27
Part |. Using the build tools ... 33
Introduction to the |AR build tools ... 35
Developing embedded applications ... 41
Data STOrAZE ..ot 55
FUNCLIONS ..o 63
Linking using ILINK ... 71
Linking your application ... 81
The DLIB runtime environment ... 93
Assembler language interface ... 125
USING € ot 143
USING CHa s 153
Application-related considerations ... 161
Efficient coding for embedded applications ... 169
Part 2. Reference information ... 187
External interface details ... 189
ComMPIler OPLIONS ... 199
LINKEI OPLIONS ... 231
Data repreSENtationiiiriirrriereeereresessesssssssessessssssssessesssseee 249

Extended keywords ... 261

4

IAR C/C++ Development Guide
Compiling and Linking for SH

Pragma dir€CtiVES ...t 275

INtriNSIC fUNCLIONScoov e 295
TRE PreProCeSSOr ... 301
Library fUNCHONS ... 307
The linker configuration file ... 315
Section reference ... 337
AR ULIIIEIES ..o ssssssssssssssssssssssssssenssnnenns 347
Implementation-defined behavior ..., 377
INAEX e 393

Contents

TABIES ..o 25
PrEface ... 27
Who should read this guide ..., 27
How to use this guide ... 27
What this guide contains ... 28
Other documentation
Further readingccccoeeveviirininiiniininicicececccctces e
Document conventions ...t 30
Typographic CONVENTIONSceueruerueruirreriiereeeeiieietetete st sie e seeneeenean 31

Naming conventions

Part |. Using the build tools ... 33
Introduction to the IAR build tools ..., 35
The IAR build tools—an overviewc.ccocovevevvvvececeienn 35

TAR C/CH+ COMPILLT ..ottt 35
TAR ASSEMDIET ...oooviiiniiiiiiiieee ettt e 36
The IAR ILINK LINKET ...occvvieiiiiiiiiiieeecereceeeee et 36

Specific ELF tools

EXternal toolSccoviieiiiiiiieiee e e

IAR language overview

DevVice SUPPOItooooviiiiiiiiee s
Supported SH devices
Preconfigured support filesocceveeeieiirienininicicicieeecce 38
Examples for getting startedccceceeeeieieeiieiienieieieneseeneeeeee 38

Special support for embedded systemsc.cccocccvenirinnnaee 39
Extended KeyWOrdsccoeiverinininininiiciieieicrceeneesesenceeeneen 39
Pragma dir€Ctivesccoceoveirieiniciieicireeereeeeee s 39
Predefined symbolScccooveireiieiiineieeeee e 39
Special function LYPeSc..coceververirerieieieieiereresteretesiesresre e ae 39

Accessing low-level featurescoccoeeveeiereeiieieiienienieneseneseneeeen 40

Developing embedded applications ... 41

Developing embedded software using IAR build tools 41
Mapping of internal and external memoryccccccooevrenciinncnne 41
Communication with peripheral Unitsccceevevierierienenieneneneenens 42

Event handling ...

SYSIEIM STATTUP .evenvenrenrirenrerierieeiteiteiteeresre st st stesresre vt sttt saessesnesnens
Real-time operating SYStEIMSccecveueereienierienienienieieseesesiesieneeeneas 42
The build process—an overview ..., 43
The translation PrOCESSceeeerrereeerererierieierererenese s seesreenees 43
The linKing ProCessccoveverierereriinieneereeeeiteitetetete st s e eeeas 44
After linking
Application execution—an overview ..., 46
The initialization Phaseccccoceveeiieieiienineneneneeeeeeeeee 46
The eXeCUtiON PRASEceevvireireeriinieniieieeieete ettt 50
The termination Phasec.cceceeveeeeenierererieninineeeeeeeeserereresnene 50
Building applications—an overview ... 50
Basic project configuration
COTE s
Data MOdEL ... s 51
Code MOELooveiiiiciiieicic e

Size of double floating-point type

Optimization for speed and size

RuUNtime environmentceceeceeeeieueeieienienieieieieie st se e seeseeeneas
Data STOrAZE ...t 55
INtroduction ... 55
Different ways to Store datac.cceceveeeeeeneenienienienienieneneneneneenen 55
Data models ... 56
Specifying a data modelccocevveiiviininininnnncae 56
Memory types ...
Datall oo e
Data20 ..oooiiiiie e
Data28 ...c.oiiiiiie e 57
Data32 .ot 58

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

Using data memory attributes

Structures and memory types

MOTE EXAMPIES ...eveniinieniiniinieniesieeteet ettt s ere s
CH++ and Memory types ...
Auto variables—on the stack ...,
The SEACK ..euiiiiiieteeeet et
Dynamic memory on the heap

FUNGCLIONS .ottt st e e eeen 63

Function-related extensions ... 63
Code models and memory attributes for function storage 63
Using function memory attributescceveverienienienienenenenenennens 64

Primitives for interrupts, concurrency, and OS-related

PrOSFaMIMIUNG ..ottt 65
Interrupt fUNCHONS ...ouveuieiirinieeiceie ettt 65
Trap fUNCHONS ...cooiiiiiiiiiiriiecceecec e 66
Monitor fUNCHONScooiiiiiiiiiiiici s 66
C++ and special function typescccceveeerereenieeineimneneeeseeeenes 69
Linking using ILINK ... 71
Linking—an oVerview ...
Modules and sections ...
The linking Process ...
Placing code and data—the linker configuration file 74
A simple example of a configuration fileccccecvevienincncnininn. 75
Initialization at system startup ... 77
The initialization process
C++ dynamic initialiZationcceeeververeereeneerie e 78
Linking your application ... 81
Linking considerations ... 81
Choosing a linker configuration filecccoocerevenenenenieniennennene 81
Defining your OWn Memory areasceceeeeeeveeeuereeruerieneneneseenens 82

Placing sections

Reserving space in RAMccociiiiiiniiiniiieeeeeese e 84

8

IAR C/C++ Development Guide
Compiling and Linking for SH

Keeping modules

Keeping symbols and SECHIONSccceeceeeeieieieienenienienienenenenenne 85
APPLICAtION SLATTUP ...envenvinieeeirtesieeieeiieie ettt erea 86
Setting up the StACKcceveririiiiiiceieeee e 86
Setting up the heapccccoevererinininiiiieececeeecee e 86
Setting up the ateXit itcccooeveeieiiiiiiieeeeseeeee
Changing the default initialization
Interaction between ILINK and the applicationcccceevvenienuennene 89
Standard library handlingcoceeveiieneninenineneneneeeeeeee 90
Producing other output formats than ELF/DWAREFc........... 90
Hints for troubleshooting ... 90
RELOCALION EITOTS ..ottt 90
The DLIB runtime environment ... 93
Introduction to the runtime environmentcccocccceee. 93
Runtime environment functionalityc.cccccecevevenenencnicnenencenens 93
Setting up the runtime enVIroNMEeNtccceecveevevvererrenenienenenenrenne 94

Using a prebuilt library

ChooSIng @ lIDIaryccccoeeeviririinininicececectetectce e
Groups of library files
Customizing a prebuilt library without rebuildingccccoeeenee. 96
Choosing formatters for printf and scanf ... 97
Choosing printf formatterc..cccocvvvevierienenenenenenencneneneneenen 97
Choosing scanf fOrmatterc..ccoceeeereiineneienieieeneeeeee s 98
Application debug support ..., 99
Including debug SUPPOTLc.ccerueruiruieiiriiiiiiiiereictcrenese e 99
The debug library functionalitycccceceeveevienienienenenienenencnene 100
The C-SPY Terminal I/O windowccccceiviiniiniiiiiiin. 101
Overriding library modules ... 101
Building and using a customized library ... 103
Setting up a library project
Modifying the library functionalityc..ccccecceverveririineeniencncnennene 103
Using a customized libraryccccoccevevevenenienieneneneeeeeereeieens 104

Contents _¢

System startup and termination ..., 104
SYSIEIM STATTUP .eevvenrenrinienieriene sttt ettt et see e bbb v e 104
System termMiNationc.ccecererererieriereeeeieeeeet ettt ere s 106

Customizing system initialization ... 107
__low_level_init ... 107
Modifying the file CStartup.Sccoceeveieierienierereneniee e 108

Library configurations
Choosing a runtime configurationccceevvererenenenerrenveneneene 108

Standard streams for input and output ... 109
Implementing low-level character input and outputccc.c...... 109

Configuration symbols for printf and scanf 111
Customizing formatting capabilitiescoceeverererenenierienienenene 112

File input and output

Locale ...
Locale support in prebuilt librariescocceceevevverenneerienenenennns 113
Customizing the locale SUPPOITc.eeveieuierierierierienerienenerenenene 114
Changing locales at runtimecceceeveeienienienieniencneneneneneneene 115

Environment interaction ... 115

THMIE oottt
SErtod ...
Assert ...
AULEXIT ...
Hardware SUPPOrt ... s 118
Managing a multithreaded environmentc.......... 118
Multithread support in the DLIB libraryccccccooiiiniininn. 118
Enabling multithread SUPPOTTcccccueveiiciininenenininenerererenene 119
TLS in the linker configuration filecccoovevererenienienienienenene 123
Checking module consistency ..o 123
Runtime model attributesccocoeiviiiininiiiiis 123
Using runtime model attributesccccoevererienieninineeeeneeneenieene 124

Assembler language interface ... 125

Mixing C and assembler ... 125
Intrinsic fUNCONSccociiiiiiiiiiiiiiic e 125
Mixing C and assembler modulescccceeevuevienienienenienienienenene 126

Inline assembIerccocceoieuiriiiiniiirccere e 127
Calling assembler routines from C ... 128
Creating SKeleton COAEcecieviriririeieienienenenienienie et 128
Compiling the Codeccooieiiiiiniiiieiccecceeee e 129
Calling assembler routines from C++ ... 130
Calling convention ...
Function declarations
Using C linkage in C4+ source codec..oeveverenenenenierereneene 132
Preserved versus SCratch registersc..eoveverererenenenenienieneneene 132
Function entrancec..ocoeeeerieenenieeneineneeeseere e enes 133

Function exit

EXAMPIES ..ottt

Calling functions

Call frame information ... 138

CFI AITECLIVES ..vvieiveieiitieteeteetee ettt sttt st 138

Creating assembler source with CFI supportcccccccvenecnicnennee 139

USING C ottt 143
C language OVErVIEW ... 143
EXteNnsioNs OVEFVIEW ... 144
Enabling 1anguage eXtensionsccceceeiereerieriesienienenenienieneneens 145

IAR C language eXtensionsccocoooviienininnsieee s 146
Extensions for embedded systems programmingc..cocceceverueene 146

Relaxations to Standard Cccoceiiieiieiinenenieniceene e 148

USING CHr it 153
OVEIVIEW ...ttt ettt 153
Standard Embedded CH++ ... 153

Extended Embedded CH+ooueeiieiiriiiiiiiieieeieecie e 154

Enabling C4+ SUPPOTTeevvireireieiieiieiieiieiietienteiesiesieieiesaesiesiesieeieene 154

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

Feature descriptions ..o 155
CLASSES ..eveniiriieeiteteieiettte et ettt ettt ettt bbb e s s st 155
FUNCHON EYPES .eeveiniiniiieiiieriecteeeeeei ettt s 156
TEMPLALES ...eeevieiiiieieietete ettt e e s 156
Variants Of Cast OPETALOLSc.ceceeuieuieureieienienienienienrene e e eeseeeieene 157
MULADIE ..ottt e e
Namespace
The STD Namespacecccceceeieeeieieieieiereieiesreresre e e e seenieene 157
Using interrupts and EC++ deStructorsc.coocevererenienenrensenenene 157

C++ language eXtensions ... 158

Application-related considerations ... 161

Output format considerationsccocoooeiiiiinicnne, 161

Stack considerations ... 161
Stack size conSIderationsc..coceeeeieriereenienienienieneseeeeeeeeieeneeaes 162

Heap considerations ..o 162

Interaction between the tools and your application 163

Checksum calculation ...

Calculating a checkSumcccoceevieieieiiiiininieeccencceeee

Adding a checksum function to your source code

Things t0 TEMEMDETc..eoviruiririeiieiieiieiieiiee e
C-SPY considerationscccceeiieviiiniiininiieiciieiiececeseneees
Efficient coding for embedded applications ... 169
Selecting data types ... 169
Using efficient data typescccoeeeeeeueerecineneenieeeesise e 169
Floating-point types
Alignment of elements in a SLIUCIUTEcc.eevevuevuererrerienienienieneneene 170
Anonymous structs and UNIONSceeeeeviereenieniesienienieneneneneneene 171
Controlling data and function placement in memory 173
Data placement at an absolute 10cationcccceevevevenerverccnenene 174
Data and function placement in SECLiONSccuevververiererierienenene 175

Controlling compiler optimizations
Scope for performed OptimiZationsc.ceceecvevevecvecienenenenenenne

Optimization IEVELScecercereririiieieeereee e

Speed versus size

Fine-tuning enabled transformationsc..cecceceeevenenerccrscnennne 178
Facilitating good code generation ..., 181
Writing optimization-friendly source codec..c.ccocevererienvernencne 181
Saving stack space and RAM memoryccccceevevenenenencnencne. 182
FUNCHON PIOtOLYPES ..c.vevveiiiienieieieiiieeteette ettt

Integer types and bit negation
Protecting simultaneously accessed variablescocceceeveerernnncne 183
Accessing special function registerscooevevererererienrenienieneene 184

Non-initialized variablescccccooviieiieeiieieiecceece e 185

Part 2. Reference information ... 187

External interface detailS ...t 189

INVOCAtion SYNtAXoccooooiiiiiiiie s
Compiler iInVOCation SYNEAXccceeeueerieieriereenienierenienreneneseseneeene
ILINK inVOCAtiON SYNLAX ...eeveeveeuieuieiieiienieiientenieniesieseeseesiesesessesneene
Passing OPHONSc.cooueieiiniiniiniiiieieiieeet ettt
Environment variablesccccoiiiiiii
Include file search procedure ...,
Compiler OUtPUL ...
ILINK OULPUL ..o
DiIagnoStiCSoooiiiieic s
Message format for the compiler
Message format for the linkerccccceevenenineninincncninicneneene
SEVETILY LIEVEIS .ueiiiiiiiierieierect e

Setting the severity 1evelc.ccoooiviiiiininininininnceeee

Internal eITOr ..o
ComPIler OPLIONS ... 199

OPLioNS SYNEAXc.oooviiiiiiicc s 199
TypPes Of OPLIONSccuevieiiiiieiiricice et 199
Rules for specifying parameterscccccceverererenenenienienieneneene 199

Summary of compiler options ... 202

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

Descriptions of options ... 204
1080 ettt 205
==Char_iS_SIZNEd ...cooeruiriiiiiiiieieec e 205
-—char_iS_unSignedc..coceeververirinieienieeee e 205
-=c0de_MOdelcccoeviiiiininii e 205

“=IAZ_BITOL ..ottt 209
—-diag_remark ..o 209
“=dIAZ_SUPPIESS .eevureuienierierieriestirierie ettt ettt se e b e ere s 210
—=d1aZ_WATNINE ..covveireiriienienenentnrceet ettt 210
--diagnoSticS_tabIesccocerereriiriinieeiieeeeeeee e 210
--discard_unused_publiCsc.ccecererienieniinieiiieieeeseeie e 211
S=0lD e 211
==dlID_CONTIG ettt 212
==dOUDIE ..o 212
S€ ettt 213
SmBCHF ittt ettt ettt b et et e bbbttt b e h bbb 213
SmBECHF it e 213
--enable_alternative_register_allocatorc..ccccoceeveveeenenenenncnne. 214
--enable_multibytes
==€TTOT_IIMIE ..o
e
==UATA_CALS .ueiiiiiiiicieree s
—-header_CONEXLoccoiviiiiiiiiiiiiiccc s
L e
L ettt e
ST s
=NO_CIUSTETING .ottt
=-110_COAE_IMOLION ..vvvviiiiiiiieeciiiieeeeeee et e e ear e e e s eaaae e s e
STTIO_CSE wetevivieniareteteit sttt ettt

--no_fragments ...

=NO_INIINE .o
--n0_path_in_file_mMacrosc..cecevereereereinieniinieieneneseeceeeieeeeene 219
=-NO0_SChEAULING ..ottt 220
--NO_SIZ€_CONSITAINESc.ooviuiiiiiiiiiiiiieiieieie s 220
--NO_SYSteM_IiNCludecocevveririiniiiiiiiiieecceee e 220
--no_tbaa

--no_typedefs_in_diagnostiCsccccevereenieniiniiniinininenineneenenes 221
=NO_UNTOIL oo e 222
“NO_WAITHNZS wueeutenieieienienienienterteneeeteese et estestesteseestestenbebenbenseseesnes 222
--NO0_WIAP_dIAZNOSHICS ..evveriiriiriiriiriieiieteteietcrcteere e 222
SO ettt 223
“=ONLY_SEAOUL ..eviiiiiieiiiierte ettt 223
SmOULPUL, =0 ettt st st sttt er et ettt esa e st sa e bbb ereenee 224
—-predef_MACTOS ..o.coviuiiiiiiiieteie ettt e 224
--preinclude

--preprocess

--public_equ

-—quad_align_labelsccoviirininiiiiiiiicc e 226
—1elAXEd_fP oo 226
SmTEIMATKS .eevtitieieiieeitei ettt ettt se bbb bt ettt e 227
“—TEQUITE_PIOLOLYPES evveververierieriiriirieereentententententeseeneeseessesesessessesnes 227
S=SHENT L 227

--strict

SmVIA e
--warnings_affect_exit_codeccccoemirineninininiininceee 229
“=WAININZS_AT€_CITOTS .e.eeverueruerueruirueereetetenreseresessessessessessessessesnes 229
LINKEr OPLIONS ... 231
Summary of linker options ... 231
Descriptions of options ... 233
“=CONTIZ ettt 233

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

--config_def

==CPP_INIE_TOULING ..ovvirvineireiieriteiieiieiteiteeet ettt sre bbb ere e 234
2=deDUZ_IID v 234
-—define_SYmDbOlLccccoiiiiniiniiiiieiee e 235
==dePENAENCIES ...c.veuviriiiiriirieieriirircetetet e 235
“=IAG_ETTOL ..ouiiieieieieierte ettt st
--diag_remark

==d1AZ_SUPPIESS ..everriririerierierieritritnitertete sttt eresre e ere e 237
==d1aZ_ WAIMINE .eeveieiiienienere sttt sbe e 237
--diagnoStCS_tabIEscc.ceeriririiriiieieeee e 237

“sTMO_TEIMIOVE ..evvvieiieeeeieeieeeeeeeeeaeeeeeesaeeeeesssasaeesensatesssasssesesssaseessnnnnes 244
“SNO_WAITINEZS wovvenvenietiienienienienitrienieertetesteteaessessessessesnessessessessesacs 244
=-NO_WIAP_dIaZNOSHICS ...ovverueriiriiriirieerieteteiereteteste st ere e 244
“=ONLY_SEAOUL ..euiiiiiieiiiieniese ettt 244
SmOULPUL, =0 ettt nte st sttt er ettt et st sa e bbb enes 245
=-place_hOIdETcoeoveriiriiriiiiiiiececc e 245
B (1411 1 o A OO OSSP OU RPN 246
STEMATKS .o 246

ALIZNMENT ..o 249
Alignment on the SH miCroprocessorc..coceceeveeveeneneeerueennes 249
Basic data types ...
INEEEET LYPES -vvviiniiieietitiett ettt st
Floating-point tYPEScvevvereereerereniieiieiieiieeeieie et sie e seenieene
POINtEr LYPES ...
Function pointers
Data POINLELS ...eouviriirieieiiriieteeteeeee ettt ettt s s st sieene
CASHNE c.eevieireiieiteteeet ettt ettt ettt ettt et s e s st saeene
SErUCLUNe tYPES ..o
ALGNIMENL ..ottt sieene
General JayOULccccoueviriinininieiieeecteee e

Packed structure types

Type qUalIfiers ...
Declaring objects VOIatileccccocevieieciiciinininieninineneceeeeienne 258
Declaring objects volatile and CONStc..ccccvververerenineeieneeneeiennns 259
Declaring objects CONSEccoeeruruiieinieeeiiieieeeee e 259

Data types in CH e 259

Extended keywords ... 261

General syntax rules for extended keywords 261
TYPE AUIIDULES ...eoeenvenieiiiietieteeieee ettt ettt s 261
ODbjeCt AtIIDULES ...oveeiieeieeeieeiietetet et 264

Summary of extended keywords ... 264

Descriptions of extended keywords ... 265
CCOAELO e 265

COAR20 ..t 266
COAER2Y ettt 266

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

B« 1 7 12/ TSP 267
AA28 e 268
dAA32 e 268
__FaSt_INEEITUPL ..ottt 269
__interrupt
_ _intrinsic

_ _monitor

B (Lo TN o) L SRR

_ _horeturn

Pragma dir€CtiVES ..ot 275

Summary of pragma directives ...

Descriptions of pragma directives ...
basic_template_matChingccceceeirieiiienieneniereee e
DILFICLAS ..o
COMSESEE vevninrrienieereriaeeereneetetsaese et es et st s st se e st s eneseasesesenenens
data_aligNMENtccevueiiriirieireeeeieeeeeet e
QALASEZ .ottt ettt e e s et
diag default ..o
QIAZ_ EITOT ..eeeiiiiieieietet ettt s s
diag remarkc.ccccooeriiiiiiiinin et
dIAZ_ SUPPIESS ..eveiuiiuieniinriiintieteeeeteetee ettt ettt b sae e s saesieene

dIaZ_ WAIMINE ..eoveiieiiiiiieiietete ettt st

location

INESSAZE .eevveveenrenrenrentetentesre st st stertt bt es e et et e te st et ensessesaeebesbesbesbeereenes 285
F1010) 11 100) ol (A=) KRR RURERRRORRRN 285
ODJECT_ALTTDULE ...ttt 285
OPLINUZE ..ottt et ettt ettt ettt et bbb saesaesae et saeene 286
PACK ettt s e st 287
__PTINEE_ATES oottt 288
TEQUITEA ..oviiiiiiiiiitiieietit ettt ettt ene 288
TEMOAET .ottt 289
__SCANT_AIES ittt 289
SECHIOM eeeeiiiietetentet ettt ettt et sa e sae bbb ebe e 290
STDC CX_LIMITED_RANGEccoooiiiiiiieieiereeeee e 290
STDC FENV_ACCESS ..ottt 291
STDC FP_CONTRACT ..ottt 291
EYPE_ALLIIDULE ..ottt 291
VECTOL 1eeniteniieieeteenteeteetee et e st eabeenbe e bt et se e satesbaesaeebeetesnesanesseenbeenne 292
WEAK 1ottt st 292
INtrinSic fUNCLIONSooooiiiio e 295

Descriptions of intrinsic functions
IAR intrinsic fUNCtions ...
__diSable_INtEITUPLcceevuerivieniiriiriereriinieecetee et
__eNable_INTETTUPL ..cceevverreiiriiierieniencriireeit ettt
et NTEITUPL_SLALE .everveiieiiieieeteeeeiieitet ettt ebe v
__get_interrupt_tablecccociiiiiiiiiiiii e
__NO_OPETALION .eeurinrireieientenieeteereeieeiteatestestestessessessessesseeseeseeneennes

U PTEERICH e

The PreProCeSSOL ... 301

Overview of the preprocessorcecieinncens 301
Descriptions of predefined preprocessor symboils 302

IAR C/C++ Development Guide
Compiling and Linking for SH

Contents _¢

Descriptions of miscellaneous preprocessor extensions304
NDEBUGcooviiiiiiieiiinieinieinieeseees ettt 304
HWAINING MESSAZE ..eeveveenrenrenreierieriesiesieriteitertestestestestessenbesbessesaeeneas 305

Library fUNCHIONS ...t 307

Library oVerview ... 307
Header files ..o 307
Library object filesccccoiviririiriininiiiiieiceieccie e 307
REENITANCY ...iviiiiiiiieietitee ettt 308

IAR DLIB Library ... 308
Cheader files ..o 309
CH+ header fIlesoceveevieieiiiiireneresectet e 310
Library functions as intrinsic functionsccceceeveeeriervcrverencene 312

Added C functionality

The linker configuration file ... 315
OVEIVIEW ...ttt 315
Defining memories and regions ... 316

Define memory dir€Ctivecccceceeieiecieiineneneneneneneneneneneene 316
Define region dir€CtiVeccceeeeeeieieieieieniesesiesieeie e 317
REGIONS ... 317
Region [teralccooiririiniiiiiiieicieicrcccreccrcre e 318
RegIiON EXPIeSSIONc.evueuieuiieiiieiirieieieneecee et 319
EMPLY TEZIOMN ...eviiniiiiiiiiiiete ettt s 320
Section handling ... 320
Define block dir€CtiVecoceeeevieirieieieienieierie e 321
Define overlay dir€CtiVecceeceeieirieieienieniesierieieie e 322
Initialize dir€Ctiveccooiiiiiiiiiiiiiiiicc e 323
Do not initialize dir€Ctivecceveevievierierienenerererereeeeeeeeieene 326
Keep direCtiVE ...ooveieiiienierierieriti ettt 326
Place at dir€Ctivecccceoiiiiiiiiiiiiiiiiic e 327
Place in dir€CHIVEocueueviiieiieiieiieieeiieteit ettt 328

Section selection

SECHON-SEIECLOTSeeevviieriiieriieiieeeeieeeiie et et eeseeeeereeereeereeesaeeens 329
Extended-SeleCtOrsccoiieiuieeiuiieeie ettt ettt 331

20

IAR C/C++ Development Guide
Compiling and Linking for SH

Using symbols, expressions, and numbers 332
Define symbol dir€Ctivecceceeciruieieieiinienenienicncnenenesesenene 332
EXPOTIt dITECHIVE ..cueeuienieniiiietieieeieeieeiieiteet ettt 333
EXPIESSIONS ..veiviimiinienieiiiieteeteeieete ettt ettt ettt et e sbe s siesiene 333
INUMDETS ..oviiiiiiiiiici e 334
Structural configuration ... 335

If directive

INCIUAE QITECHIVE ..eeevviiiiiiiiiieciee et et 336

SECLION FEIEIENCE ... 337

Summary of SECtions ... 337
Descriptions of sections and blocks ... 339
.codel6.text
.code20.text
.code28.text
.code32.text
CSTACK .ttt ettt
AALATO.DSS e
.datal6.data
.datal6.data_init

AAtalO.MNO0INIE .coeeiiiiiiiiererere et
.datal6.r0datac.eeviviiiiiii e
AAtA20.DSS ettt
.data20.data ..o
.data20.data_init
.data20. 0001 ..coeeeiiiiiiiinienener et

.data20.10datAoveeiiiriiie et

AALA28.DSS .ttt

.data28.dataococveviiiiiiiin s

.data28.data_INITccccvveeiiviiiei et 343
.data28.noinit
.data28.rodata
cAALA32.DSS ittt
data32.data ..o

Contents _¢

.data32.data_init
.dAta32.NO0INIL c.evviiiiieeiieciee ettt e ere e

.data32.10dataccveeeiieieeee et
WIFUNCE Lo et

.dar.dynexit
ANEEADIE Lo

ATIEVEC vttt ettt e et e et e et e et eete e etreeeneas

AR UHITIES ..o 347
The IAR Archive Tool—iarchivecccocooovviivivviein. 347

Invocation syntax

Summary of iarchive commandsc.ccceevueruerieriinenenenincneeene. 348

Summary of iarchive Optionsc..ceceeeeereeieienienieneneneneneeeeneeees 349

DiagnostiC MESSAZESc..eoveevirvieuieiniieiieiieiieeeretererere e e seesaeene
The IAR ELF Tool—ielftool

INVOCAION SYNTAX ..eovviuiinriiintieiieiieeetietet ettt

Summary of ielftool options ...

The IAR ELF Dumper for SH—ielfdumpsh ... 352
INVOCAION SYNAX ..eovviuiinriiintietieieeetietee ettt 352
Summary of ielfdumpsh Optionsccccoceveviiniiniinininiininineeeene 353

The IAR ELF Object Tool—iobjmanipcccoconrrnnn. 353
INVOCAtION SYNAX ..eovviuieniiiintiniieieeeetietee ettt 353
Summary of iobjmanip OPLONSccceeceeerieieierienenenenineeeeneenes 354
DiagnostiC MESSAZESc.vevvervirviruiriierieiieiietienteieiesietetesiesiesieseenieene 354

The IAR Absolute Symbol Exporter—isymexport 356
INVOCAION SYNTAX ..eovviuiimiiiintieiieiieteeiietee ettt 356
Summary of iSymeXport OPtiONSceceeveereereereereereeneenienenenseeneenes 357

Steering files

ShOW QITECHIVE ..viieiiieiiieeiie ettt ettt ere e aae s 358
Hide dir€CtVE ...uveeieviieiieeceieeee et ettt e 358
Rename dif€CtiVecoviieiuiieiiieciieciee ettt 359

21

Diagnostic messages

Descriptions of options ..

STNO_SEIEAD ettt e
=mOULPUL, =0 et

--ram_reserve_ranges

--remove_section
——TE@NAME_SECHIOMN ...vviiiiiieiieieiieeiieeieeeiteeeteeeeereeeaeeeseeeaeeeerseesseeanns
—-rename_SyMDBOlcc.cccoviriiiininiiiiicce e
STEPLACE, T ceviviieiieriei ettt
SSTESEIVE_TANZES ..oueuvenrrirenietenteteeeresteseeseessestesensesesseseeseseesensesessenens
“=SECLIOM, =S .uviieuvieeieeeiieeeeieeeetreesreeeereeesreasseeessseesseeesseesreeesssaessseeanns
--self_reloc

“=STLEIE ittt e reeenaeeenne

IAR C/C++ Development Guide
22 Compiling and Linking for SH

Contents _¢

Implementation-defined behavior ..., 377
Descriptions of implementation-defined behavior 377

J.3.1 Translation ..o 377

J.3.2 ENVIFONMENT ...ovuiiniiniiitiniieieeieetieiieit ettt s 378

J.3.3 Identifiers
J.3.4 Characterscccveeevueieiieeeniieecieeeee et e eereeereeeeee e ereeesaseeenaea e
J3US INEEZEIS eveviiiiieieieteete ettt ettt

J.3.6 Floating POINEc..covevuereiriininiiniieiieeieiteeete et
J.3.7 Arrays and POINLETSceeceeieuiereieienienienienrenrenene e seseenieene
J3UB HINLS ottt
J.3.9 Structures, unions, enumerations, and bitfields ...
J.3.10 QUANITIETS ..oeeviiiiiiiciieciee et
J.3.11 Preprocessing dir€CtVESc.eeeeuieuiereenienienienienienienenenenieene
J.3.12 Library functionscc.cceceeeeereeeeieneeieieieieie e sesesenieene
J.3.13 Architectureccocooiviiiiiiiiiiiiiccc e
JAALOCAIE .ot

23

IAR C/C++ Development Guide
24 Compiling and Linking for SH

Tables

1: Typographic conventions used in this UIdecccceceevererininiininiieeeeseee 31
2: Naming conventions used in this gUIAEcc.ccceeevieviiiinininiininiiniiicicicnene 31
3: Data model CharacCteriStiCscouevireiriiriruireieniee ettt 56
4: Memory types and their corresponding memory attributesccocevevervennenne. 58
5: Code models

6: Function memory attriDULEScccceeerieieiieierienientesesiesiente et ete et et et eeseeseesae e 64
7: Sections holding initialized datacocevieiieiieiiinineneeeeee e 77
8: Description of a reloCation €ITOTccuecvevuiriinieniniininieeeteteieieree e srenne 91
9: CusStomizable TEBIMSc.eoueuirieiriiieienieceeerece ettt

10: Formatters for printf

11: Formatters for scanf

12: Functions with special meanings when linked with debug library 100
13: Library configurationsc..ceceeeeeereenienieniinieieneese sttt s 108
14: Descriptions of printf configuration Symbolsc.cccceveveneneneninenienenennene 111
15: Descriptions of scanf configuration SymboOISceceecieieieiienienenenienenenenne 112
16: Low-level I/O files

17: Library objects using TLScccccoviiiiininiininecee e 119
18: Macros for implementing TLS alloCationc.cccceeveeieieieieienienienienienienienene 121
19: Example of runtime model attributesccccevecveeneinecineieeneciceneeenene 124
20: Registers used for passing parameterso.coceeveevererereeeeeeneereeuenenennennenne 134
21: Registers used for returning valtiesc.cceceeveeueeienienieniesienienene e 135
22: Call frame information resources defined in a names blockccccceueueeee 139
23: Language XtENSIONScccecieieieiiierienienieniinieeeteeeeeetenesese s sresaesaesseeseeneens 145
24: Section operators and their Symbolsccccceviririnininineneeeee e 147
25: Compiler optimization LEVELScecevuerieiirinienineeeeieitetee e 177
26: Compiler environment variablescoccoeeiriniriiniininieieieneeencncnieneae 191
27: ILINK environment variables

28: EITOI TETUIN COARSvuvvviniiiiiieiiieie sttt st e

29: Compiler OptionS SUMIMATYccceoveruerrerrenrinenrenereneeeterenesessessessessessessensenne

30: Linker Options SUMIMATYccceeeereeeeuierienteteteseeniestessessessessessessesssessessesessenee

311 INEEZET EYPES eeeueeneeneenienienienierierteete ettt ettt bbbt s be bbbt eb et et e be s et entesee e

25

26

IAR C/C++ Development Guide
Compiling and Linking for SH

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

Floating-point types

Extended keywords SUMMATYc.ccccoouerieiiniiniininieiniercreresreneestesresnenresneene 264
Pragma directives SUMMATYcccoceeieieieirinieiententeieeeienie e sieeneene 275
Intrinsic functions for compatibility with Renesas compilercccocccoce... 297
Predefined SYMDOILSc..coceoiriiiiiiiiiiieiicceeeceeeeeeeee et 302
Traditional Standard C header files—DLIBcccccccooeiniiiniiniinecceee 309
Embedded C++ header files

Standard template library header filesc.ccocevvernininirinnniniiiccccenee 310
New Standard C header files—DLIBcccccooeoiiieiiineeiiceeneeeeeee 311
Examples of section selector Specificationsc..ce.ceceeeeeeiesienenenienenenenenne 330
SECHON SUIMIMATIY ...veoviviuieiieiieiietetetetetete e st sie sttt ese et ettt eanesnesaesuesnes 337
1ArCHIVE PATAMELETS .c..evverieriiiiiriieiieitete ettt sttt eb ettt et ettt ee 348
iarchive commands SUMIMATYc.ccocererueruerienieneneeeeteeteere e et et esesenseneesee e 348
iarchive Options SUMIMATYcccceeeerterierieniintiniieteeeereeteere et esteeetenenenesaenne
1CIfLO0] PATAIMELETS ...c.veveiiiiiiiiiriieiteitete ettt ettt
1elfto0] OPLIONS SUMMATYeeveruiirieiieieieieietet ettt ettt et et st ettt e eae
ielfdumpsh Parameterscccccoevveriirininininineeeet ettt
ielfdumpsh options summary

10DJMANIP PATAMELETSeveeiiiriieiieiieieieietetetertee et ae
iobjmanip options summary
1CITEO0] PATAIMELETS ...c..eveeiiiieiiiiiieiteitet ettt ettt
isymexport options summary
Message returned by strerror()—IAR DLIB libraryc.cccocecvviivnininencene 392

Preface

Welcome to the IAR C/C++ Development Guide for SH. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
the SH microprocessor and need detailed reference information on how to use the build
tools. You should have working knowledge of:

o The architecture and instruction set of the SH microprocessor. Refer to the
documentation from Renesas for information about the SH microprocessor

o The C or C++ programming language

e Application development for embedded systems

e The operating system of your host computer.

How to use this guide

When you start using the IAR C/C++ compiler and linker for SH, you should read Part
1. Using the build tools in this guide.

When you are familiar with the compiler and linker and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using the AR Systems build tools, we recommend that you first study
the IAR Embedded Workbench® IDE User Guide. This guide contains a product
overview, tutorials that can help you get started, conceptual and user information about
the IDE and the IAR C-SPY® Debugger, and corresponding reference information.

27

What this guide contains

28

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

IAR C/C++ Development Guide
Compiling and Linking for SH

Part I. Using the build tools

Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the SH
MiCroprocessor.

Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

Data storage describes how to store data in memory, focusing on the different data
models and data memory type attributes.

Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

Linking your application lists aspects that you must consider when linking your
application, including using ILINK options and tailoring the linker configuration
file.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file 1/0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C gives an overview of the two supported variants of the C language and an
overview of the compiler extensions, such as extensions to Standard C.

Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

Application-related considerations discusses a selected range of application issues
related to using the compiler and linker.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for

Preface __4

passing options to the compiler and linker, environment variables, the include file
search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.

Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

Extended keywords gives reference information about each of the SH-specific
keywords that are extensions to the standard C/C++ language.

® Pragma directives gives reference information about the pragma directives.

e [ntrinsic functions gives reference information about functions to use for accessing

SH-specific low-level features.

The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

The linker configuration file describes the purpose of the linker configuration file
and describes its contents.

e Section reference gives reference information about the use of sections.
® /AR utilities describes the IAR utilities that handle the ELF and DWARF object

formats.

Implementation-defined behavior describes how the compiler handles the
implementation-defined areas of the C language standard.

Other documentation

The complete set of IAR Systems development tools for the SH microprocessor is
described in a series of guides. For information about:

Using the IDE and the IAR C-SPY Debugger®, refer to the [AR Embedded
Workbench® IDE User Guide

Programming for the IAR Assembler for SH, refer to the /AR Assembler Reference
Guide for SH

Using the IAR DLIB Library functions, refer to the online help system

29

Document conventions

30

Using the MISRA-C:1998 rules or the MISRA-C:2004 rules, refer to the /4R
Embedded Workbench® MISRA C:1998 Reference Guide or the IAR Embedded
Workbench® MISRA C:2004 Reference Guide, respectively.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media.

FURTHER READING

These books might be of interest to you when using the IAR Systems development tools:

Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

Harbison, Samuel P. and Guy L. Steele (contributor). C: 4 Reference Manual.
Prentice Hall.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall.

Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.
Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]
Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

Stroustrup, Bjarne. Programming Principles and Practice Using C++.
Addison-Wesley.

We recommend that you visit these web sites:

The Renesas web site, www.renesas.com, contains information and news about the
SH microprocessors.

The IAR Systems web site, www.iar.com, holds application notes and other
product information.

Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

IAR C/C++ Development Guide
Compiling and Linking for SH

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example sh\doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6.n\sh\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS
This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command, where [] is part of the described
syntax.

{option} A mandatory part of a command, where {} is part of the described
syntax.

[option] An optional part of a command.

alblc Alternatives in a command.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term

IAR Embedded Workbench® for SH IAR Embedded Workbench®

Table 2: Naming conventions used in this guide

31

Document conventions

32

IAR C/C++ Development Guide
Compiling and Linking for SH

Brand name

Generic term

IAR Embedded Workbench® IDE for SH
IAR C-SPY® Debugger for SH

IAR C-SPY® Simulator

IAR C/C++ Compiler™ for SH

IAR Assembler™ for SH

IAR ILINK™ Linker

IAR DLIB Library™

the IDE

C-SPY, the debugger
the simulator

the compiler

the assembler
ILINK, the linker
the DLIB library

Table 2: Naming conventions used in this guide (Continued)

Part 1. Using the build

tools

This part of the IAR C/C++ Development Guide for SH includes these chapters:

e Introduction to the IAR build tools
e Developing embedded applications
e Data storage

e Functions

e Linking using ILINK

e Linking your application

e The DLIB runtime environment

e Assembler language interface

e Using C

e Using C++

e Application-related considerations

e Efficient coding for embedded applications.

: |h|Li‘|i|H|H

ARARATEY

34

Introduction to the I1AR
build tools

This chapter gives an introduction to the IAR build tools for the SH
microprocessor, which means you will get an overview of:

e The IAR build tools—the build interfaces, compiler, assembler, and linker
e The programming languages
e The available device support

e The extensions provided by the IAR C/C++ Compiler for SH to support
specific features of the SH microprocessor.

The IAR build tools—an overview

In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for SH-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a very powerful Integrated Development Environment
(IDE) that allows you to develop and manage complete embedded application projects.
It provides an easy-to-learn and highly efficient development environment with
maximum code inheritance capabilities, comprehensive and specific target support. [AR
Embedded Workbench promotes a useful working methodology, and thus a significant
reduction of the development time.

@ The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.
IAR C/C++ COMPILER

The IAR C/C++ Compiler for SH is a state-of-the-art compiler that offers the standard
features of the C and C++ languages, plus extensions designed to take advantage of the
SH-specific facilities.

Part |. Using the build tools 35

The IAR build tools—an overview

36

IAR C/C++ Development Guide
Compiling and Linking for SH

IAR ASSEMBLER

The IAR Assembler for SH is a powerful relocating macro assembler with a versatile set
of directives and expression operators. The assembler features a built-in C language
preprocessor and supports conditional assembly.

THE IAR ILINK LINKER

The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded controller applications. It is equally well suited for linking small,
single-file, absolute assembler programs as it is for linking large, relocatable input,
multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

Because ILINK both uses and produces industry-standard ELF and DWAREF as object
format, additional IAR utilities that handle these formats can be used:

o The IAR Archive Tool—iarchive—creates and manipulates a library (archive) of
several ELF object files

o The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

o The IAR SH ELF Dumper—iel fdumpsh—creates a text representation of the
contents of an ELF relocatable or executable image

o The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

o The IAR Absolute Symbol Exporter—i symexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the JAR Embedded
Workbench® IDE User Guide.

Introduction to the IAR build tools __4

IAR language overview

There are two high-level programming languages you can use with the IAR C/C++
Compiler for SH:

o C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow either one of the
following standards:

o The standard ISO/IEC 9899:1999 (including technical corrigendum No.3), also
known as C99. Hereafter, this standard is referred to as Standard C in this guide.

e The standard ISO 9899:1990 (including all technical corrigenda and addendum),
also known as C94, C90, C89, and ANSI C. Hereafter, this standard is referred to
as C89 in this guide. This standard is required when MISRA C is enabled.

o C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the C++
language:

o Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

o IAR Extended Embedded C++, with additional features such as full template
support, multiple inheritance, namespace support, the new cast operators, as well
as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard.

For more information about C, see the chapter Using C.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the C language, see the chapter Implementation-defined behavior.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler Reference Guide for SH.

Part |. Using the build tools 37

Device support

38

Device support

IAR C/C++ Development Guide
Compiling and Linking for SH

To get a smooth start with your product development, the IAR product installation
comes with wide range of device-specific support.

SUPPORTED SH DEVICES

The IAR C/C++ Compiler for SH supports all SH2A devices, including devices with a
hardware floating-point unit.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for 110

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the sh\inc
directory. Make sure to include the appropriate include file in your application source
files.

Linker configuration files

The sh\config\linker directory contains ready-made linker configuration files for
all supported devices. The files have the filename extension icf and contain the
information required by ILINK. To read more about the linker configuration file, see
Placing code and data—the linker configuration file, page 74, and for reference
information, the chapter The linker configuration file.

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
peripheral registers and groups of these, by using device description files. These files are
located in the sh\config\debugger directory and they have the filename extension
ddf. To read more about these files, see the JAR Embedded Workbench® IDE User
Guide.

EXAMPLES FOR GETTING STARTED

The sh\examples directory contains examples of working applications to give you a
smooth start with your development.

Introduction to the IAR build tools __4

Special support for embedded systems
This section briefly describes the extensions provided by the compiler to support

specific features of the SH microprocessor.
EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling the memory type for
individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IDE.

EI The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 213 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
Standard C, and are very useful when you want to make sure that the source code is
portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation, and the code and data models.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the SH microprocessor are supported by the compiler’s
special function types: interrupt, monitor, TBR, and trap. You can write a complete
application without having to write any of these functions in assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 65.

Part |. Using the build tools 39

Special support for embedded systems

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 125.

IAR C/C++ Development Guide
40 Compiling and Linking for SH

Developing embedded
applications

This chapter provides the information you need to get started developing your
embedded software for the SH microprocessor using the IAR build tools.

First, you will get an overview of the tasks related to embedded software
development, followed by an overview of the build process, including the steps
involved for compiling and linking an application.

Next, the program flow of an executing application is described.

Finally, you will get an overview of the basic settings needed for a project.

Developing embedded software using IAR build tools

Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software.

MAPPING OF INTERNAL AND EXTERNAL MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

As an embedded software developer, you must understand the features of the different
memory types. For example, on-chip RAM is often faster than other types of memories,
and variables that are accessed often would in time-critical applications benefit from
being placed here. Conversely, some configuration data might be accessed seldom but
must maintain their value after power off, so they should be saved in EEPROM or flash
memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For an overview see Controlling
data and function placement in memory, page 173. The linker places sections of code in
memory according to the directives you specify in the linker configuration file, see
Placing code and data—the linker configuration file, page 74.

Part |. Using the build tools 41

Developing embedded software using IAR build tools

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signalling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers, or SFRs. These
are typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 38. For an example, see Accessing
special function registers, page 184.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the microprocessor simply stops executing the code it runs,
and starts executing an interrupt routine instead.

The compiler supports the following processor exception types: trap, interrupt, and fast
interrupt, which means that you can write your interrupt routines in C, see Interrupt
functions, page 65.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called. The CPU imposes this by starting execution from a fixed memory address.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker and the system startup code in conjunction. For more information,
see Application execution—an overview, page 46.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program

IAR C/C++ Development Guide
42 Compiling and Linking for SH

Developing embedded applications __¢

more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated in tasks which are truly
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

The build process—an overview

This section gives an overview of the build process; how the various build
tools—compiler, assembler, and linker—fit together, going from source code to an
executable image.

To get familiar with the process in practice, you should run one or more of the tutorials
available in the JAR Embedded Workbench® IDE User Guide.

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files. The IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C/C++ source code into assembler
source code. If required, you can modify the assembler source code which then can be
assembled into object code. For more information about the IAR Assembler, see the IAR
Assembler Reference Guide for SH.

Part |. Using the build tools 43

The build process—an overview

44

IAR C/C++ Development Guide
Compiling and Linking for SH

This illustration shows the translation process:

C/C++ Assembler

source
files

compiler

’* Librarian
Relocatable

object
files g

Customer
library

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
supplied as an object file. Optionally, you can create a library; then use the IAR utility

iarchive.

source
files

Figure 1: The build process before linking

THE LINKING PROCESS

The relocatable modules, in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

The IAR ILINK Linker (i1inksh.exe) is used for building the final application.
Normally, ILINK requires the following information as input:

e Several object files and possibly certain libraries

e A program start label (set by default)

e The linker configuration file that describes placement of code and data in the
memory of the target system.

Developing embedded applications __¢

This illustration shows the linking process:

Relocatable

object

files
External Customer Standard
librar :Jitsyrar : eici
Y Y library
|

ILINK /

linker ILINK

K configuration

file
Map <—/
file

Absolute
output
ELF/DWARF

Figure 2: The linking process

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

During the linking, ILINK might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For an in-depth description of the procedure performed by ILINK, see The linking
process, page 72.

AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

e Loading into the IAR C-SPY Debugger

e Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image must be converted into the standard Motorola
32-bit S-record format or the Intel Hex-32 format. For this, use ielftool, see The

Part |. Using the build tools

45

Application execution—an overview

IAR ELF Tool—ielftool, page 350.
This illustration shows the possible uses of the absolute output ELF/DWAREF file:

Absolute
output
ELF/DWARF

External C-SPY g?ﬂ:;ﬁ
| debugger A debugger converter

s 5
SO0&— | SO
E2vey NS |

Hexfile

for
download

Flash/PROM
programmer

Ko

oy M—

S

Figure 3: Possible uses of the absolute output ELF/DWARF file

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the:
e Initialization phase
e Execution phase

o Termination phase.

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. The initialization phase can for simplicity be divided into:

e Hardware initialization, which generally at least initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/starting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

IAR C/C++ Development Guide
46 Compiling and Linking for SH

Developing embedded applications __¢

o Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

e Application initialization

This depends entirely on your application. Typically, it can include setting up an
RTOS kernel and starting initial tasks for an RTOS-driven application. For a
bare-bone application, it can include setting up various interrupts, initializing
communication, initializing devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. All
symbols placed in RAM must be initialized before the main function is called. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc.

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the predefined stack
area:

vector
e Jump to cstartup

cstartup
e Set up stack pointer ~
e Initialize variables to zero
ROM

e Initialize variables

region « Call main()
main() and other code
Initializers
—
Stack
RAM
region Zero-initialized variables

Initialized variables

Figure 4: Initializing hardware

Part |. Using the build tools 47

Application execution—an overview

2 Then, memories that should be zero-initialized are cleared, in other words, filled with

ZEros:
vector
e Jump to cstartup
cstartup
® Set up stack pointer
 Initialize variables to zero -
ROAM * Initialize variables
region e Call main()
main() and other code
Initializers
Stack
RAM
region Zero-initialized variables
Initialized variables

Figure 5: Zero-initializing variables

Typically, this is data referred to as zero-initialized data; variables declared as, for
example, int i = 0;

IAR C/C++ Development Guide
48 Compiling and Linking for SH

Developing embedded applications __¢

3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM:

vector
® Jump to cstartup

cstartup

* Set up stack pointer
 Initialize variables to zero
e |Initialize variables ~
e Call main()

ROM
region

main() and other code

Initializers [

Stack

) Copy
region Zero-initialized variables

Initialized variables

Figure 6: Initializing variables

4 Finally, the main function is called:

vector
e Jump to cstartup

cstartup
e Set up stack pointer
e |nitialize variables to zero
ROM o .
region |Initialize variables
g e Call main()
I‘: main() and other code
Initializers
Stack
RAM
region Zero-initialized variables

Initialized variables

Figure 7: Calling main

Part |. Using the build tools 49

Building applications—an overview

50

For a detailed description about each stage, see System startup and termination, page
104. For more details about initialization of data, see Initialization at system startup,
page 77.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop which is
either interrupt-driven or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system. In this case, the RTOS and the
different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, _Exit, or abort, or return from main. If you return from main, the
exit function is executed, which means that C++ destructors for static and global
variables are called (C++ only) and all open files are closed.

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

To read more about this, see System termination, page 106.

Building applications—an overview

IAR C/C++ Development Guide
Compiling and Linking for SH

In the command line interface, this line compiles the source file myfile.c into the
object file myfile. o using the default settings:

iccsh myfile.c
On the command line, this line can be used for starting ILINK:
ilinksh myfile.o myfile2.0 -o a.out --config my_configfile.icf

In this example, myfile.oandmyfile2 .o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_ start.
You can use the --entry command line option to change this.

Developing embedded applications __¢

Basic project configuration

This section gives an overview of the basic settings for the project setup that are needed
to make the compiler and linker generate the best code for the SH device you are using.
You can specify the options either from the command line interface or in the IDE.

You need to make settings for:

Core

Data model

Code model

Size of double floating-point type
Optimization settings

Runtime environment

Customizing the ILINK configuration, see the chapter Linking your application

In addition to these settings, many other options and settings can fine-tune the result
even further. For details about how to set options and for a list of all available options,
see the chapters Compiler options, Linker options, and the IAR Embedded Workbench®
IDE User Guide, respectively.

CORE

The compiler supports the SH2A core with and without a dedicated floating-point
processor. Use the --core={sh2a|sh2afpu} option to select the core variant for
which the code will be generated.

In the IDE, choose Project>Options and select the core an appropriate device from the
Device drop-down list on the Target page. The core and device options will then be
automatically selected.

DATA MODEL

In the compiler, you can set a default memory address size by selecting a data model.
These data models are supported:

o In the Small data model, pointers are initialized using 16-bit signed addresses

o In the Medium data model, pointers are initialized using 20-bit signed addresses
e In the Large data model, pointers are initialized using 28-bit signed addresses

e In the Huge data model, pointers are initialized using 32-bit addresses.

The chapter Data storage covers data models in greater detail. The chapter also covers
how to override the default access method for individual variables.

Part |. Using the build tools 51

Basic project configuration

52

IAR C/C++ Development Guide
Compiling and Linking for SH

CODE MODEL

The compiler supports code models that you can set on file- or function-level to control
which function calls are generated, which determines the size of the linked application.
These code models are available:

e In the Small code model, pointers are initialized using 16-bit signed addresses
e In the Medium code model, pointers are initialized using 20-bit signed addresses
e In the Large code model, pointers are initialized using 28-bit signed addresses

e In the Huge code model, pointers are initialized using 32-bit addresses.

For detailed information about the code models, see the chapter Functions.

SIZE OF DOUBLE FLOATING-POINT TYPE

Floating-point values are represented by 32- and 64-bit numbers in standard IEEE 754
format. If you use the compiler option --double={32| 64}, you can choose whether
data declared as double should be represented with 32 bits or 64 bits. The data type
float is always represented using 32 bits.

OPTIMIZATION FOR SPEED AND SIZE

The compiler is a state-of-the-art compiler with an optimizer that performs, among other
things, dead-code elimination, constant propagation, inlining, common sub-expression
elimination, and precision reduction. It also performs loop optimizations, such as
unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.
RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You might also need to override certain library modules with your own
customized versions.

Developing embedded applications __¢

The runtime library provided is the [AR DLIB Library, which supports Standard C and
C++. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, etc.

The runtime library contains the functions defined by the C and the C++ standards, and
include files that define the library interface (the system header files).

The runtime library you choose can be one of the prebuilt libraries, or a library that you
customized and built yourself. The IDE provides a library project template that you can
use for building your own library version. This gives you full control of the runtime
environment. If your project only contains assembler source code, you do not need to
choose a runtime library.

For detailed information about the runtime environments, see the chapter The DLIB
runtime environment.

Setting up for the runtime environment in the IDE

The library is automatically chosen by the linker according to the settings you made in
Project>Options>General Options, on the pages Library Configuration, Library
Options, and Library Usage.

Note that there are two different library configurations—Normal and Full—which
include different levels of support for locale, file descriptors, multibyte characters, etc.
See Library configurations, page 108, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

[Setting up for the runtime environment from the command line

You do not have to specify a library file explicitly, as ILINK automatically uses the
correct library file.

A library configuration file that matches the library object file is automatically used. To
explicitly specify a library configuration, use the --d1lib_config option.

In addition to these options you might want to specify any target-specific linker options
or the include path to application-specific header files by using the -1 option, for
example:

-I sh\inc

Part |. Using the build tools 53

Basic project configuration

Setting library and runtime environment options
You can set certain options to reduce the library and runtime environment size:

o The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 97.

e The size of the stack and the heap, see Setting up the stack, page 86, and Setting up
the heap, page 86, respectively.

IAR C/C++ Development Guide
54 Compiling and Linking for SH

Data storage

This chapter gives a brief introduction to the memory layout of the SH
microprocessor and the fundamental ways data can be stored in memory: on
the stack, in static (global) memory, or in heap memory. For efficient memory
usage, the compiler provides a set of data models and data memory attributes,
allowing you fine-grained control of data storage. The concepts of data models
and memory types are described in relation to pointers, structures, Embedded
C++ class objects, and non-initialized memory. Finally, detailed information
about data storage on the stack and the heap is provided.

Introduction

The SH microprocessor has one continuous memory space for both code and data,
ranging from 0x00000000 to OxFFFFFFFF. Different types of memory can be placed in
the memory range.

DIFFERENT WAYS TO STORE DATA
In a typical application, data can be stored in memory in three different ways:

e Auto variables.

All variables that are local to a function, except those declared static, are stored on
the stack. These variables can be used as long as the function executes. When the
function returns to its caller, the memory space is no longer valid.

o Global variables and local variables declared static.

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 56 and
Memory types, page 57.

e Dynamically allocated data.

An application can allocate data on the heap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 62.

Part |. Using the build tools 55

Data models

56

Data models

IAR C/C++ Development Guide
Compiling and Linking for SH

Technically, the data model specifies the default memory type. This means that the data
model controls the default placement of static and global variables, and constant literals

The data model only specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 58.

SPECIFYING A DATA MODEL

Four data models are implemented: Small, Medium, Large, and Huge. These models are
controlled by the --data_model option. Each model has a default memory type. If you
do not specify a data model option, the compiler will use the Huge data model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute, see
Using data memory attributes, page 58.

This table summarizes the different data models:

Default memory

Data model name . Pointer attribute Default placement of data
attribute

Small __datalé __data32 Low 32 Kbytes or high 32
Kbytes

Medium __data20 __data32 Low 512 Kbytes or high
512 Kbytes

Large __data28 __data32 Low 128 Mbytes or high
128 Mbytes

Huge (default) __data32 __data32 The entire 4 Gbytes of
memory

Table 3: Data model characteristics
See the AR Embedded Workbench® IDE User Guide for information about setting
options in the IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 207.

Data storage ___4

Memory types

This section describes the concept of memory types used for accessing data by the
compiler. It also discusses pointers in the presence of multiple memory types. For each
memory type, the capabilities and limitations are discussed.

Because all memory accesses are performed via pointers, the memory type only controls
the placement of variables and pointer initialization.

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables—different memory types.
This makes it possible to create an application that can contain a large amount of data,
and at the same time make sure that variables that are used often are placed in memory
that can be efficiently accessed.

DATAI6

The datal6 memory consists of the low and the high 32 Kbytes of data memory. In
hexadecimal notation, this is the address ranges 0x00000000-0x00007FFF and
O0xXFFFF8000-0xFFFFFFFF.

A datal6 object can only be placed in datal6 memory, and the size of such an object is
limited to 32 Kbytes-1. If you use objects of this type, the code generated by the
compiler to access them is minimized. This means a smaller footprint for the
application.

DATA20

The data20 memory consists of the low and the high 512 Kbytes of data memory. In
hexadecimal notation, this is the address ranges 0x00000000-0x0007FFFF and
0xXFFF80000-0xFFFFFFFF.

A data20 object can only be placed in data20 memory, and the size of such an object is
limited to 512 Kbytes-1.
DATA28

The data28 memory consists of the low and the high 128 Mbytes of data memory. In
hexadecimal notation, this is the address ranges 0x00000000-0x07FFFFFF and
0xF8000000-0xXFFFFFFFF.

A data28 object can only be placed in data28 memory, and the size of such an object is
limited to 128 Mbytes-1.

Part |. Using the build tools 57

Memory types

58

IAR C/C++ Development Guide
Compiling and Linking for SH

DATA32

Data32 objects can be placed anywhere in data memory. Also, unlike the other memory
types, there is no limitation on the size of the objects that can be placed in this memory

type.

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects, which means that you can place data objects in other memory areas than the
default memory. This also means that you can fine-tune the access method for each
individual data object, which results in smaller code size.

This table summarizes the available memory types and their corresponding keywords:

Memory type Keyword Address range Default in data model

Datal 6 __datalé6 0x00000000-0x00007FFF Small
OXFFFF8000-0xFFFFFFFF

Data20 __data20 0x00000000-0x0007FFFF Medium
OxXFFF80000-0xFFFFFFFF

Data28 __data28 0x00000000-0x07FFFFFF Large
0xF8000000-0xFFFFFFFF

Data32 __data32 0x00000000-0xFFFFFFFF Huge

Table 4: Memory types and their corresponding memory attributes

All data pointers are 32 bits.

The keywords are only available if language extensions are enabled in the compiler.
In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 213 for
additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 265.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are #ype attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 261.

Data storage ___4

The following declarations place the variable i and j in data20 memory. The variables
k and 1 will also be placed in data20 memory. The position of the keyword does not have
any effect in this case:

__data20 int i, 3J;
int __data20 k, 1;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

The #pragma type_attribute directive can also be used for specifying the memory
attributes. The advantage of using pragma directives for specifying keywords is that it
offers you a method to make sure that the source code is portable. Refer to the chapter
Pragma directives for details about how to use the extended keywords together with
pragma directives.

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

/* Defines via a typedef */
typedef char __datalé Byte;
Byte AByte;

/* Defines directly */
__datal6 char AByte;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable Gamma is a structure placed in data20 memory.

struct MyStruct
{
int mAlpha;
int mBeta;
Y

__data20 struct MyStruct Gamma;

This declaration is incorrect:

struct MyStruct
{

int mAlpha;

_ _data20 int mBeta; /* Incorrect declaration*/
Y

Part |. Using the build tools 59

C++ and memory types

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in datal6 memory is declared. The function returns a pointer to an integer
in data20 memory. It makes no difference whether the memory attribute is placed before
or after the data type. To read the following examples, start from the left and add one
qualifier at each step

int MyA; A variable defined in default memory
determined by the data model in use.

int __datal6 MyB; A variable in datal6 memory.
__data20 int MyC; A variable in data20 memory.
int * MyD; A pointer stored in default memory. The pointer

points to an integer in default memory.

int * __data20 MyF; A pointer stored in data20 memory.

C++ and memory types

Instances of C++ classes are placed into a memory (just like all other objects) either
implicitly, or explicitly using memory type attributes or other IAR language extensions.
Non-static member variables, like structure fields, are part of the larger object and
cannot be placed individually into specified memories.

In non-static member functions, the non-static member variables of a C++ object can be
referenced via the this pointer, explicitly or implicitly. The this pointer is of the
default data pointer type unless class memory is used, see Classes, page 169.

Static member variables can be placed individually into a data memory in the same way
as free variables.

All member functions except for constructors and destructors can be placed individually
into a code memory in the same way as free functions.

For more information about C++ classes, see Classes, page 169.

Auto variables—on the stack

IAR C/C++ Development Guide
60 Compiling and Linking for SH

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers;
the rest are placed on the stack. From a semantic point of view, this is equivalent. The

Data storage ___4

main differences are that accessing registers is faster, and that less memory is required
compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions
The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a recursive function—and each invocation can
store its own data on the stack.
Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction ()

{

Part |. Using the build tools 61

Dynamic memory on the heap

62

int x;
/* Do something here. */
return &x; /* Incorrect */

}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap

IAR C/C++ Development Guide
Compiling and Linking for SH

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Functions

This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:
e Control the storage of functions in memory
e Use primitives for interrupts, concurrency, and OS-related programming
e Facilitate function optimization
e Access hardware features.
The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 169. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

Code models and memory attributes for function storage

By means of code models, the compiler supports placing functions in a default part of
memory, or in other words, use a default size of the function address. Technically, the
code models control the following:

o The default memory range for storing the function, which implies a default memory
attribute

e The maximum module size

e The maximum application size.

The compiler supports four code models. If you do not specify a code model, the

compiler will use the Huge code model as default. Your project can only use one code

model at a time, and the same model must be used by all user modules and all library
modules.

Part |. Using the build tools

Code models and memory attributes for function storage

These code models are available:

Code model name Default address ranges for placing functions

Small 0x00000000-0x00007FFF
O0xXFFFF8000-0xXFFFFFFFF

Medium 0x00000000-0x0007FFFF
O0xXFFF80000-0xXFFFFFFFF

Large 0x00000000-0x07FFFFFF
0xF8000000-0xFFFFFFFF

Huge (default) 0x00000000-0XFFFFFFFF

Table 5: Code models

See the IAR Embedded Workbench® IDE User Guide for information about specifying
a code model in the IDE.

@ Use the --code_model option to specify the code model for your project; see
--code_model, page 205.

USING FUNCTION MEMORY ATTRIBUTES

It is possible to override the default placement for individual functions. Use the
appropriate function memory attribute to specity this. These attributes are available:

Function memory

. Address ranges Default in code model

attribute

__codeléb 0x00000000-0x00007FFF Small
OxXFFFF8000-0xFFFFFFFF

__code20 0x00000000-0x0007FFFF Medium
OxXFFF80000-0xFFFFFFFF

__code28 0x00000000-0x07FFFFFF Large
0xF8000000-0xFFFFFFFF

__code32 0x00000000-0xXFFFFFFFF Huge

Table 6: Function memory attributes
All function pointers are 32 bits.

For detailed syntax information and for detailed information about each attribute, see the
chapter Extended keywords.

IAR C/C++ Development Guide
64 Compiling and Linking for SH

Functions __4

Primitives for interrupts, concurrency, and OS-related programming
The IAR C/C++ Compiler for SH provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

o Theextended keywords __fast_interrupt
and __trap

monitor,__tbr,

p—

interrupt

s ——

o The #pragma vector directive

o The intrinsic functions __enable_interrupt
__get_interrupt_state, and __set_interrupt_state.

disable_interrupt,

 —

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

In general, when an interrupt occurs in the code, the microprocessor simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
extremely important that the environment of the interrupted function is restored after the
interrupt is handled; this includes the values of processor registers and the processor
status register. This makes it possible to continue the execution of the original code after
the code that handled the interrupt was executed.

The SH microprocessor supports many interrupt sources. For each interrupt source, an
interrupt routine can be written. Each interrupt routine is associated with a vector
number, which is specified in the SH microprocessor documentation from the chip
manufacturer. If you want to handle several different interrupts using the same interrupt
function, you can specify several interrupt vectors.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector = 20
__interrupt void MyInterruptRoutine (void)
{

/* Do something */

}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Part |. Using the build tools 65

Primitives for interrupts, concurrency, and OS-related programming

66

IAR C/C++ Development Guide
Compiling and Linking for SH

TRAP FUNCTIONS

A trap is a kind of exception that can be activated when a specific event occurs or is
called, by using the processor instruction TRAPA. In many respects, a trap function
behaves as a normal function; it can accept parameters, and return a value.

The typical use for trap functions is for the client interface of an operating system. If this
interface is implemented using trap functions, the operating system part of an
application can be updated independently of the rest of the system.

Each trap function is typically associated with a vector. The header file
ioderivative.h, which corresponds to the selected derivative, contains predefined
names for the existing exception vectors.

The __trap keyword and the #pragma vector directive can be used to define trap
functions. For example, this piece of code defines a function doubling its argument:

#pragma vector = 32
__trap int Twice(int x)
{

return x + Xx;

}

When a trap function is defined with a vector, the processor interrupt vector table is
populated. It is also possible to define a trap function without a vector. This is useful if
an application is capable of populating or changing the interrupt vector table at runtime.
See the chip manufacturer’s SH microprocessor documentation for more information
about the interrupt vector table.

When a trap function is used, the compiler ensures that the application also will include
the appropriate trap-handling code. See the chapter Assembler language interface for
more information.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 269.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Functions __4

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for
example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
* Returns 1 on success and 0 on failure.
*/

_ _monitor int TryGetLock (void)
{
if (sTheLock == 0)
{
/* Success, nobody has the lock. */

sTheLock = 1;
return 1;

}

else

{
/* Failure, someone else has the lock. */
return 0;

/* Function to unlock the lock.
* It is only callable by one that has the lock. */

__monitor void ReleaseLock(void)
{
sTheLock = 0;

/* Function to take the lock. It will wait until it gets it. */
void GetLock (void)
{

while (!TryGetLock())
{

Part |. Using the build tools 67

Primitives for interrupts, concurrency, and OS-related programming

68

IAR C/C++ Development Guide
Compiling and Linking for SH

/* Normally a sleep instruction is used here. */

/* An example of using the semaphore. */

void MyProgram(void)

{
GetLock () ;
/* Do something here. */
ReleaseLock() ;

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

/* Class for controlling critical blocks. */
class Mutex
{
public:
Mutex ()

{
// Get hold of current interrupt state.
mState = __get_interrupt_state();

// Disable all interrupts.
__disable_interrupt();

}
~Mutex ()
{
// Restore the interrupt state.
__set_interrupt_state (mState) ;
}
private:

_ _istate_t mState;
Y

class Tick

Functions __4

{
public:
// Function to read the tick count safely.
static long GetTick()
{
long t;

// Enter a critical block.

{

Mutex m;

// Get the tick count safely,
t = smTickCount;

}

// and return it.

return t;

private:
static volatile long smTickCount;
Y

volatile long Tick::smTickCount = 0;
extern void DoStuff () ;

void MyMain ()
{
static long nextStop = 100;

if (Tick::GetTick() >= nextStop)
{

nextStop += 100;

DoStuff();

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, two
restrictions apply:

e Interrupt member functions must be static. When a non-static member function is
called, it must be applied to an object. When an interrupt occurs and the interrupt
function is called, there is no object available to apply the member function to.

e Trap member functions cannot be declared virtual. The reason for this is that trap
functions cannot be called via function pointers.

Part |. Using the build tools 69

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Development Guide
70 Compiling and Linking for SH

Linking using ILINK

This chapter describes the linking process using the IAR ILINK Linker and the
related concepts—first with an overview and then in more detail.

Linking—an overview

The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. Itis equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

ILINK combines one or more relocatable object files—produced by the IAR Systems
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format Executable and Linking Format
(ELF).

ILINK will automatically load only those library modules—user libraries and Standard
C or C++ library variants—that are actually needed by the application you are linking.
Further, ILINK eliminates duplicate sections and sections that are not required.

ILINK uses a configuration file where you can specify separate locations for code and
data areas of your target system memory map. This file also supports automatic handling
of the application’s initialization phase, which means initializing global variable areas
and code areas by copying initializers and possibly decompressing them as well.

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWARF for debug information) format. The file can be
downloaded to C-SPY or it can be programmed into EPROM.

To handle ELF files, various tools are included. For a list of included utilities, see
Specific ELF tools, page 36.

Modules and sections

Each relocatable object file contains one module, which consists of:

e Several sections of code or data

e Runtime attributes specifying various types of information, for example the used
device

e Optionally, debug information in DWARF format
e A symbol table of all global symbols and all external symbols used.

Part |. Using the build tools

71

The linking process

72

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration. The most commonly used attributes are:

code Executable code
readonly Constant variables
readwrite Initialized variables
zeroinit Zero-initialized variables

Note: In addition to these section types—sections that contain the code and data that
are part of your application—a final object file will contain many other types of
sections, for example sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit; but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 85, and Keeping symbols and sections, page 85.

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign execute addresses to the various
sections used by the application.

The IAR build tools have many predefined section names. See the chapter Section
reference for more details about each section.

The linking process

IAR C/C++ Development Guide
Compiling and Linking for SH

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they must be
linked.

The IAR ILINK Linker is used for the link process. It normally performs the following
procedure (note that some of the steps can be turned off by command line options or by
directives in the linker configuration file):

o Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

Linking using ILINK _4

Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine of which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that will be initialized by copying
is divided into two sections, one for the ROM part and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

Determine where to place each section according to the section placement directives
in the linker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes.

Produce an absolute file that contains the executable image and any debug
information provided. The contents of each needed section in the relocatable input
files is calculated using the relocation information supplied in its file and the
addresses determined when placing sections. This process can result in one or more
relocation failures if some of the requirements for a particular section are not met,
for instance if placement resulted in the destination address for a pc-relative call
instruction being out of range for that instruction.

Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.

Part |. Using the build tools 73

Placing code and data—the linker configuration file

This illustration shows the linking process:

Relocatable

object

files
External Customer Standard
librar :Jitsyrar : eici
Y Y library
|

ILINK /

linker ILINK

K configuration

file
Map <—/
file

Absolute
output
ELF/DWARF

Figure 8: The linking process

During the linking, ILINK might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked as it was. For example, why a module or section (or section fragment) was
included.

Note: To see the actual content of an ELF object file, use ielfdumpsh. See The [AR
ELF Dumper for SH—ielfdumpsh, page 352.

Placing code and data—the linker configuration file

The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

e Available addressable memories
e Populated regions of those memories

e How to treat input sections

IAR C/C++ Development Guide
74 Compiling and Linking for SH

Linking using ILINK _4

o Created sections

e How to place sections into the available regions.

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

To use the same source code with different derivatives, just rebuild the code with the
appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE
A simple configuration file can look like this:

/* The memory space denoting the maximum possible amount
of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM_16 = Mem: [from 0x00000000 to O0x00007FFF];
define region RAM_16 = Mem: [from OxFFFF8000 to OxXFFFFFFFF];

/* Create a stack */
define block CSTACK with size = 0x1000, alignment = 4 { };

/* Handle initialization */

do not initialize { section .noinit };

initialize by copy { readwrite }; /* Initialize RW sections,
exclude zero-initialized
sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM_16 { readonly }; /* Place constants and initializers
in ROM: .rodata and .data_init */
place in RAM_16 { readwrite, /* Place .data, .bss, and .noinit*/
block CSTACK }; /* and CSTACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Further, it defines a ROM region and a RAM region in Mem,
namely ROM_16 and RaM_16. Each region has the size of 32 Kbytes.

The file then creates an empty block called cSTACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to
get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Part |. Using the build tools 75

Placing code and data—the linker configuration file

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers are placed in ROM and copied at
startup of the application to the RAM area. By default, ILINK may compress the
initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) section .cstartup—is placed at the start of the ROM region, that is at
address 0x10000. Note that the part within {} is referred to as section selection and it
selects the sections for which the directive should be applied to. Then the rest of the
read-only sections are placed in the ROM region. Note that the section selection

{ readonly section .cstartup } takes precedence over the more generic section
selection { readonly }.

Finally, the read/write (readwrite) sections and the CSTACK block are placed in the
RAM region.

This illustration gives a schematic overview of how the application is placed in memory:
Block
CSTACK
Sectlon
/} data
V initializers
data_init
Object ata_ini
files
\—) Section
text
\ Region Text
(Section /
.cstartup

Figure 9: Application in memory

Memory Mem

Region Data

In addition to these standard directives, a configuration file can contain directives that
define how to:

e Map a memory that can be addressed in multiple ways

e Handle conditional directives

IAR C/C++ Development Guide
76 Compiling and Linking for SH

Linking using ILINK _4

e Create symbols with values that can be used in the application
e More in detail, select the sections a directive should be applied to
e More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For reference information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup

In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there is one exception to this rule and that is
variables declared __no_init which are not initialized at all.

The compiler generates a specific type of section for each type of variable initialization:

Categories of . . Section
Source Section type Section name

declared data content

Zero-initialized int 1; Read/write data, .bss None

data zero-init

Zero-initialized int i = 0; Read/write data, .bss None

data zero-init

Initialized data int 1 = 6; Read/write data .data The initializer

(non-zero)

Non-initialized __no_init int i; Read/write data, .noinit None

data zero-init

Constants const int i1 = 6; Read-onlydata .rodata The constant

Initialized const __memattr Read-onlydata .memattr.rodataThe constant

constants int 1 = 6;

Table 7: Sections holding initialized data

For a summary of all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS

Initialization of data is handled by ILINK and the system startup code in conjunction.

Part |. Using the build tools 77

Initialization at system startup

78

IAR C/C++ Development Guide
Compiling and Linking for SH

To configure the initialization of variables, you must consider these issues:

e Sections that should be zero-initialized are handled automatically by ILINK; they
should only be placed in RAM

e Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive

Normally during linking, a section that should be initialized is split in two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will keep the original name suffixed with _init.
The initializers should be placed in ROM and the initialized sections in RAM, by
means of placement directives. The most common example is the . data section that
the linker splits in .data and .data_init.

e Sections that contains constants should not be initialized; they should only be
placed in flash/ROM

e Sections holding __no_init declared variables should not be initialized and thus
should be listed in a do not initialize directive. They should also be placed in
RAM.

In the linker configuration file, it can look like this:

/* Handle initialization */

do not initialize { section .noinit };

initialize by copy { readwrite }; /* Initialize RW sections,
exclude zero-initialized
sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in

ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
block STACK }; /* and STACK */

For detailed information and examples about how to configure the initialization, see
Linking considerations, page 81.

C++ DYNAMIC INITIALIZATION

The compiler places subroutine pointers for performing C++ dynamic initialization into
sections of the ELF section types SHT_PREINIT_ARRAY and SHT_INIT_ARRAY. By
default, the linker will place these into a linker-created block, ensuring that all sections
of the section type SHT _PREINIT_ARRAY are placed before those of the type
SHT_INIT_ARRAY. If any such sections were included, code to call the routines will also
be included.

Linking using ILINK _4

The linker-created blocks are only generated if the linker configuration does not contain
section selector patterns for the preinit_array and init_array section types. The
effect of the linker-created blocks will be very similar to what happens if the linker
configuration file contains this:

define block SHTSSPREINIT ARRAY { preinit_array };

define block SHTSSINIT_ARRAY { init_array };

define block CPP_INIT with fixed order { block
SHTSSSPREINIT ARRAY,
block SHTSSINIT_ARRAY };

If you put this into your linker configuration file, you must also mention the CPP_INIT
block in one of the section placement directives. If you wish to select where the
linker-created block is placed, you can use a section selector with the name

".init_array".

See also Section-selectors, page 329.

Part |. Using the build tools 79

Initialization at system startup

IAR C/C++ Development Guide
80 Compiling and Linking for SH

Linking your application

This chapter lists aspects that you must consider when linking your application.
This includes using ILINK options and tailoring the linker configuration file.

Finally, this chapter provides some hints for troubleshooting.

Linking considerations

Before you can link your application, you must set up the configuration required by
ILINK. Typically, you must consider:

Defining your own memory areas

Placing sections

Keeping modules in the application

Keeping symbols and sections in the application
Application startup

Setting up the stack and heap

Setting up the atexit limit

Changing the default initialization

Symbols for controlling the application
Standard library handling

Other output formats than ELF/DWARF.

CHOOSING A LINKER CONFIGURATION FILE

The config directory contains ready-made linker configuration files for all supported
devices. The files contain the information required by ILINK. The only change you will
normally have to make to the supplied configuration file is to customize the start and end
addresses of each region so they fit the target system memory map. If, for example, your
application uses additional external RAM, you must also add details about the external
RAM memory area.

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.

Remember not to change the original template file. We recommend that you make a
copy in the working directory, and modify the copy instead.

Part |. Using the build tools

81

Linking considerations

82

IAR C/C++ Development Guide
Compiling and Linking for SH

Each project in the IDE should have a reference to one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it is
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you selected has predefined ROM and RAM regions.
This example will be used as a starting-point for all further examples in this chapter:

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem: [from 0 size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem: [from 0x20000 size 0x100007;

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that was filled with code and data after linking,
inspect the memory summary in the map file (command line option --map).

Adding an additional region
To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000];

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000]

| Mem: [from 0xC0000 size 0x08000];

or equivalently

define region ROM2 = Mem: [from 0x80000 to OxC7FFF]
—Mem: [from 0xAQ0000 to OxBFFFF];

Linking your application __4

Adding a region in a new memory
To add a region in a new memory, write:

/* Define a 2nd addressable memory */

define memory Mem2 with size = 64k;

/* Define a region for constants with start address 0 and 64
Kbytes large */

define region CONSTANT = Mem2:[from 0 size 0x100007];

Defining the unit size for a new memory

If the new memory is not byte-oriented (8-bits per byte) you should define what unit size
to use:

/* Define the bit addressable memory */
define memory Bit with size = 256, unitbitsize = 1;
PLACING SECTIONS

The default configuration file that you selected places all predefined sections in memory,
but there are situations when you might want to modify this. For example, if you want
to place the section that holds constant symbols in the CONSTANT region instead of in
the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};

/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which
use a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).
Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */

place at address Mem: [0] {readonly section .vectors};
Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */
place at start of ROM {readonly section .vectors};

Part |. Using the build tools 83

Linking considerations

84

IAR C/C++ Development Guide
Compiling and Linking for SH

Declare and place your own sections

To declare new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Places a variable in your own section MyOwnSection. */
const int MyVariable @ "MyOwnSection" = 5;

name createSection

/* Create a section */
section myOwnSection:CONST

/* And fill it with constant bytes */
dcb 5,66, 7, 8

end

To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOwnSect ion explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application must have an empty uninitialized memory area to be used for
temporary storage, for example a heap or a stack. It is easiest to achieve this at link time.
You must create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

Linking your application __4

To retrieve the start of the allocated memory from the application, the source code could
look like this:

/* Declares a section */
#pragma section = "TempStorage"

char *TempStorage()

{
/* Return start address of section TempStorage. */
return __section_begin("TempStorage") ;

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use iarchive to extract the module from the library, see The IAR Archive
Tool—iarchive, page 347.

For information about included and excluded modules, inspect the log file (the
command line option --log modules).

For more information about modules, see Modules and sections, page 71.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on
the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
To retain sections based on attribute names or object names, use the directive keep in
the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove Or --no_£fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 72.

Part |. Using the build tools 85

Linking considerations

86

IAR C/C++ Development Guide
Compiling and Linking for SH

APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__iar_program_start label, which is defined to point at the reset vector. The label
is also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry; see --entry, page 238.

SETTING UP THE STACK

The size of the cSTACK block is defined in the linker configuration file. To change the
allocated amount of memory, change the block definition for CSTACK:

define block CSTACK with size = 0x2000, alignment = 4{ };
Specify an appropriate size for your application.

To read more about the stack, see Stack considerations, page 161.

SETTING UP THE HEAP
The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 4{ };
place in RAM {block HEAP};

Specify the appropriate size for your application.

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;

CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process and chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, these alternatives are available:

o Choosing the packing algorithm

e Manual initialization

e Initializing code—copying ROM to RAM.

Linking your application __4

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Choosing a packing algorithm

To override the default packing algorithm, write for example:

initialize by copy with packing = lzw { readwrite };

To read more about the available packing algorithms, see /nitialize directive, page 323.

Manual initialization

The initializemanually directive lets you take complete control over initialization.
For each involved section, ILINK creates an extra section that contains the initialization
data, but makes no arrangements for the actual copying. This directive is, for example,
useful for overlays:

/* Sections MYOVERLAY1l and MYOVERLAY2 will be overlaid in
MyOverlay */

define overlay MyOverlay { section MYOVERLAY1l };

define overlay MyOverlay { section MYOVERLAY2 };

/* Split the overlay sections but without initialization during
system startup */
initialize manually { section MYOVERLAY* };

/* Place the initializer sections in a block each */
define block MyOverlaylInRom { section MYOVERLAY1l_ init };
define block MyOverlay2InRom { section MYOVERLAY2_ init };

/* Place the overlay and the initializers for it */
place in RAM { overlay MyOverlay };
place in ROM { block MyOverlaylInRom, block MyOverlay2InRom };

The application can then start a specific overlay by copying, as in this case, ROM to
RAM:

#include <string.h>
/* Declare the sections. */

#pragma section = "MyOverlay"
#pragma section = "MyOverlaylInRom"

Part |. Using the build tools 87

Linking considerations

88

IAR C/C++ Development Guide
Compiling and Linking for SH

/* Function that switches in image 1 into the overlay. */

void SwitchToOverlayl ()
{

char *targetAddr = _ section_begin("MyOverlay") ;

char *sourceAddr = _ section_begin("MyOverlaylInRom") ;
char *sourceAddrEnd = __section_end("MyOverlaylInRom") ;
int size = sourceAddrEnd - sourceAddr;

memcpy (targetAddr, sourceAddr, size);

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. This can be
easily achieved by ILINK for whole code regions.

List the code sections that should be initialized in an initialize directive and then
place the initializer and initialized sections in ROM and RAM, respectively.

In the linker configuration file, it can look like this:

/* Split the RAMCODE section into a readonly and a readwrite
section */
initialize by copy { section RAMCODE };

/* Place both in a block */
define block RamCode { section RAMCODE };
define block RamCodeInit { section RAMCODE_init };

/* Place them in ROM and RAM */
place in ROM { block RamCodeInit };
place in RAM { block RamCode };

The block definitions makes it possible to refer to the start and end of the blocks from
the application.

For more examples, see Interaction between the tools and your application, page 163.

Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite };

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Linking your application __4

To reduce the ROM space that is needed, it might be useful to compress the data with
one of the available packing algorithms. For example,

initialize by copy with packing = lzw { readonly, readwrite };

To read more about the available compression algorithms, see Initialize directive, page
323.

Because the function __low_level_ init, if present, is called before initialization, it,
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If anything else should not be copied, include it in an except clause. This can apply to,
for example, the interrupt vector table.

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
except { section .intvec, /* Don’t copy
interrupt table */
section .init_array }; /* Don’'t copy
C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more details, see Interaction between the tools and your
application, page 163.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 163.

Part |. Using the build tools 89

Hints for troubleshooting

90

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option
--no_library_search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Using a prebuilt library,
page 95.

PRODUCING OTHER OUTPUT FORMATS THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWARF format. To convert that
format into a format suitable for programming PROM/flash, see The IAR ELF
Tool—ielftool, page 350.

Hints for troubleshooting

IAR C/C++ Development Guide
Compiling and Linking for SH

ILINK has several features that can help you manage code and data placement correctly,
for example:
o Messages at link time, for examples when a relocation error occurs

e The --1og option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --log, page
241

o The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 242.
RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an
incompatible type, or for many other reasons.

A relocation error produced by ILINK can look like this:

Error[Lp002]: relocation failed: out of range or illegal value
Kind : R_XXX_YYY[0x1]
Location : 0x40000448

"myfunc" + 0x2c

Module: somecode.o

Section: 7 (.text)

Offset: O0Ox2c
Destination: 0x9000000c

"read"

Linking your application __4

Module: read.o(iolib.a)
Section: 6 (.text)
Offset: 0x0

The message entries are described in this table:

Message entry Description

Kind The relocation directive that failed. The directive depends on the
instruction used.

Location The location where the problem occurred, described with the following
details:
* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x40000448 and
"myfunc" + 0x2c.
* The module, and the file. In this example, the
module somecode. o.
* The section number and section name. In this example, section number
7 with the name . text.
* The offset, specified in number of bytes, in the section. In this example,
0x2c.

Destination The target of the instruction, described with the following details:

* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x9000000¢ and
"read" (thus, no offset).

* The module, and when applicable the library. In this example, the
module read. o and the library i0lib.a.

* The section number and section name. In this example, section number
6 with the name . text.

* The offset, specified in number of bytes, in the section. In this example,
0x0.

Table 8: Description of a relocation error

Possible solutions

In this case, the distance from the instruction in getchar to __read is too long for the
branch instruction.

Possible solutions include ensuring that the two . text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Part |. Using the build tools 9l

Hints for troubleshooting

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

IAR C/C++ Development Guide
92 Compiling and Linking for SH

The DLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can optimize it for your application.

Introduction to the runtime environment

The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports Standard C and C++, including the standard template
library. The runtime environment consists of the runtime library, which contains the
functions defined by the C and the C++ standards, and include files that define the
library interface (the system header files).

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files, and you can find them in the product subdirectories
sh\1lib and sh\src\1lib, respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:
e Support for hardware features:

e Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

e Peripheral unit registers and interrupt definitions in include files
o Target-specific arithmetic support modules, like floating-point coprocessors.

e Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

o A floating-point environment (fenv) that contains floating-point arithmetics support,
see fenv.h, page 312.

e Special compiler support, for instance functions for switch handling or integer
arithmetics.

Part |. Using the build tools

93

Introduction to the runtime environment

94

IAR C/C++ Development Guide
Compiling and Linking for SH

The runtime environment support and the size of the heap must be tailored for the
specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

SETTING UP THE RUNTIME ENVIRONMENT

The IAR DLIB runtime environment can be used as is together with the debugger.
However, to run the application on hardware, you must adapt the runtime environment.
Also, to configure the most code-efficient runtime environment, you must determine
your application and hardware requirements. The more functionality you need, the
larger your code will become.

This is an overview of the steps involved in configuring the most efficient runtime

environment for your target hardware:

Choose which runtime library object file to use

It is not necessary to specify a library file explicitly, as ILINK automatically uses the
correct library file. See Using a prebuilt library, page 95.

Choose which predefined runtime library configuration to use—Near or Full

You can configure the level of support for certain library functionality, for example,
locale, file descriptors, and multibyte characters. If you do not specify anything, a
default library configuration file that matches the library object file is automatically
used. To specify alibrary configuration explicitly, use the --d1ib_config compiler
option. See Library configurations, page 108.

Optimize the size of the runtime library

You can specify the formatters used by the functions print £, scanf, and their
variants, see Choosing formatters for printf and scanf, page 97. You can also specify

the size and placement of the stack and the heap, see Setting up the stack, page 86,
and Setting up the heap, page 86, respectively.

Include debug support for runtime and I/O debugging

The library offers C-SPY debug support and if you want to debug your application,
you must choose to use it, see Application debug support, page 99

Adapt the library functionality

Some library functions must be customized to suit your target hardware, for example
low-level functions for character-based I/O, environment functions, signal functions,
and time functions. This can be done without rebuilding the entire library, see
Overriding library modules, page 101.

Customize system initialization

It is likely that you need to customize the source code for system initialization, for
example, your application might need to initialize memory-mapped special function
registers, or omit the default initialization of data sections. You do this by

The DLIB runtime environment __¢

customizing the routine __low_level_ init, which is executed before the data
sections are initialized. See System startup and termination, page 104 and
Customizing system initialization, page 107.

Configure your own library configuration files

In addition to the prebuilt library configurations, you can make your own library
configuration, but that requires that you rebuild the library. This gives you full
control of the runtime environment. See Building and using a customized library,
page 103.

Check module consistency

You can use runtime model attributes to ensure that modules are built using
compatible settings, see Checking module consistency, page 123.

Manage a multithreaded environment

In a multithreaded environment, you must adapt the runtime library to treat all library
objects according to whether they are global or local to a thread. See Managing a
multithreaded environment, page 118.

Using a prebuilt library

The prebuilt runtime libraries are configured for different combinations of these
features:

Code model
Size of the double floating-point type
Hardware floating-point unit

Library configuration—Normal, or Full.

CHOOSING A LIBRARY

In the IDE, the linker will include the correct library object file and library configuration
file based on the options you select. See the /AR Embedded Workbench® IDE User
Guide for additional information.

If you build your application from the command line, a default library configuration is
used automatically, However, you can specity the library configuration explicitly for the
compiler:

--dlib_config C:\...\dlshldff.h

You can find the library object files and the library configuration files in the subdirectory
sh\1lib\.

Part |. Using the build tools 95

Using a prebuilt library

96

IAR C/C++ Development Guide
Compiling and Linking for SH

GROUPS OF LIBRARY FILES
The libraries are delivered in these groups of library functions:

® C/C++ standard library functions

Contains all functions defined by Standard C and C++, for example functions like
printf and scanf.

o Debug support functions

Library filename syntax

The names of the libraries are constructed in this way:
<lib><cpu><code_model><double_size><fpu><lib_config>.a
where

<1ib>is dl for the IAR DLIB runtime environment
<cpu> 1S sh

<code_model>isone of s|m|1|h

<double_size> is either £ for 32 bits or d for 64 bits

°
°
°
°
® <fpu> is either £ for FPU support or n for no FPU support
°

<1ib_config> is either n or £ for the Normal or the Full library configuration,

respectively.

Note: The library configuration file has the same base name as the library.

Library files for debug support functions

The names of the library files are constructed in the following way:
dbg<code_model><debug_IO>.a

where <debug_10> is d for debug I/O support and n for no debug I/O support.
More specifically, this means:

dbg{s|m|1l|h}{d|n}.a

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, you can
customize parts of a library without rebuilding it.

These items can be customized:

Items that can be customized

The DLIB runtime environment __¢

Described in

Formatters for printf and scanf
Startup and termination code
Low-level input and output

File input and output

Low-level environment functions
Low-level signal functions
Low-level time functions

Size of heaps, stacks, and sections

Choosing formatters for printf and scanf, page 97
System startup and termination, page 104
Standard streams for input and output, page 109
File input and output, page |12

Environment interaction, page 115

Signal and raise, page 116

Time, page 117

Stack considerations, page 161

Heap considerations, page 162

Placing code and data—the linker configuration file,
page 74

Table 9: Customizable items

For a description about how to override library modules, see Overriding library

modules, page 101.

Choosing formatters for printf and scanf

To override the default formatter for all the print f- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, you can optimize these functions even further, see
Configuration symbols for printf and scanf, page 111.

CHOOSING PRINTF FORMATTER

The print £ function uses a formatter called _pPrint£. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the

Standard C/EC++ library.

This table summarizes the capabilities of the different formatters:

Formatting capabilities

_PrintfTiny _PrintfSmall _PrintfLarge _PrintfFull

Basic specifiers ¢, d, 1, 0, p, s, U, X, X,

and %

Yes Yes Yes

Table 10: Formatters for printf

Part |. Using the build tools

97

Choosing formatters for printf and scanf

98

IAR C/C++ Development Guide
Compiling and Linking for SH

Formatting capabilities _PrintfTiny _PrintfSmall _PrintfLarge _PrintfFull
Multibyte support No T T T
Floating-point specifiers a, and A No No No Yes
Floating-point specifiers e, E, £, F, g,and No No Yes Yes

G

Conversion specifier n No No Yes Yes
Format flag space, +, -, #, and 0 No Yes Yes Yes
Length modifiers h, 1, L, s, t, and 2 No Yes Yes Yes

Field width and precision, including * No Yes Yes Yes

long long support No No Yes Yes

Table 10: Formatters for printf (Continued)

T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 111.

Specifying the print formatter in the IDE

To use any other formatter than the default (Small), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options

page.
Specifying printf formatter from the command line

To use any other formatter than the default (_Print £Full), add one of these ILINK
command line options:

--redirect __Printf=__PrintfTiny
--redirect __Printf=__PrintfSmall
--redirect __Printf=__PrintfLarge

CHOOSING SCANF FORMATTER

In a similar way to the print £ function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the Standard C/C++ library.

This table summarizes the capabilities of the different formatters:

Formatting capabilities _ScanfSmall _ScanfLarge _ScanfFull

Basic specifiers ¢, d, 1,0, p, s, 14, X, X, and $ Yes Yes Yes

Table 11: Formatters for scanf

The DLIB runtime environment __¢

Formatting capabilities _ScanfSmall _ScanfLarge _ScanfFull
Multibyte support T T T
Floating-point specifiers a, and A No No Yes
Floating-point specifiers e, E, £, F,g,and G No No Yes
Conversion specifier n No No Yes

Scan set [and] No Yes Yes
Assignment suppressing * No Yes Yes

long long support No No Yes

Table 11: Formatters for scanf (Continued)

T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 111.

Specifying scanf formatter in the IDE

To use any other formatter than the default (Small), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options

page.
[Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of these ILINK
command line options:

--redirect __Scanf=__ScanfSmall
--redirect __Scanf=__ScanfLarge

Application debug support

In addition to the tools that generate debug information, there is a debug version of the
DLIB low-level interface (typically, I/O handling and basic runtime support). If your
application uses this interface, you can either use the debug version of the interface or
you must implement the functionality of the parts that your application uses.

INCLUDING DEBUG SUPPORT

You can make the library provide debugging support for:

e Handling program abort, exit, and assertions

e [/O handling, which means that stdin and stdout are redirected to the C-SPY
Terminal I/O window, and that it is possible to access files on the host computer
during debugging.

Part |. Using the build tools 99

Application debug support

100

IAR C/C++ Development Guide
Compiling and Linking for SH

To set linker options for debug support in the IDE, choose Project>Options and select
the Linker category. On the Library page, select the Include C-SPY debugging
support option.

On the command line, use the linker option --debug_1lib.

Note: If you enable debug information during compilation, this information will be
included also in the linker output, unless you use the linker option --strip.

THE DEBUG LIBRARY FUNCTIONALITY

The debug library is used for communication between the application being debugged
and the debugger itself. The debugger provides runtime services to the application via
the low-level DLIB interface; services that allow capabilities like file and terminal I/O
to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are
implemented. Or, if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.
Another debugging purpose can be to produce debug trace printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you linked it with the ILINK options for C-SPY debug support.
In this case, the debugger will automatically set a breakpoint at the __DebugBreak
function. When the application calls, for example, open; the __DebugBreak function
is called, which will cause the application to break and perform the necessary services.
The execution will then resume.

If you have included the runtime library debugging support, C-SPY will make the
following responses when the application uses the DLIB low-level interface:
Function in DLIB

Response by C-SPY
low-level interface

abort Notifies that the application has called abort

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application was reached
__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O

window; all other files will read the associated host file

remove Writes a message to the Debug Log window and returns -1

Table 12: Functions with special meanings when linked with debug library

The DLIB runtime environment __¢

Function in DLIB

Response by C-SPY
low-level interface

rename Writes a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts

__seek Seeks in the associated host file on the host computer

system Writes a message to the Debug Log window and returns -1

time Returns the time on the host computer

__write stdin, stdout, and stderr will be directed to the Terminal I/O

window, all other files will write to the associated host file

Table 12: Functions with special meanings when linked with debug library (Continued)

THE C-SPY TERMINAL 1/O0 WINDOW

To make the Terminal I/O window available, the application must be linked with support
for I/O debugging. This means that when the functions __read or __write are called
to perform I/O operations on the streams stdin, stdout, or stderr, data will be sent
to or read from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench® IDE User Guide for more information about the
Terminal I/O window.

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write bufferedis
included in the DLIB library. This module buffers the output and sends it to the debugger
one line at a time, speeding up the output. Note that this function uses about 80 bytes of
RAM memory.

To use this feature you can either choose Project>Options>Linker>Library and select
the option Buffered write in the IDE, or add this to the linker command line:

--redirect ___write=___write_buffered

Overriding library modules

The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/0 and cstartup.
This can be done without rebuilding the entire library. This section describes the

Part |. Using the build tools 101

Overriding library modules

102

IAR C/C++ Development Guide
Compiling and Linking for SH

procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
sh\src\1ib directory.

Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.
Overriding library modules using the IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

Copy the appropriate 1ibrary module.c file to your project directory.

Make the required additions to the file (or create your own routine, using the default
file as a model).

Add the customized file to your project.

Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

Copy the appropriate 1ibrary module.c to your project directory.

Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

Compile the modified file using the same options as for the rest of the project:
iccsh library_module.c
This creates a replacement object module file named 1ibrary module.o.

Note: The code model, include paths, and the library configuration file must be the
same for 1ibrary_module as for the rest of your code.

Add library module.o to the ILINK command line, either directly or by using an
linker configuration file, for example:

ilinksh Iibrary_module.o

Make sure that 1ibrary module.o is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.

The DLIB runtime environment __¢

Run ILINK to rebuild your application.

This will use your version of 1ibrary_module. o, instead of the one in the library. For
information about the ILINK options, see the chapter Linker options.

Building and using a customized library
Building a customized library is a complex process. Therefore, consider carefully

whether it is really necessary.

You must build your own library when you want to define your own library
configuration with support for locale, file descriptors, multibyte characters, et cetera.

In those cases, you must:

e Set up a library project

o Make the required library modifications

e Build your customized library

e Finally, make sure your application project will use the customized library.

Note: To build IAR Embedded Workbench projects from the command line, use the

IAR Command Line Build Utility (iarbuild.exe). However, no make or batch files
for building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IAR Embedded Workbench® IDE User Guide.

SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template uses the Full library
configuration, see Table 13, Library configurations, page 108.

In the IDE, modify the generic options in the created library project to suit your
application, see Basic project configuration, page S1.

Note: If you set an option on file level (file level override), no options on higher levels
that operate on files will affect that file.
MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h. This read-only file

Part |. Using the build tools 103

System startup and termination

104

describes the configuration possibilities. Your library also has its own library
configuration file d1shlibraryname.h, which sets up that specific library with full
library configuration. For more information, see Table 9, Customizable items, page 97.

The library configuration file is used for tailoring a build of the runtime library, and for
tailoring the system header files.
Modifying the library configuration file

In your library project, open the file d1shlibraryname.h and customize it by setting
the values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY
After you build your library, you must make sure to use it in your application project.
In the IDE you must do these steps:

Choose Project>Options and click the Library Configuration tab in the General
Options category.

Choose Custom DLIB from the Library drop-down menu.
In the Configuration file text box, locate your library configuration file.

Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

System startup and termination

IAR C/C++ Development Guide
Compiling and Linking for SH

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cexit.s, and low_level_init.cor low_level_init.s located in
the sh\src\1ib directory.

For information about how to customize the system startup code, see Customizing
system initialization, page 107.
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static
[initialization flag)
I
Initialization

Figure 10: Target hardware initialization phase

The DLIB runtime environment __¢

o When the CPU is reset it will jump to the program entry label

_iar_program_start in the system startup code.

The stack pointer is initialized to the end of the cSTACK block

The function __low_level_init is called if you defined it, giving the application
a chance to perform early initializations.

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization

T User code

Return from

main

Figure 11: C/C++ initialization phase

exit()

e Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_init returns zero. For more details,
see Initialization at system startup, page 77

Part |. Using the build tools 105

System startup and termination

106

IAR C/C++ Development Guide
Compiling and Linking for SH

e Static C++ objects are constructed

o The main function is called, which starts the application.

For an overview of the initialization phase, see Application execution—an overview,
page 46.

SYSTEM TERMINATION

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

Figure 12: System termination phase

An application can terminate normally in two different ways:

e Return from the main function
e Call the exit function.
Because the C standard states that the two methods should be equivalent, the system

startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform these operations:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the C
function atexit

Close all open files
Call __exit

When __exit is reached, stop the system.

The DLIB runtime environment __¢

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to do anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit (int) function.

C-SPY interface to system termination

If your project is linked with the C-SPY debug library semihosted interface, the normal
__exit and abort functions are replaced with special ones. C-SPY will then recognize
when those functions are called and can take appropriate actions to simulate program
termination. For more information, see Application debug support, page 99.

Customizing system initialization

It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data sections performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which s called from cstartup . s before the data sections are initialized. Modifying the
file cstartup directly should be avoided.

The code for handling system startup is located in the source files cstartup.s and
low_level_init.c, located in the sh\src\1ib directory.

Note: Normally, you do not need to customize cexit.s.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 103.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s, you do not have to rebuild the library.

__LOW_LEVEL_INIT

Two skeleton low-level initialization files are supplied with the product: a C source file,
low_level_init.c and an alternative assembler source file, low_level_init.s.
The latter is part of the prebuilt runtime environment. The only limitation using the C
source version is that static initialized variables cannot be used within the file, as
variable initialization has not been performed at this point.

The value returned by __low_level init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.

Part |. Using the build tools 107

Library configurations

108

MODIFYING THE FILE CSTARTUP.S

As noted earlier, you should not modify the file cstartup. s if a customized version of
__low_level_init is enough for your needs. However, if you do need to modify the
file cstartup.s, we recommend that you follow the general procedure for creating a
modified copy of the file and adding it to your project, see Overriding library modules,
page 101.

Note that you must make sure that the linker uses the start label used in your version of
cstartup. s. For information about how to change the start label used by the linker, see
--entry, page 238.

Library configurations

IAR C/C++ Development Guide
Compiling and Linking for SH

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The
configuration file is used for tailoring a build of a runtime library, and tailoring the
system header files used when compiling your application. The less functionality you
need in the runtime environment, the smaller it becomes.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h. This read-only file
describes the configuration possibilities.

These predefined library configurations are available:

Library configuration Description

Normal DLIB (default) No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hexadecimal floating-point
numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hexadecimal floating-point
numbers in strtod.

Table 13: Library configurations

CHOOSING A RUNTIME CONFIGURATION
To choose a runtime configuration, use one of these methods:

e Default prebuilt configuration—if you do not specify a library configuration
explicitly you will get the default configuration. A configuration file that matches
the runtime library object file will automatically be used.

The DLIB runtime environment __¢

e Prebuilt configuration of your choice—to specify a runtime configuration explicitly,
use the --dlib_config compiler option. See --dlib_config, page 212.

e Your own configuration—you can define your own configurations, which means
that you must modify the configuration file. Note that the library configuration file
describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page
103.

The prebuilt libraries are based on the default configurations, see Table 13, Library
configurations.

Standard streams for input and output

Standard communication channels (streams) are defined in stdio.h. If any of these
streams are used by your application, for example by the functions printf and scanf,
you must customize the low-level functionality to suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/0. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the sh\src\1ib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 103. Note that customizing
the low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see Application debug support, page 99.

Example of using __write
The code in this example uses memory-mapped 1/O to write to an LCD display:

#include <stddef.h>

_ no_init volatile unsigned char 1cdIO @ OxFFFF8000;

Part |. Using the build tools 109

Standard streams for input and output

size_t __write(int handle,
const unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for the command to flush all handles */
if (handle == -1)
{

return O0;

/* Check for stdout and stderr

(only necessary if FILE descriptors are enabled.) */
if (handle != 1 && handle != 2)
{

return -1;

for (/* Empty */; bufSize > 0; --bufSize)
{

1lcdIO = *buf;

++buf;

++nChars;

return nChars;

}

Note: A call to __write where buf has the value NULL is a command to flush the
handle. When the handle is -1, all streams should be flushed.

Example of using __read
The code in this example uses memory-mapped I/O to read from a keyboard:
#include <stddef.h>
_ no_init volatile unsigned char kbIO @ OxFFFF8004;
size_t _ _read(int handle,
unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for stdin
(only necessary if FILE descriptors are enabled) */

IAR C/C++ Development Guide
110 Compiling and Linking for SH

if (handle != 0)
{

return -1;

The DLIB runtime environment __¢

for (/*Empty*/; bufSize > 0; --bufSize)

{

unsigned char ¢ = kbIO;

if (¢ == 0)
break;
*buf++ = c;

++nChars;

return nChars;

}

For information about the @ operator, see Controlling data and function placement in

memory, page 173.

Configuration symbols for printf and scanf

When you set up your application project, you typically need to consider what print£
and scanf formatting capabilities your application requires, see Choosing formatters

for printf and scanf, page 97.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you must rebuild the runtime library.

The default behavior of the print £ and scanf formatters are defined by configuration

symbols in the file DLib_Defaults.h.

These configuration symbols determine what capabilities the function print£ should

have:

Printf configuration symbols

Includes support for

_DLIB_PRINTF_MULTIBYTE
_DLIB_PRINTF_LONG_LONG
_DLIB_PRINTF_SPECIFIER_FLOAT
_DLIB_PRINTF_SPECIFIER_A
_DLIB_PRINTF_SPECIFIER_N
_DLIB_PRINTF_QUALIFIERS

Multibyte characters

Long long (11 qualifier)
Floating-point numbers
Hexadecimal floating-point numbers
Output count (%n)

Qualifiers h, 1, L, v, t,and z

Table 14: Descriptions of printf configuration symbols

Part |. Using the build tools 111

File input and output

112

Printf configuration symbols

Includes support for

_DLIB_PRINTF_FLAGS

_DLIB_PRINTF_WIDTH_AND_PRECISION

_DLIB_PRINTF_CHAR_BY_CHAR

Flags -, +, #,and 0
Width and precision

Output char by char or buffered

Table 14: Descriptions of printf configuration symbols (Continued)

When you build a library, these configurations determine what capabilities the function

scanf should have:

Scanf configuration symbols

Includes support for

_DLIB_SCANF_MULTIBYTE
_DLIB_SCANF_LONG_LONG

_DLIB_SCANF_SPECIFIER_FLOAT

Multibyte characters
Long long (11 qualifier)

Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%1n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, 1, t, z,and L
_DLIB_SCANF_SCANSET Scanset ([*])
_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*1)

Table 15: Descriptions of scanf configuration symbols

CUSTOMIZING FORMATTING CAPABILITIES
To customize the formatting capabilities, you must;
Set up a library project, see Building and using a customized library, page 103.

Define the configuration symbols according to your application requirements.

File input and output

IAR C/C++ Development Guide
Compiling and Linking for SH

The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions, you must customize them to suit your hardware. To simplify
adaptation to specific hardware, all I/O functions call a small set of primitive functions,
each designed to accomplish one particular task; for example, __open opens a file, and
__write outputs characters.

CR—

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 108. In other words, file I/O is
supported when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If
not enabled, functions taking a FILE * argument cannot be used.

The DLIB runtime environment __¢

Template code for these 1/O files are included in the product:

/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.
__open open.c Opens a file.

__read read.c Reads a character buffer.
__write write.c Writes a character buffer.
remove remove.c Removes a file.

rename rename.c Renames a file.

Table 16: Low-level 1/0 files

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The 1/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level 1I/O functions are linked for interaction with C-SPY. For more information,
see Application debug support, page 99.

Locale

Localeis a part of the C language that allows language- and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

e With locale interface, which makes it possible to switch between different locales
during runtime

e Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES
The level of locale support in the prebuilt libraries depends on the library configuration.

o All prebuilt libraries support the C locale only

Part |. Using the build tools 113

Locale

114

IAR C/C++ Development Guide
Compiling and Linking for SH

o All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding at runtime.

e Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you must rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between these locales:
e The Standard C locale

o The POSIX locale

o A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1

#define _LOCALE_USE_C /* C locale */

#define _LOCALE_USE_EN_US /* American English */
#define _LOCALE_USE_EN_GB /* British English */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 103.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to O (zero). This means that a hardwired locale
is used—by default the Standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

The DLIB runtime environment __¢

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the Standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern Lc_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang REGION
or
lang REGION.encoding

The 1ang part specifies the language code, and the REGTON part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang REGION part matches the _LOCALE USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction

According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

Part |. Using the build tools 115

Signal and raise

116

THE GETENV FUNCTION

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\OKey2=Value2\0”;
_environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
sh\src\1lib directory. For information about overriding default library modules, see
Overriding library modules, page 101.

THE SYSTEM FUNCTION

If you need to use the system function, you must implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page
103.

Note: If you link your application with support for I/O debugging, the functions
getenv and system are replaced by C-SPY variants. For further information, see
Application debug support, page 99.

Signal and raise

IAR C/C++ Development Guide
Compiling and Linking for SH

Default implementations of the functions signal and raise are available. If these
functions do not provide the functionality that you need, you can implement your own
versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the sh\src\1ib directory. For information about
overriding default library modules, see Overriding library modules, page 101.

The DLIB runtime environment __¢

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page
103.

To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the sh\src\1ib directory. For
information about overriding default library modules, see Overriding library modules,
page 101.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page
103.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for /O debugging, the functions clock
and time are replaced by C-SPY variants that return the host clock and time
respectively. For further information, see Application debug support, page 99.

Strtod

The function strtod does not accept hexadecimal floating-point strings in libraries
with the Normal library configuration. To make a library do so, you must rebuild the
library, see Building and using a customized library, page 103. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert

If you linked your application with support for runtime debugging, an assert will print a
message on stdout. If this is not the behavior you require, you must add the source file
xreportassert.c to your application project. The __ReportAssert function
generates the assert notification. You can find template code in the sh\src\1ib
directory. For further information, see Building and using a customized library, page
103. To turn off assertions, you must define the symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs. See NDEBUG, page 304.

Part |. Using the build tools 117

Atexit

118

Atexit

The linker allocates a static memory area for atexit function calls. By default, the
number of calls to the atexit function are limited to 32 bytes. To change this limit, see
Setting up the atexit limit, page 86.

Hardware support

If you are generating code for an SH microprocessor with a hardware floating-point unit,
the compiler will always try to take advantage of it for floating-point operations.

Managing a multithreaded environment

IAR C/C++ Development Guide
Compiling and Linking for SH

In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the
static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

There are three possible scenarios, and you need to consider which one that applies to
you:

e If you are using an RTOS that supports the multithreading provided by the DLIB
library, the RTOS and the DLIB library will handle multithreading which means
you do not need to adapt the DLIB library.

e If you are using an RTOS that does not support or only partly supports the
multithreading provided by the DLIB library, you probably need to adapt both the
RTOS and the DLIB library.

e If you are not using an RTOS, you must adapt the DLIB library to get support for
multithreading.

MULTITHREAD SUPPORT IN THE DLIB LIBRARY

The DLIB library uses two kinds of locks—system locks and file stream locks. The file
stream locks are used as guards when the state of a file stream is updated, and are only
needed in the Full library configuration. The following library objects are guarded with
system locks:

o The heap, in other words when malloc, new, free, delete, realloc, or calloc
is used.

The DLIB runtime environment __¢

The file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, fflush, or freopen is used.

The signal system, in other words when signal is used.
The temporary file system, in other words when tmpnam is used.

Dynamically initialized function local objects with static storage duration.

These library objects use TLS:

Library objects using TLS When these functions are used

Error functions errno, strerror

Locale functions localeconv, setlocale

Time functions asctime, localtime, gmtime, mktime

Multibyte functions mbrlen, mbrtowc, mbsrtowe, mbtowc, wertomb,

wcsrtomb, wctomb

Rand functions rand, srand
Miscellaneous functions atexit, strtok
C++ exception engine N/A

Table 17: Library objects using TLS

ENABLING MULTITHREAD SUPPORT

To enable multithread support in the library, you must:

Implement code for the library’s system locks interface

If file streams are used, implement code for the library’s file stream locks interface
or redirect the interface to the system locks interface (using the linker option
--redirect)

Implement source code that handles thread creation, thread destruction, and TLS
access methods for the library

Modity the linker configuration file accordingly

If any of the C++ variants are used, use the compiler option --guard_calls.

Otherwise, function static variables with dynamic initializers might be initialized
simultaneously by several threads.

Use the linker option --threaded_1ib, which automatically configures the
runtime library for use with threads.

You can find the required declaration of functions and definitions of macros in the
DLib_Threads.h file, which is included by yvals.h.

Part |. Using the build tools 119

Managing a multithreaded environment

120

IAR C/C++ Development Guide
Compiling and Linking for SH

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR Systems tools.

System locks interface

This interface must be fully implemented for system locks to work:

typedef void *__iar_Rmtx; /* Lock info object */
void __iar_system_Mtxinit(__iar Rmtx *); /* Initialize a system
lock */
void __ jar_system_Mtxdst(__iar_Rmtx *);/*Destroy a system lock */
void __iar_system Mtxlock(__iar_ Rmtx *); /* Lock a system lock */
void __iar_system Mtxunlock(__iar_Rmtx *); /* Unlock a system
lock */

The lock and unlock implementation must survive nested calls.

File streams locks interface

This interface is only needed for the Full library configuration. If file streams are used,
they can either be fully implemented or they can be redirected to the system locks
interface. This interface must be implemented for file streams locks to work:

typedef void *__iar_Rmtx; /* Lock info object */
void __iar_file Mtxinit(__iar Rmtx *);/*Initialize a file lock */
void __iar_file_Mtxdst(__iar_Rmtx *); /* Destroy a file lock */
void __iar_file_Mtxlock(__iar_Rmtx *); /* Lock a file lock */
void _ _jar_file_Mtxunlock(__iar_Rmtx *); /* Unlock a file lock */

The lock and unlock implementation must survive nested calls.

DLIB lock usage
The number of locks that the DLIB library assumes exist are:

e _FOPEN_MAX—the maximum number of file stream locks. These locks are only
used in the Full library configuration, in other words only if both the macro symbols
_DLIB_FILE_DESCRIPTOR and _FILE_OP_LOCKS are true.

® _MAX_LOCK—the maximum number of system locks.

Note that even if the application uses fewer locks, the DLIB library will initialize and
destroy all of the locks above.

For information about the initialization and destruction code, see xsyslock.c.

The DLIB runtime environment __¢

TLS handling

The DLIB library supports TLS memory areas for two types of threads: the main thread
(the main function including the system startup and exit code) and secondary threads.

The main thread’s TLS memory area:
Is automatically created and initialized by your application’s startup sequence

Is automatically destructed by the application’s destruct sequence

°
°
e Islocated in the section __DLIB_PERTHREAD
e Exists also for non-threaded applications.
Each secondary thread’s TLS memory area:

e Must be manually created and initialized

o Must be manually destructed

e Islocated in a manually allocated memory area.

If you need the runtime library to support secondary threads, you must override the
function:

void *__iar_dlib_perthread_access (void *symbp) ;

The parameter is the address to the TLS variable to be accessed—in the main thread’s
TLS area—and it should return the address to the symbol in the current TLS area.

Two interfaces can be used for creating and destroying secondary threads. You can use
the following interface that allocates a memory area on the heap and initializes it. At
deallocation, it destroys the objects in the area and then frees the memory.

void *__iar_dlib_perthread_allocate(void) ;
void __iar_dlib_perthread_deallocate(void *);

Alternatively, if the application handles the TLS allocation, you can use this interface
for initializing and destroying the objects in the memory area:

void __iar_dlib_perthread_initialize(void *);
void __iar_dlib_perthread_destroy(void *);

These macros can be helpful when you implement an interface for creating and
destroying secondary threads:

Macro Description

__IAR DLIB_PERTHREAD_SIZE The size needed for the TLS memory area.

Table 18: Macros for implementing TLS allocation

Part |. Using the build tools 121

Managing a multithreaded environment

122

IAR C/C++ Development Guide
Compiling and Linking for SH

Macro Description

__TIAR DLIB_PERTHREAD_INIT_SIZE The initializer size for the TLS memory area.
You should initialize the rest of the TLS
memory area, up to
__TAR_DLIB_PERTHREAD_SIZE to zero.

__IAR DLIB_PERTHREAD_ SYMBOL_ The offset to the symbol in the TLS memory
OFFSET (symbolptr) area.

Table 18: Macros for implementing TLS allocation (Continued)

Note that the size needed for TLS variables depends on which DLIB resources your
application uses.

This is an example of how you can handle threads:

#include <yvals.h>

/* A thread's TLS pointer */
void _DLIB_TLS_MEMORY *TLSp;

/* Are we in a secondary thread? */
int InSecondaryThread = 0;

/* Allocate a thread-local TLS memory
area and store a pointer to it in TLSp. */
void AllocateTLS()
{
TLSp = __iar_dlib_perthread_allocate() ;

/* Deallocate the thread-local TLS memory area. */
void DeallocateTLS()
{

__dar dlib_perthread_deallocate (TLSp) ;

/* Access an object in the
thread-local TLS memory area. */
void _DLIB_TLS_MEMORY *__iar_dlib_perthread_access(
void _DLIB_TLS_MEMORY *symbp)

The DLIB runtime environment __¢

char _DLIB_TLS_MEMORY *p = 0;
if (InSecondaryThread)

p = (char _DLIB_TLS_MEMORY *) TLSp;
else
p = (char _DLIB_TLS_MEMORY *)
__segment_begin ("__DLIB_PERTHREAD") ;
p += __IAR_DLIB_PERTHREAD_SYMBOL_OFFSET (symbp) ;

return (void _DLIB_TLS_MEMORY *) p;
}

The TLSp variable is unique for each thread, and must be exchanged by the RTOS or
manually whenever a thread switch occurs.
TLS IN THE LINKER CONFIGURATION FILE

Normally, the linker automatically chooses how to initialize static data. If threads are
used, the main thread’s TLS memory area must be initialized by plain copying because
the initializers are used for each secondary thread’s TLS memory area as well. This is
controlled by the following statement in your linker configuration file:

initialize by copy with packing = none {section __DLIB_PERTHREAD };

Checking module consistency

This section introduces the concept of runtime model attributes, a mechanism that you
can use to ensure that modules are built using compatible settings.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, if you have a UART that can run in two modes, you can
specify a runtime model attribute, for example uart. For each mode, specity a value,
for example model and mode2. Declare this in each module that assumes that the UART
is in a particular mode.

The tools provided by IAR Systems use a set of predefined runtime model attributes to
automatically ensure module consistency.
RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have

Part |. Using the build tools 123

Checking module consistency

124

IAR C/C++ Development Guide
Compiling and Linking for SH

considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker uses several ways of
checking them.

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Obiject file Color Taste
filel blue not defined
file2 red not defined
file3 red *

filed red spicy
fileb red lean

Table 19: Example of runtime model attributes

In this case, £ilel cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, file4 and file5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
filed or £ileb5, but not with both.
USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example:

#pragma rtmodel="uart", "model"
For detailed syntax information, see rtmodel, page 289.

You can also use the rtmodel assembler directive to specify runtime model attributes
in your assembler source code. For example:

rtmodel "color", "red"
For detailed syntax information, see the /AR Assembler Reference Guide for SH.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Assembler language
interface

When you develop an application for an embedded system, there might be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the SH microprocessor that
require precise timing and special instruction sequences.

This chapter describes the available methods for this and some C alternatives,
with their advantages and disadvantages. It also describes how to write
functions in assembler language that work together with an application written
in C or C++.

Finally, the chapter covers how functions are called and how you can
implement support for call frame information in your assembler routines for
use in the C-SPY® Call Stack window.

Mixing C and assembler

The IAR C/C++ Compiler for SH provides several ways to access low-level resources:

o Modules written entirely in assembler
e Intrinsic functions (the C alternative)
e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides many predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be very useful in, for example, time-critical
routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

Part |. Using the build tools 125

Mixing C and assembler

126

IAR C/C++ Development Guide
Compiling and Linking for SH

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic

functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. This gives several benefits compared to using inline assembler:

o The function call mechanism is well-defined

o The code will be easy to read

o The optimizer can work with the C or C++ functions.

This causes some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. However, the
compiler will also assume that all scratch registers are destroyed by an inline assembler

instruction. In many cases, the overhead of the extra instructions can be removed by the
optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:
e How should the assembler code be written so that it can be called from C?

o Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?
Why does not the debugger display the call stack when assembler code is being
debugged?

The first issue is discussed in the section Calling assembler routines from C, page 128.
The following two are covered in the section Calling convention, page 131.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the

Assembler language interface __4

call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 138.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 128, and Calling assembler routines from
C++, page 130, respectively.

To comply with the SH ABI, the compiler generates assembler labels for symbol and
function names by prefixing an underscore. You must remember to add this extra
underscore when you access C symbols from assembler. For example, main must be
written as _main.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm and
__asm keywords both insert the supplied assembler statement in-line. The following
example demonstrates the use of the asm keyword. This example also shows the risks of
using inline assembler.

static __data20 int sFlag;
extern _ _data20 int IO_PORT;

#pragma required=IO0_PORT
void Foo(void)
{
while (!sFlag)
{
asm("MOVI20 #_sFlag, R1");

(
asm("MOVI20 #_TIO_PORT, R2");
asm("MOV.W @R2, RO");
asm("MOV.W RO, @R1");

}

In this example, the assignment to the global variable sFlag is not noticed by the
compiler, which means the surrounding code cannot be expected to rely on the inline
assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion might have on the
surrounding code are not taken into consideration. If, for example, registers or memory
locations are altered, they might have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and

Part |. Using the build tools 127

Calling assembler routines from C

128

will possibly also become a maintenance problem if you upgrade the compiler in the
future. There are also several limitations to using inline assembler:

The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

In general, assembler directives will cause errors or have no meaning. Data
definition directives will however work as expected

Alignment cannot be controlled; this means, for example, that DC32 directives
might be misaligned

Auto variables cannot be accessed

Automatic use of constant tables is not possible.

Inline assembler is therefore often best avoided. If no suitable intrinsic function is
available, we recommend that you use modules written in assembler language instead
of inline assembler, because the function call to an assembler routine normally causes
less performance reduction.

Calling assembler routines from C

An assembler routine that will be called from C must:

IAR C/C++ Development Guide
Compiling and Linking for SH

Conform to the calling convention
Have a PUBLIC entry-point label

Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);
or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the

Assembler language interface __4

variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func (int argl, char arg2)
{

int locInt = argl;

gInt = argl;

gChar = arg2;

return locInt;

int main()

{
int locInt = gInt;
gInt = Func(locInt, gChar) ;
return O0;

}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

@ Use these options to compile the skeleton code:
iccsh skeleton.c -1A .

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. Also remember to specify the code model and data model you are using,
whether the device has a floating-point unit, a low level of optimization, and -e for
enabling language extensions.

The result is the assembler source output file skeleton.s.

Part |. Using the build tools 129

Calling assembler routines from C++

130

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IDE, choose Project>Options>C/C++
Compiler>List and deselect the suboption Include call frame information. On the
command line, use the option -1B instead of -1A. Note that CFI information must be
included in the source code to make the C-SPY Call Stack window work.

The output file
The output file contains the following important information:

The calling convention

The return values

The global variables

The function parameters

How to create space on the stack (auto variables)
Call frame information (CFI).

The cF1 directives describe the call frame information needed by the Call Stack window
in the debugger. For more information, see Call frame information, page 138.

Calling assembler routines from C++

IAR C/C++ Development Guide
Compiling and Linking for SH

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
int MyRoutine (int) ;

}

In C++, data structures that only use C features are known as PODs (“plain old data
structures”), they use the same memory layout as in C. However, we do not recommend
that you access non-PODs from assembler routines.

Assembler language interface __4

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"
{
void DoIt (MyClass *ptr, int arg);

class MyClass
{
public:
inline void DolIt (int arg)
{
::DoIt(this, arg);

Calling convention

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

Note: Which registers that the calling convention makes use of depends on whether
you are using the chip’s hardware floating-point unit (FPU) or not.

This section describes the calling convention used by the compiler. These items are
examined:

Function declarations

C and C++ linkage

Preserved versus scratch registers

Function entrance

Function exit

Return address handling.

Part |. Using the build tools 131

Calling convention

132

IAR C/C++ Development Guide
Compiling and Linking for SH

At the end of the section, some examples are shown to describe the calling convention
in practice.
FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction (int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{

int F(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __ _cplusplus
extern "C"

{

#endif

int F(int);
#ifdef __ cplusplus

}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general SH CPU registers are divided into three separate sets, which are described
in this section.

Assembler language interface __4

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

No FPU: Any of the registers RO—R7 can be used as a scratch register by the function.

FPU: Any of the registers RO—R7 and FRO—FR11 can be used as a scratch register by the
function.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

No FPU: The registers R8—R14 are preserved registers.

FPU: The registers R8—R14 and FR12—FR15 are preserved registers.

Special registers
For some registers, you must consider certain prerequisites:

o The FPU single/double mode register (FPRSC) is always in single mode at the
entrance of the function

o The stack pointer and the frame pointer registers must at all times point to or below
the last element on the stack. In the eventuality of an interrupt, everything below the
point the stack pointer or frame pointer points to, will be destroyed.

e The global base pointer register (points to an area of data that is addressed with
indexed addressing modes) must never be changed. In the eventuality of an
interrupt, the register must have a specific value.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to use registers as much as possible. Only a limited
number of registers can be used for passing parameters; when no more registers are
available, the remaining parameters are passed on the stack. The parameters are also
passed on the stack in these cases:

e Structure types: struct, union, and classes

o The data type double (64-bit floating-point numbers)

Part |. Using the build tools 133

Calling convention

134

IAR C/C++ Development Guide
Compiling and Linking for SH

e Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as foo (parami, ...),for example print£. This includes the
parameter immediately preceding the . . . argument.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

If the function returns a structure or a double, the memory location where the structure
will be stored is passed on the stack as a hidden parameter.
Register parameters

The registers available for passing parameters are R4—R7 and (if there is an FPU)
FR4-FR11 and DR4-DR10.

Parameters Passed in registers
char, short, and 1ong values R4-R7

32-bit floating-point values (no FPU) R4-R7

32-bit floating-point values (FPU) FR4-FR11

64-bit floating-point values (FPU) DR4, DR6, DR8, DR10

Table 20: Registers used for passing parameters

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to the
available register or registers. Should there be no suitable register available, the
parameter is passed on the stack. In this case, any remaining parameters will also be
passed on the stack. If there is no FPU, 64-bit floating-point values are passed on the
stack.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to

Assembler language interface __4

by the stack pointer. The next one is stored at the next location on the stack that is
divisible by 4, etc.

High
address
The caller’s stack frame
Parameter n
Parameter 1
Return address
Low
address Free stack memory

Figure 13: Stack image after the function call

See also Stack considerations, page 161.

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.
Registers used for returning values

The registers available for returning values are RO, FRO, and DRO.

Return values Passed in registers
char, short, and 1ong values RO

32-bit floating-point values (no FPU) RO

32-bit floating-point values (FPU) FRO

64-bit floating-point values (FPU) DRO

Table 21: Registers used for returning values

Hidden return value pointers are not returned. If there is no FPU, 64-bit floating-point
values are passed on the stack.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns.

Part |. Using the build tools 135

Calling convention

IAR C/C++ Development Guide
136 Compiling and Linking for SH

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored in the return address register PR.

Typically, a function returns by using the RTS instruction, for example:
rts/n (PR)

If a function is to call another function, the original return address must be stored
somewhere. This is normally done on the stack, for example:

section " .code32.text" :CODE:NOROOT (2)
extern func
sts.1l PR, @-R15

; do something
bsr func
; do something

1lds.1 @R15+, PR
rts/n

The return address is restored directly from the stack with the POP PC instruction.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.
Example |

Assume this function declaration:

int addl (int) ;

This function takes one parameter in the register R4, and the return value is passed back
to its caller in the register RO.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

section " .code32.text’ :CODE:NOROOT (2)

add #1, R4
rtv/n R4

Assembler language interface __4

Example 2
This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{

int ma;
}i

int MyFunction (struct MyStruct x, int y);

The calling function must reserve 4 bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register R4. The
return value is passed back to its caller in the register RO.

Example 3

The function below will return a structure of type struct.

struct MyStruct

{
int ma;
}i

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed on the stack. The caller assumes that
these registers remain untouched. The parameter x is passed in R4.

Assume that the function instead was declared to return a pointer to the structure:
struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R4, and the return value is returned in RO.

Calling functions

Functions can be called in two different ways—directly or via a function pointer. In this
section we will discuss how these calls will be performed.

The normal function calling instruction is the jump instruction:
jsr @Rn

The location that the called function should return to (that is, the location immediately
after this instruction) is stored in the Procedure register, PR.

Part |. Using the build tools 137

Call frame information

138

There is no difference between a direct call and a function pointer call, as both use the
same instruction to make the call (regardless of the code model). The only exceptions
are trap and TBR functions:

e Trap functions use the TRAPA instruction to make the call and return with the RTE
instruction.

e TBR functions use the JSR/N @@ (disp8, TBR) instruction to make a direct call but
otherwise behave like normal functions.

Call frame information

IAR C/C++ Development Guide
Compiling and Linking for SH

When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the /AR Assembler
Reference Guide for SH.

CFI DIRECTIVES

The cF1I directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

Assembler language interface __4

This table lists all the resources defined in the names block used by the compiler:

Resource Description

RO-R14 Normal registers

FRO-FR15 FPU registers (only if the device has an FPU)
?RET The return address register

SP The stack pointer

PR Program return value

Table 22: Call frame information resources defined in a names block

CREATING ASSEMBLER SOURCE WITH CFl SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

| Start with suitable C source code, for example:

int F(int);
int cfiExample (int i)
{

return 1 + F(i);

}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -1A.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

For the source code in this example, the list file looks like this:

NAME test
EXTERN _F
PUBLIC _cfiExample

CFI Names cfiNamesO

CFI StackFrame CFA SP DATA

CFI Resource R0:32, R1:32, R2:32, R3:32, R4:32, R5:32,
R6:32, R7:32

CFI Resource R8:32, R9:32, R10:32, R11:32, R12:32,
R13:32, R14:32

CFI Resource SP:32, PR:32

Part |. Using the build tools 139

Call frame information

CFI VirtualResource ?RET:32
CFI EndNames cfiNames0

CFI Common cfiCommon0 Using cfiNamesO
CFI CodeAlign 2

CFI DataAlign 1

CFI ReturnAddress ?RET CODE
CFI CFA SP+0

CFI RO Undefined

CFI R1 Undefined

CFI R2 Undefined

CFI R3 Undefined

CFI R4 Undefined

CFI R5 Undefined

CFI R6 Undefined

CFI R7 Undefined

CFI R8 SameValue

CFI R9 SameValue

CFI R10 SameValue

CFI R11 SameValue

CFI R12 SameValue

CFI R13 SameValue

CFI R14 SameValue

CFI PR Undefined

CFI ?RET PR

CFI EndCommon cfiCommonO

_cfiExample:
CFI Block cfiBlock0O Using cfiCommonO
CFI Function _cfiExample
CODE

MOVMU.L R14, @-R15
CFI ?RET Frame (CFA, -4)
CFI R14 Frame (CFA, -8)
CFI CFA SP+8

MOV R4, R14

MOV.L ??cfiExample_0, RO ; #_F
JSR/N QRO

ADD R14, RO

MOVMU.L @R15+, R14
CFI R14 SameValue
CFI ?RET PR

CFI CFA SP+0

RTS/N

IAR C/C++ Development Guide
140 Compiling and Linking for SH

Assembler language interface __4

NOP ; Alignment pad
DATA
??cfiExample_0:
DATA32
DC32 _F

CFI EndBlock cfiBlockO0
CODE

END

Note: The header file cfi.m contains the macros XCFI_NAMES and XCFI_COMMON,
which declare a typical names block and a typical common block. These two macros
declare several resources, both concrete and virtual.

Part |. Using the build tools 141

Call frame information

IAR C/C++ Development Guide
142 Compiling and Linking for SH

Using C

This chapter gives an overview of the compiler’s support for the C language.

The chapter also gives a brief overview of the IAR C language extensions.

C language overview

The IAR C/C++ Compiler for SH supports the ISO/IEC 9899:1999 standard (including

up to technical corrigendum No.3), also known as C99. In this guide, this standard is

referred to as Standard C and is the default standard used in the compiler. This standard

is stricter than C89.

In addition, the compiler also supports the ISO 9899:1990 standard (including all

technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this

standard.

The C99 standard is derived from C89, but adds features like these:

The inline keyword advises the compiler that the function declared immediately
after the directive should be inlined

Declarations and statements can be mixed within the same scope
A declaration in the initialization expression of a for loop
The bool data type

The long long data type

The complex floating-point type

C++ style comments

Compound literals

Incomplete arrays at the end of structs

Hexadecimal floating-point constants

Designated initializers in structures and arrays

The preprocessor operator _Pragma ()

Variadic macros, which are the preprocessor macro equivalents of print£ style
functions

VLA (variable length arrays) must be explicitly enabled with the compiler option

--vla

Inline assembler using the asm or the __asm keyword.

Part |. Using the compiler

143

Extensions overview

144

Note: Even though it is a C99 feature, the IAR C/C++ Compiler for SH does not
support UCNss (universal character names).
Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function.

The asm extended keyword and its alias __asm both insert assembler instructions.
However, when you compile C source code, the asm keyword is not available when the
option --strict is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using these keywords.
The syntax is:
asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
" bra Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 125.

Extensions overview

IAR C/C++ Development Guide
Compiling and Linking for SH

The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

This is an overview of the available extensions:

e IAR C language extensions

For a summary of available language extensions, see [AR C language extensions,
page 146. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

e Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

UsingC __4

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For a list of
available pragma directives, see the chapter Pragma directives.

e Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

e Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 125. For a list of available functions, see the chapter Intrinsic
functions.

e Library functions

The IAR DLIB Library provides the C and C++ library definitions that apply to
embedded systems. For more information, see /AR DLIB Library, page 308.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

ENABLING LANGUAGE EXTENSIONS

You can choose different levels of language conformance by means of project options:

Command line IDE* Description

--strict Strict All'IAR C language extensions are disabled; errors
are issued for anything that is not part of
Standard C.

None Standard All extensions to Standard C are enabled, but no

extensions for embedded systems programming.
For a list of extensions, see IAR C language
extensions, page 146.

-e Standard with IAR All IAR C language extensions are enabled.
extensions

Table 23: Language extensions

* In the IDE, choose Project>Options> C/C++ Compiler>Language>Language conformance and
select the appropriate option. Note that language extensions are enabled by default.

Part |. Using the compiler 145

IAR C language extensions

146

IAR C language extensions

The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

IAR C/C++ Development Guide
Compiling and Linking for SH

Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific microprocessor you are using,
typically to meet memory restrictions

Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 148.

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:

Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

Placement at an absolute address or in a named section

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
section. For more information about using these features, see Controlling data and

Sfunction placement in memory, page 173, and location, page 284.

Alignment control

Each data type has its own alignment; for more details, see Alignment, page 249. If
you want to change the alignment, the #pragma pack and

#pragma data_alignment directive are available. If you want to check the
alignment of an object, use the __ALIGNOF__ () operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® _ _ALIGNOF__ (type)

® __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.
Anonymous structs and unions

C++ includes a feature called anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 171.

UsingC __4

e Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C

language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
251.

Dedicated section operators

The compiler supports getting the start address, end address, and size for a section with
these built-in section operators:

® __section_begin returns the address of the first byte of the named section or
block.

° section_end returns the address of the first byte after the named section or

block.

® __ section_size returns the size of the named section or block in bytes.

Note: The aliases __segment_begin/__sfb
__segment_size/__sfs can also be used.

segment_end/__sfe, and

[J—

These operators behave syntactically as if declared like:

void * __section_begin(char const * section)
void * __section_end(char const * section)
size_t * __section_size(char const * section)

The operators can be used on named sections or on named blocks defined in the linker
configuration file.

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined section, or when you use named blocks in the linker
configuration file, the section operators can be used for getting the start and end address
of the memory range where the sections or blocks were placed.

The named section must be a string literal and it must have been declared earlier with
the #pragma section directive. If the section was declared with a memory attribute
memattr, the type of the __section_begin operator is a pointer to memattr void.
Otherwise, the type is a default pointer to void. Note that you must enable language
extensions to use these operators.

The operators are implemented in terms of symbols with dedicated names, and will
appear in the linker map file under these names:

Operator Symbol

__section_begin (sec) secS$$Base

Table 24: Section operators and their symbols

Part I. Using the compiler 147

IAR C language extensions

148

IAR C/C++ Development Guide
Compiling and Linking for SH

Operator Symbol
__section_end(sec) sec$SLimit
__section_size(sec) secSSSLength

Table 24: Section operators and their symbols (Continued)

Note that the linker will not necessarily place sections with the same name consecutively
when these operators are not used. Using one of these operators (or the equivalent
symbols) will cause the linker to behave as if the sections were in a named block. This
is to assure that the sections are placed consecutively, so that the operators can be
assigned meaningful values. If this is in conflict with the section placement as specified
in the linker configuration file, the linker will issue an error.

Example
In this example, the type of the __section_begin operator is void *.

#pragma section="MYSECTION"

section_start_address = __section_begin ("MYSECTION") ;

See also section, page 290, and location, page 284.

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:
e Arrays of incomplete types

An array can have an incomplete struct, union, Or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

e Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

e Accepting missing semicolon at the end of a struct or union specifier
A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

e Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

UsingC __4

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 255.

Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

long float means double
The type long £loat is accepted as a synonym for double.
Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

Non-1lvalue arrays

A non-1lvalue array expression is converted to a pointer to the first element of the
array when it is used.

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning.

Part I. Using the compiler 149

IAR C language extensions

IAR C/C++ Development Guide
150 Compiling and Linking for SH

Note that this also applies to the labels of switch statements.
Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str

{
int a;
} x = 10;
Declarations in other scopes
External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the i f statement. A warning is issued.
int test(int x)

{
if (x)

extern int y;
y = 1;

return y;

}

Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string, with the function name as context. Use the
symbol __PRETTY_FUNCTION__ to also include the parameter types and return
type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func(char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 213.

Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

UsingC __4

e Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one valid
token. (If the --strict option is used, the pp-number syntax is used instead.)

Part I. Using the compiler 151

IAR C language extensions

IAR C/C++ Development Guide
152 Compiling and Linking for SH

Using C++

IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview

Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++
The following C++ features are supported:

e Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

e Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

e Overloading of operators and function names, which allows several operators or
functions with the same name, provided that their argument lists are sufficiently
different

e Type-safe memory management using the operators new and delete

e Inline functions, which are indicated as particularly suitable for inline expansion.
C++ features that are excluded are those that introduce overhead in execution time or
code size that are beyond the control of the programmer. Also excluded are late
additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to that few development tools support the standard. Embedded

C++ thus offers a subset of C++ which is efficient and fully supported by existing
development tools.

Standard Embedded C++ lacks these features of C++:

e Templates
e Multiple and virtual inheritance

e Exception handling

Part |. Using the build tools

153

Overview

IAR C/C++ Development Guide
154 Compiling and Linking for SH

e Runtime type information

o New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

e Namespaces

o The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in

that:

e The standard template library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates
e Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds these
features to the standard EC++:

Full template support

Multiple and virtual inheritance

Namespace support

The mutable attribute

The cast operators static_cast, const_cast, and reinterpret_cast.
All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL is tailored for use with the Extended EC++
language, which means no exceptions, and no support for runtime type information
(rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.
ENABLING C++ SUPPORT

In the compiler, the default language is C. To be able to compile files written in
Embedded C++, you must use the --ec++ compiler option. See --ec++, page 213.

Using C++ °

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 213.

To set the equivalent option in the IDE, choose Project>Options>C/C++
Compiler>Language.

Feature descriptions

When you write C++ source code for the IAR C/C++ Compiler for SH, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 258.

Example

class MyClass

{

public:
// Locate a static variable in __datal6 memory at address 60
static __datal6 _ _no_init int mI @ 60;

// Locate a static function in __code20 memory
static __code20 void F();

// Locate a function in __code20 memory
__code20 void G();

Part |. Using the build tools 155

Feature descriptions

IAR C/C++ Development Guide

156 Compiling and Linking for SH

// Locate a virtual function in __ code20 memory
virtual __code20 void H();

// Locate a virtual function into SPECIAL
virtual void M() const volatile @ "SPECIAL";
}i

FUNCTION TYPES

A function type with extern "c" linkage is compatible with a function that has C++
linkage.

Example

extern "C"
{

typedef void (*FpC) (void) ; // A C function typedef

typedef void (*FpCpp) (void) ; // A C++ function typedef
FpC F1;

FpCpp F2;

void MyF (FpC) ;

void MyG/()
{
MyF (F1) ; // Always works
MyF (F2) ; // FpCpp is compatible with FpC
}
TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename must be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates must be in include files or in the actual source
file.

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 154.

Using C++ °

STL and the IAR C-SPY® Debugger

C-SPY has built-in display support for the STL containers. The logical structure of
containers is presented in the watch views in a comprehensive way that is easy to
understand and follow.

To read more about displaying STL containers in the C-SPY debugger, see the /AR
Embedded Workbench® IDE User Guide.

VARIANTS OF CAST OPERATORS
In Extended EC++ these additional variants of C++ cast operators can be used:

const_cast<to> (from)
static_cast<to> (from)
reinterpret_cast<to> (from)

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std

You must make sure that identifiers in your application do not interfere with identifiers
in the runtime library.

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use static class objects that need to
be destroyed (using destructors), there might be problems if the interrupt occur during
or after application exits. If an interrupt occurs after the static class object was destroyed,
the application will not work properly.

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort. To do this, call the intrinsic function __disable_interrupt.

Part |. Using the build tools 157

C++ language extensions

C++ language extensions
When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

e Ina friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to standard
Y
o Constants of a scalar type can be defined within classes, for example:

class A
{
const int mSize = 10; //Possible when using IAR language
//extensions
int mArr[mSize];
Yi
According to the standard, initialized static data members should be used instead.

e In the declaration of a class member, a qualified name can be used, for example:

struct A

{
int A::F(); // Possible when using IAR language extensions
int G(); // According to standard

Yi

e Itis permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "c++"), for example:
extern "C" void F(); // Function with C linkage

void (*PF) () // PF points to a function with C++ linkage
= &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

IAR C/C++ Development Guide
158 Compiling and Linking for SH

Using C++ °

e If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands can
be implicitly converted to char * or wchar_t =, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
//language extensions

char const *P2 = X ? "abc" : "def"; //According to standard

e Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

e In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression can
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Part |. Using the build tools 159

C++ language extensions

IAR C/C++ Development Guide
160 Compiling and Linking for SH

Application-related
considerations

This chapter discusses a selected range of application issues related to
developing your embedded application.

Typically, this chapter highlights issues that are not specifically related to only
the compiler or the linker.

Output format considerations
The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce these output formats:

e Plain binary
e Motorola S-records
e Intel hex.

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

The source code for ielftool is provided in the sh/src directory. For more
information about ielftool, see The IAR ELF Tool—ielftool, page 350.

Stack considerations

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register Sp.

The data block used for holding the stack is called csTACK. The system startup code
initializes the stack pointer to the end of the stack.

Part |. Using the build tools 161

Heap considerations

162

STACK SIZE CONSIDERATIONS

The compiler uses the internal data stack, CSTACK, for a variety of user application
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM will be wasted. If the given stack
size is too small, two things can happen, depending on where in memory you located
your stack. Both alternatives are likely to result in application failure. Either variable
storage will be overwritten, leading to undefined behavior, or the stack will fall outside
of the memory area, leading to an abnormal termination of your application. Because
the second alternative is easier to detect, you should consider placing your stack so that
it grows toward the end of the memory.

For more information about the stack size, see Setting up the stack, page 86, and Saving
stack space and RAM memory, page 182.

Heap considerations

IAR C/C++ Development Guide
Compiling and Linking for SH

The heap contains dynamic data allocated by use of the C function malloc (or one of
its relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

e Linker sections used for the heap

e Allocating the heap size, see Setting up the heap, page 86.

The memory allocated to the heap is placed in the HEAP block, which is only included
in the application if dynamic memory allocation is actually used.

Heap size and standard 1/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an SH microprocessor. If
you use the standard I/O library, you should set the heap size to a value which
accommodates the needs of the standard I/O buffer.

Application-related considerations __¢

Interaction between the tools and your application

The linking process and the application can interact symbolically in four ways:

e Creating a symbol by using the ILINK command line option --define_symbol.
ILINK will create a public absolute constant symbol that the application can use as
a label, as a size, as setup for a debugger, etc.

e Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example to control the placement of sections
into memory ranges.

e Using the compiler operators __section_begin, __
__section_size, or the assembler operators SFB, SFE, or SIZEOF on a hamed
section or block. These operators provide access to the start address, end address,
and size of a contiguous sequence of sections with the same name, or of a linker
block specified in the linker configuration file.

section_end, or

e The command line option --entry informs ILINK about the start label of the
application. It is used by ILINK as a root symbol and to inform the debugger where
to start execution.

The following lines illustrate how to use these mechanisms. Add these options to your
command line:

--define_symbol NrOfElements=10
--config_def HeapSize=1024

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem: [from 0x00000 size 0x100007];
define region RAM = Mem: [from 0x20000 size 0x100007;

/* Export of symbol */
export symbol HeapSize;

/* Setup a heap area witha size defined by an ILINK option */
define block MyHEAP with size = HeapSize, alignment = 4 {};

place in RAM { block MyHEAP };

Part |. Using the build tools 163

Checksum calculation

Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate
an array of elements with specified size */
extern char NrOfElements;

typedef long Elements;
Elements *GetElementArray ()
{

return malloc (sizeof (Elements) * (int)& NrOfElements) ;

/* Use a symbol defined by ILINK option, a symbol that in the
configuration file was made available to the application */
extern char HeapSize;

/* Declares the section that contains our heap */
#pragma section = "MyHEAP"

char *MyHeap ()

{
/* First get start of statically allocated section */
char *p = __section_begin ("MyHEAP") ;

/* then we zero it, using the imported size */
for (int i = 0; i < (int)& HeapSize; ++1)
{
pli]l = 0;
}

return p;

Checksum calculation

The IAR ELF Tool—ielftool—Hfills specific ranges of memory with a pattern and
then calculates a checksum for those ranges. The calculated checksum replaces the value
of an existing symbol in the input ELF image. The application can then verify that the
ranges did not change.

To use checksumming to verify the integrity of your application, you must:

e Reserve a place, with an associated name and size, for the checksum calculated by
ielftool

IAR C/C++ Development Guide
164 Compiling and Linking for SH

Application-related considerations __¢

o Choose a checksum algorithm, set up ielftool for it, and include source code for
the algorithm in your application

e Decide what memory ranges to verify and set up both ielftool and the source
code for it in your application source code.

Note: To setup ielftool inthe IDE, choose Project>Options>Linker>Checksum.

CALCULATING A CHECKSUM

In this example, a checksum is calculated for ROM memory at 0x8002 up to 0x8FFF
and the 2-byte calculated checksum is placed at 0x8000.

Creating a place for the calculated checksum

You can create a place for the calculated checksum in two ways; by creating a global
C/C++ or assembler constant symbol with a proper size, residing in a specific section
(in this example . checksum), or by using the linker option --place_holder.

For example, to create a 2-byte space for the symbol __checksum in the section
.checksum, with alignment 4:

--place_holder __checksum, 2, .checksum, 4

To place the . checksum section, you must modify the linker configuration file. It can
look like this (note the handling of the block CHECKSUM):

define memory Mem with size = 4G;

define region ROM_region = Mem: [from 0x8000 to 0x80000000 - 1];
define region RAM_region = Mem: [from 0x80000000 to 0x100000000 -2];

initialize by copy { rw };
do not initialize { section .noinit };

define block HEAP with alignment = 4, size = 16M {};
define block CSTACK with alignment = 4, size = 16K {};
define block CHECKSUM { ro section .checksum };

place at address Mem:0x0 { ro section .intvec};

place in ROM_region { ro, first block CHECKSUM };
place in RAM region { rw, block HEAP, block CSTACK };
Running ielftool

To calculate the checksum, run ielftool:

ielftool --£fi11=0x00;0x8000-0x8FFF
--checksum=__checksum:2,crcl6;0x8000-0x8FFF sourceFile.out
destinationFile.out

Part |. Using the build tools 165

Checksum calculation

To calculate a checksum you also must define a fill operation. In this example, the fill
pattern 0x0 is used. The checksum algorithm used is crc16.

Note that ielftool needs an unstripped input ELF image. If you use the --strip
linker option, remove it and use the --strip ielftool option instead.

ADDING A CHECKSUM FUNCTION TO YOUR SOURCE CODE

To check the value of the ielftool generated checksum, it must be compared with a
checksum that your application calculated. This means that you must add a function for
checksum calculation (that uses the same algorithm as ielftool) to your application
source code. Your application must also include a call to this function.

A function for checksum calculation

This function—a slow variant but with small memory footprint—uses the crc16
algorithm:

unsigned short slow_crcl6 (unsigned short sum,
unsigned char *p,
unsigned int len)

while (len--)
{

int i;
unsigned char byte = *(p++);
for (1 = 0; i < 8; ++1i)

{
unsigned long oSum = sum;
sum <<= 1;
if (byte & 0x80)
sum |= 1;
if (oSum & 0x8000)
sum ~= 0x1021;
byte <<= 1;

}
return sum;

}

You can find the source code for the checksum algorithms in the sh\src\linker
directory of your product installation.

IAR C/C++ Development Guide
166 Compiling and Linking for SH

Application-related considerations __¢

Checksum calculation
This code gives an example of how the checksum can be calculated:

/* Start and end of the checksum range */
unsigned long ChecksumStart = 0x8000+2;
unsigned long ChecksumEnd = Ox8FFF;

/* The checksum calculated by ielftool
* (note that it lies on address 0x8000)
*/

extern unsigned short const __ checksum;

void TestChecksum()

{
unsigned short calc = 0;
unsigned char zeros[2] = {0, 0};

/* Run the checksum algorithm */

calc = slow_crcl6 (0,
(unsigned char *) ChecksumStart,
(ChecksumEnd - ChecksumStart+1l));

/* Rotate out the answer */
calc = slow_crcl6(calc, zeros, 2);

/* Test the checksum */
if (calc != __checksum)
{

abort () ; /* Failure */

THINGS TO REMEMBER
When calculating a checksum, you must remember that:

o The checksum must be calculated from the lowest to the highest address for every
memory range
Each memory range must be verified in the same order as defined
It is OK to have several ranges for one checksum

e If several checksums are used, you should place them in sections with unique names
and use unique symbol names

e If a slow function is used, you must make a final call to the checksum calculation
with as many bytes (with the value 0x00) as there are bytes in the checksum.

Part |. Using the build tools 167

Checksum calculation

168

IAR C/C++ Development Guide
Compiling and Linking for SH

For more information, see also The IAR ELF Tool—ielftool, page 350.

C-SPY CONSIDERATIONS

By default, a symbol that you have allocated in memory by using the linker option
--place_holder is considered by C-SPY to be of the type int. If the size of the
checksum is less than four bytes, you can change the display format of the checksum
symbol to match its size.

In the C-SPY Watch window, select the symbol and choose Show As from the context
menu. Choose the display format that matches the size of the checksum symbol.

Efficient coding for
embedded applications

For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

e Selecting data types

e Controlling data and function placement in memory
e Controlling compiler optimizations

e Facilitating good code generation.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding

techniques.

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.
e Try to avoid 64-bit data types, such as double and long long.

e Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

e Using floating-point types on a microprocessor without a floating-point
co-processor is very inefficient, both in terms of code size and execution speed.

e Declaring a pointer parameter to point to const data might open for better
optimizations in the calling function.

Part |. Using the build tools

169

Selecting data types

170

IAR C/C++ Development Guide
Compiling and Linking for SH

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. Thus, you should consider
replacing code that uses floating-point operations with code that uses integers, because
these are more efficient.

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type £1loat is more efficient in terms of code size and execution speed.
However, the 64-bit format double supports higher precision and larger numbers.

In the compiler, the floating-point type £1oat always uses the 32-bit format. The format
used by the double floating-point type depends on the setting of the --double
compiler option.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead.

Note: If your target processor is an SH2A device with a hardware FPU, the FPU might
not be as exact as the software-based floating-point support because the FPU does not
support all operations.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a £1oat to a double, the double
constant 1. 0 is added and the result is converted back to a float:

float Test(float a)
{

return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add the suffix £
to it, for example:

float Test(float a)
{
return a + 1.0f;

}

For more information about floating-point types, see Floating-point types, page 253.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The SH microprocessor requires that when accessing data in memory, the data must be
aligned. Each element in a structure must be aligned according to its specified type

Efficient coding for embedded applications __¢

requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are two reasons why this can be considered a problem:

e Due to external demands; for example, network communication protocols are
usually specified in terms of data types with no padding in between

e You need to save data memory.
For information about alignment requirements, see Alignment, page 249.
There are two ways to solve the problem:

o Use the #pragma pack directive for a tighter layout of the structure. The drawback
is that each access to an unaligned element in the structure will use more code.

e Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For further details about the #pragma pack directive, see pack, page 287.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope. Anonymous structures
are part of the C++ language; however, they are not part of the C standard. In the IAR
C/C++ Compiler for SH they can be used in C if language extensions are enabled.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 213, for
additional information.

Example

In this example, the members in the anonymous union can be accessed, in function £,
without explicitly specifying the union name:

struct S
{

char mTag;

union
{
long mL;
float mF;
Y
} st;

Part |. Using the build tools 171

Selecting data types

172

IAR C/C++ Development Guide
Compiling and Linking for SH

void F(void)
{
St.mL = 5;

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char Way: 1;
unsigned char Out: 1;
Y
} @ O0xOFFFF8000;

/* Here the variables are used*/

void Test (void)

{

IOPORT = 0;
Way = 1;
out = 1;

}

This declares an I/O register byte TOPORT at address 0. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_TIOPORT.

Efficient coding for embedded applications __¢

Controlling data and function placement in memory

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

o Code and data models

Use the different compiler options for code and data models, respectively, to take
advantage of the different addressing modes available for the microprocessor and
thereby also place functions and data objects in different parts of memory. To read
more about data and code models, see Data models, page 56, and Code models and
memory attributes for function storage, page 63, respectively.

e Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual functions and data objects. To read more about memory attributes for data
and functions, see Using data memory attributes, page 58, and Using function
memory attributes, page 64, respectively.

o The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global and
static variables at absolute addresses. The variables must be declared __no_init.
This is useful for individual data objects that must be located at a fixed address, for
example variables with external requirements, or for populating any hardware tables
similar to interrupt vector tables. Note that it is not possible to use this notation for
absolute placement of individual functions.

o The e operator and the #pragma location directive for section placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named sections, without having explicit control of
each object. The sections can, for example, be placed in specific areas of memory, or
initialized or copied in controlled ways using the section begin and end operators.
This is also useful if you want an interface between separately linked units, for
example an application project and a boot loader project. Use named sections when
absolute control over the placement of individual variables is not needed, or not
useful.

At compile time, data and functions are placed in different sections as described in
Modules and sections, page 71. At link time, one of the most important functions of the
linker is to assign load addresses to the various sections used by the application. All
sections, except for the sections holding absolute located data, are automatically
allocated to memory according to the specifications in the linker configuration file, as
described in Placing code and data—the linker configuration file, page 74.

Part |. Using the build tools 173

Controlling data and function placement in memory

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of these combinations of keywords:

® __no_init
® _ _no_init and const (without initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ OxFFFF2000;/* OK */

This example contains a const declared object which is not initialized. The object is
placed in ROM. This is useful for configuration parameters, which are accessible from
an external interface.

#pragma location=0xFFFF2002
__no_init const int beta; /* OK */

The actual value must be set by other means. The typical use is for configurations where
the values are loaded to ROM separately, or for special function registers that are
read-only.

These examples show incorrect usage:

int delta @ OxFFFF2006; /* Error, not __no_init */

__no_init int epsilon @ OxFFFF2007; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain

IAR C/C++ Development Guide
174 Compiling and Linking for SH

Efficient coding for embedded applications __¢

a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x10000; /* Bad in C++ */
the linker will report that more than one variable is located at address 0x10000.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x10000;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SECTIONS

The following method can be used for placing data or functions in named sections other
than default:

o The e operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
amalfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following examples, a data object is placed in a user-defined section. The variable
will be treated as if it is located in the default memory. Note that you must place the
section accordingly in the linker configuration file.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"

Part |. Using the build tools 175

Controlling compiler optimizations

176

const int beta; /* OK */

As usual, you can use memory attributes to direct the variable to a non-default memory
(and then also place the section accordingly in the linker configuration file):

__data32 __no_init int alpha @ "MY_DATA32_NOINIT";/* Placed in
data32*/

Examples of placing functions in named sections

void f(void) @ "MY_FUNCTIONS";

void g(void) @ "MY_FUNCTIONS"

{
}

#pragma location="MY_FUNCTIONS"
void h(void) ;

Specify a memory attribute to direct the function to a specific memory, and then modify
the segment placement in the linker configuration file accordingly:

__codel6 void f(void) @ "MY_CODEl6_FUNCTIONS";

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and Linking for SH

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 286, for

Efficient coding for embedded applications __¢

information about the pragma directive.

Multi-file compilation units

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining and cross jump have more source code to
work on. Ideally, the whole application should be compiled as one compilation unit.
However, for large applications this is not practical because of resource restrictions on
the host computer. For more information, see --mfc, page 217.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard_unused_publics, page 211.

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Optimization level Description

None (Best debug support) Variables live through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination
Static clustering

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above, and:
Code motion
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Type-based alias analysis

Table 25: Compiler optimization levels

Part |. Using the build tools 177

Controlling compiler optimizations

178

IAR C/C++ Development Guide
Compiling and Linking for SH

Optimization level Description

High (Balanced) Same as above, and:
Common subexpression elimination
Peephole optimization
Cross jumping
Instruction scheduling
Memory content analysis and optimization
Loop unrolling (when optimizing for speed)
Function inlining

Table 25: Compiler optimization levels (Continued)

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 178.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application might in some cases
become smaller even when optimizing for speed rather than size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command

line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:

e Common subexpression elimination

e Loop unrolling

Efficient coding for embedded applications __¢

Function inlining
Code motion
Type-based alias analysis

Static clustering

Instruction scheduling.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 218.

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 222.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but the resulting code might be difficult to debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size. To control the heuristics
for individual functions, use the #pragma inline directive or the Standard C inline
keyword.

Note: This option has no effect at optimization levels None, Low, and Medium.

Part |. Using the build tools 179

Controlling compiler optimizations

180

IAR C/C++ Development Guide
Compiling and Linking for SH

To read more about the command line option, see --no_inline, page 219. For information
about the pragma directive, see inline, page 282.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 221.

Example

short F(short *pl, long *p2)
{
*p2 =
*pl =
return *p2;

0;
1;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. If you use explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Efficient coding for embedded applications __¢

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

Facilitating good code generation

This section contains hints on how to help the compiler generate good code, for
example:

e Using efficient addressing modes
e Helping the compiler optimize

e Generating more useful error message.

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

e Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

e Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and thus cannot
be placed in a processor register. This results in larger and slower code. Second, the
optimizer can no longer assume that the local variable is unaffected over function
calls.

o Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

e The compiler is capable of inlining functions, see Function inlining, page 179. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 177.

e Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see

Part |. Using the build tools 181

Facilitating good code generation

182

IAR C/C++ Development Guide
Compiling and Linking for SH

Mixing C and assembler, page 125.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:
e If stack space is limited, avoid long call chains and recursive functions.

e Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

e Prototyped
e Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
Using the prototyped style will also make it possible to generate more efficient code,
since type promotion (implicit casting) is not needed. The K&R style is only supported
for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int Test (char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{
return i + ch;

}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

Efficient coding for embedded applications __¢

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;

int i;

{

return i + ch;

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there might be warnings (for example, for constant conditional or
pointless comparison), in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1 (unsigned char cl)
{

if (cl == ~0x80)
}
Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character, so it cannot be larger than 255. It also cannot be negative, which means that
the integral promoted value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type

Part |. Using the build tools 183

Facilitating good code generation

184

IAR C/C++ Development Guide
Compiling and Linking for SH

qualifier, see Declaring objects volatile, page 258.

A sequence that accesses a volatile declared variable must also not be interrupted.
Use the __monitor keyword in interruptible code to ensure this. This must be done for
both write and read sequences, otherwise you might end up reading a partially updated
variable. This is true for all variables of all sizes. Accessing a small-sized variable can
be an atomic operation, but this is not guaranteed and you should not rely on it unless
you continuously study the compiler output. It is safer to use the __monitor keyword
to ensure that the sequence is an atomic operation.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several SH devices are included in the IAR product installation.
The header files are named iodevice.h and define the processor-specific special
function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. This example is from i07254r . h:

struct st_stby

{ /* struct STBY */
union
{ /* STBCR */
unsigned short WORD; /* Word Access */
struct { /* Bit Access */
unsigned short STBCRKEY :8; /* STBCRKEY */
unsigned short :3; /* Reserved Bits */
unsigned short MSTP4 :1; /* MSTP4 */
unsigned short MSTP3 :1; /* MSTP3 */
unsigned short MSTP2 :1; /* MSTP2 */
unsigned short MSTP1l :1; /* MSTP1 */
unsigned short MSTPO :1; /* MSTPO */
} BIT;
} STBCR;
}i
#define STBY (* (volatile struct st_stby __data32 *)
0xFFFE0400u)

By including the appropriate include file in your code, it is possible to access either the
whole register or any individual bit (or bitfields) from C code as follows:

void Test ()

{
/* Whole register access */
STBY.STBCR.WORD = 0x1234;

Efficient coding for embedded applications __¢

/* Bitfield accesses */
STBY.STBCR.BIT.MSTP4 = 1;

STBY.STBCR.BIT.MSTP3 = 1;

}

You can also use the header files as templates when you create new header files for other
SH devices. For details about the @ operator, see Controlling data and function

placement in memory, page 173.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate section, according to the specified memory keyword.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 270. Note that to use this
keyword, language extensions must be enabled; see -e, page 213. For information about
the #pragma object_attribute, see page 285.

Part |. Using the build tools 185

Facilitating good code generation

IAR C/C++ Development Guide
186 Compiling and Linking for SH

Part 2. Reference
information

This part of the IAR C/C++ Development Guide for SH contains these

chapters:

e External interface details
e Compiler options

e Linker options

e Data representation

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e Library functions

e The linker configuration file
e Section reference

e IAR utilities

e Implementation-defined behavior.

|h|Li‘|i|H|H

187

ARARATEY

188

External interface details

This chapter provides reference information about how the compiler and
linker interact with their environment. The chapter briefly lists and describes
the invocation syntax, methods for passing options to the tools, environment
variables, the include file search procedure, and finally the different types of
compiler and linker output.

Invocation syntax

You can use the compiler and linker either from the IDE or from the command line.
Refer to the IAR Embedded Workbench® IDE User Guide for information about using
the build tools from the IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:

iccsh [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use this command to generate an
object file with debug information:

iccsh prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

ILINK INVOCATION SYNTAX

The invocation syntax for ILINK is:

ilinksh [arguments]

Each argument is either a command-line option, an object file, or a library.

Part 2. Reference information

189

Invocation syntax

190

IAR C/C++ Development Guide
Compiling and Linking for SH

For example, when linking the object file prog. o, use this command:
ilinksh prog.o --config configfile
If no filename extension is specified for the linker configuration file, the configuration

file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. The default libraries are
always searched last.

The output executable image will be placed in a file named a . out, unless the -o option
is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS
There are three different ways of passing options to the compiler and to ILINK:

e Directly from the command line

Specify the options on the command line after the iccsh or i1inksh commands;
see Invocation syntax, page 189.

e Via environment variables

The compiler and linker automatically append the value of the environment variables
to every command line; see Environment variables, page 191.

e Via a text file, using the - £ option; see -f, page 215.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

External interface details ___¢

ENVIRONMENT VARIABLES
These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded
workbench 6.n\sh\inc;c:\headers

QCCSH Specifies command line options; for example: QCCSH=-1A asm.lst

Table 26: Compiler environment variables

This environment variable can be used with ILINK:

Environment variable Description

ILINKSH_CMD_LINE Specifies command line options; for example:
ILINKSH_CMD_LINE=--config full.icf
--silent

Table 27: ILINK environment variables

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

e If the name of the #include file is an absolute path, that file is opened.
e If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -/, page 216.

2 The directories specified using the C_INCLUDE environment variable, if any; see
Environment variables, page 191.

3 The automatically set up library system include directories. See --dlib, page 211
and --dlib_config, page 212.

e If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

Part 2. Reference information 191

Compiler output

192

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
icecsh ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src.c).
dir \include As specified with the first -I option.
dir\debugconfig As specified with the second -1 option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For information about the syntax for including header files, see Overview of the
preprocessor, page 301.

Compiler output

IAR C/C++ Development Guide
Compiling and Linking for SH

The compiler can produce the following output:

e A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

e Optional list files

Various kinds of list files can be specified using the compiler option -1, see -/, page
216. By default, these files will have the filename extension 1st.

e Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

External interface details ___¢

e Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. To read more about diagnostic messages,
see Diagnostics, page 194.

e Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 193.

o Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The compiler and linker return status information to the operating system that can be
tested in a batch file.

These command line error codes are supported:

Code Description

0 Compilation or linking successful, but there might have been warnings.

| Warnings were produced and the option --warnings_affect_exit_code was

used.
2 Errors occurred.
3 Fatal errors occurred, making the tool abort.
4 Internal errors occurred, making the tool abort.

Table 28: Error return codes

Part 2. Reference information 193

ILINK output

ILINK output

ILINK can produce the following output:

An absolute executable image

The final output produced by the IAR ILINK Linker is an absolute object file
containing the executable image that can be put into an EPROM, downloaded to a
hardware emulator, or executed on your PC using the IAR C-SPY Debugger
Simulator. By default, the file has the filename extension out. The output format is
always in ELF, which optionally includes debug information in the DWARF format.

Optional logging information

During operation, ILINK logs its decisions on stdout, and optionally to a file. For
example, if a library is searched, whether a required symbol is found in a library
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.

Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by the ILINK option
--map, see --map, page 242. By default, the map file has the filename extension map.

Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. To read more about diagnostic messages, see
Diagnostics, page 194.

Error return codes

ILINK returns status information to the operating system which can be tested in a
batch file, see Error return codes, page 193.

Size information about used memory and amount of time

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

Diagnostics

IAR C/C++ Development Guide
194 Compiling and Linking for SH

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levelltag]: message

External interface details ___¢

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.
MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag]: message

with these elements:

level The level of seriousness of the issue
tag A unique tag that identifies the diagnostic message
message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional map
file.

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construct that
can possibly lead to erroneous behavior in the generated code. Remarks are by default
not issued, but can be enabled, see --remarks, page 227.

Part 2. Reference information 195

Diagnostics

196

IAR C/C++ Development Guide
Compiling and Linking for SH

Woarning

A diagnostic message that is produced when the compiler or linker finds a problem
which is of concern, but not so severe as to prevent the completion of compilation or
linking. Warnings can be disabled by use of the command line option --no_warnings,
see page 222.

Error

A diagnostic message that is produced when the compiler or linker finds a serious error.
An error will produce a non-zero exit code.

Fatal error

A diagnostic message that is produced when the compiler finds a condition that not only
prevents code generation, but which makes further processing pointless. After the
message is issued, compilation terminates. A fatal error will produce a non-zero exit
code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 202, for a description of the compiler options
that are available for setting severity levels.

For the compiler see also the chapter Pragma directives, for a description of the pragma
directives that are available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

o The product name

e The version number of the compiler or of ILINK, which can be seen in the header of
the list or map files generated by the compiler or by ILINK, respectively

e Your license number
o The exact internal error message text

e The files involved of the application that generated the internal error

External interface details ___¢

e A list of the options that were used when the internal error occurred.

Part 2. Reference information 197

Diagnostics

IAR C/C++ Development Guide
198 Compiling and Linking for SH

Compiler options

This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

Refer to the IAR Embedded Workbench® IDE User Guide for information about the
compiler options available in the IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and Jong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 190.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specitying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

Part 2. Reference information

199

Options syntax

200

IAR C/C++ Development Guide
Compiling and Linking for SH

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac2004=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst
or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

e Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file List.1lst
in the directory . .\1listings\:

iccsh prog.c -1 ..\listings\List.lst

Compiler options _¢

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccsh prog.c -1 ..\listings\

The produced list file will have the default name . .\1istings\prog.lst
o The current directory is specified with a period (.). For example:

iccsh prog.c -1

/ can be used instead of \ as the directory delimiter.

By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccsh prog.c -1 -

Additional rules
These rules also apply:

e When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; this example will create a list file called -xr:

iccsh prog.c -1 ---r

e For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Part 2. Reference information 201

Summary of compiler options

202

Summary of compiler options

This table summarizes the compiler command line options:

IAR C/C++ Development Guide
Compiling and Linking for SH

Command line option

Description

--c89
--char_is_signed
--char_is_unsigned
--code_model

--core

-D

--data_model

--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--discard_unused_publics
--dlib

--dlib_config

--double
-e
-—ec++

--eec++

Uses the C89 standard

Treats char as signed

Treats char as unsigned
Specifies the code model
Specifies a CPU core

Defines preprocessor symbols
Specifies the data model
Generates debug information
Lists file dependencies

Treats these as errors

Treats these as remarks
Suppresses these diagnostics
Treats these as warnings

Lists all diagnostic messages
Discards unused public symbols
Uses the system header files for the DLIB library

Uses the system header files for the DLIB library
and determines which configuration of the library
to use

Forces the compiler to use 32-bit or 64-bit doubles
Enables language extensions
Enables Embedded C++ syntax

Enables Extended Embedded C++ syntax

--enable_alternative_register_ Reuses freed registers to generate smaller code.

allocator

--enable_multibytes

--error_limit

-f

Enables support for multibyte characters in source
files

Specifies the allowed number of errors before
compilation stops

Extends the command line

Table 29: Compiler options summary

Compiler options _¢

Command line option Description

--guard_calls Enables guards for function static variable
initialization

--header_context Lists all referred source files and header files

-I Specifies include file path

-1 Creates a list file

--mfc Enables multi-file compilation

--misracl998 Enables error messages specific to MISRA-C:1998.

See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

--no_clustering Disables static clustering optimizations
--no_code_motion Disables code motion optimization
--no_cse Disables common subexpression elimination
--no_fragments Disables section fragment handling
--no_inline Disables function inlining
--no_path_in_file_macros Removes the path from the return value of the

symbols __FILE__ and __BASE_FILE__
--no_scheduling Disables the instruction scheduler

--no_size_constraints Relaxes the normal restrictions for code size
expansion when optimizing for speed.

--no_system_include Disables the automatic search for system include
files
--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling
--no_warnings Disables all warnings
--no_wrap_diagnostics Disables wrapping of diagnostic messages
-0 Sets the optimization level

Table 29: Compiler options summary (Continued)

Part 2. Reference information 203

Descriptions of options

204

Command line option

Description

-o
--only_stdout
--output
--predef_macros

--preinclude

--preprocess
--public_equ
--quad_align_labels
-r

--relaxed_fp

--remarks

--require_prototypes

--silent
--strict

--system_include_dir

--use_unix_directory_

separators

--vla

--warnings_affect_exit_code

--warnings_are_errors

Sets the object filename. Alias for --output.
Uses standard output only

Sets the object filename

Lists the predefined symbols.

Includes an include file before reading the source
file

Generates preprocessor output

Defines a global named assembler label

Aligns labels on 4-byte boundaries

Generates debug information Alias for --debug.

Relaxes the rules for optimizing floating-point
expressions

Enables remarks

Verifies that functions are declared before they are
defined

Sets silent operation
Checks for strict compliance with Standard C/C++
Specifies the path for system include files

Uses / as directory separator in paths

Enables VLA support
Warnings affects exit code

Warnings are treated as errors

Table 29: Compiler options summary (Continued)

Descriptions of options

IAR C/C++ Development Guide
Compiling and Linking for SH

N

The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--c89

Syntax

Description

See also

--char_is_signed
Syntax

Description

--char_is_unsigned

Syntax

Description

--code_model

Syntax

Parameters

Compiler options _¢

--c89

Use this option to enable the C89 standard instead of Standard C.

Note: This option is mandatory when the MISRA C checking is enabled.
C language overview, page 143.

Project>Options>C/C++ Compiler>Language>C dialect: C89

--char_is_signed

Use this option to make the compiler interpret the plain char type as signed. This is the
default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--char_is_unsigned
By default, the compiler interprets the plain char type as signed. Use this option to

make the compiler interpret the plain char type as unsigned instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_unsigned option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_model={small |medium|large|huge}

small Functions are by default placed in the high or low 32 Kbytes of memory

medium Functions are by default placed in the high or low 512 Kbytes of memory

Part 2. Reference information 205

Descriptions of options

Description

See also

=-=core

Syntax

Parameters

Description

Syntax

Parameters

Description

IAR C/C++ Development Guide
206 Compiling and Linking for SH

large Functions are by default placed in the high or low 128 Mbytes of memory

huge (default) Functions can be placed anywhere in memory

Use this option to select the code model, which means a default placement of functions.
If you do not select a code model option, the compiler uses the default code model. Note
that all modules of your application must use the same code model.

Code models and memory attributes for function storage, page 63.

Project>Options>General Options>Target>Code model

--core={sh2a|sh2afpu}

sh2a (default) Generates code for SH-2A microprocessors without a hardware FPU

sh2afpu Generates code for SH-2A microprocessors with a hardware FPU

Use this option to select the processor core for which the code will be generated. If you
do not use the option to specify a core, the compiler uses the SH-2A core without an
FPU as default. Note that all modules of your application must use the same core.

The compiler supports all devices based on the SH-2A microprocessor core.

To set related options, choose:

Project>Options>General Options>Target>Device

-D symbol[=value]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

Compiler options _¢

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFO0=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model

Syntax --data_model={small |medium|large|huge}

Parameters
small Variable and constant data is by default placed in the high or low 32

Kbytes of memory

medium Variable and constant data is by default placed in the high or low 512
Kbytes of memory

large Variable and constant data is by default placed in the high or low 128
Mbytes of memory

huge (default) Variable and constant data can be placed anywhere in memory

Description Use this option to select the data model, which means a default placement of data
objects. If you do not select a data model option, the compiler uses the default data
model. Note that all modules of your application must use the same data model.

See also Data models, page 56.

Project>Options>General Options>Target>Data model

Part 2. Reference information 207

Descriptions of options

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
208 Compiling and Linking for SH

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies[=[1i|m]] {filename|directory}
i (default) Lists only the names of files
m Lists in makefile style

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 200.

Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\liar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

foo.o0: c:\iar\product\include\stdio.h
foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

Set up the rule for compiling files to be something like:

e

%.0 : .C

$(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Description

Compiler options _¢

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension . d).

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the . d files do not yet exist.

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Part 2. Reference information 209

Descriptions of options

210

--diag_suppress

Syntax

Parameters

Description

--diag_warning
Syntax

Parameters

Description

--diagnostics_tables

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for SH

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pe826

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables {filename| directory}

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 200.

Compiler options _¢

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables from the compilation
unit. This enhances interprocedural optimizations such as inlining, cross call, and cross
jump by limiting their scope to public functions and variables that are actually used.

This option is only useful when all source files are compiled as one unit, which means
that the --mfc compiler option is used.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output.

See also --mfc, page 217 and Multi-file compilation units, page 177.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib
Syntax --dlib
Description Use this option to use the system header files for the DLIB library; the compiler will
automatically locate the files and use them when compiling.
Note: This option is used by default.
See also --dlib_config, page 212, --no_system_include, page 220, --system_include dir, page

228.

To set related options, choose:

Project>Options>General Options>Library Configuration

Part 2. Reference information 211

Descriptions of options

--dlib_config

Syntax --dlib_config filename.h|config
Parameters
filename A DLIB configuration header file. For information about specifying a
filename, see Rules for specifying a filename or directory as parameters,
page 200.
config The default configuration file for the specified configuration will be

used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used (default)
full, the full library configuration will be used.

Description Each runtime library has a corresponding library configuration file. Use this option to
explicitly specify which library configuration file to use, either by specifying an explicit
file or by specifying a library configuration—in which case the default file for that
library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
sh\1lib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 95.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 103.

To set related options, choose:

Project>Options>General Options>Library Configuration

--double
Syntax --double={32]64}
Parameters
32 (default) 32-bit doubles are used
64 64-bit doubles are used

IAR C/C++ Development Guide
212 Compiling and Linking for SH

Description

See also

-
Syntax

Description

See also

--ect++
Syntax

Description

-=cec++

Syntax

Description

Compiler options _¢

Use this option to select the precision used by the compiler for representing the
floating-point types double and long double. The compiler can use either 32-bit or
64-bit precision. By default, the compiler uses 32-bit precision.

Floating-point types, page 253.

Project>Options>General Options>Target>Size of type 'double’

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.
Enabling language extensions, page 145.

Project>Options>C/C++ Compiler>Language>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

--ec++

In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++

--eec++
In the compiler, the default language is C. If you take advantage of Extended Embedded

C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

Part 2. Reference information 213

Descriptions of options

See also Extended Embedded C++, page 154.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_alternative_register_allocator

Syntax --enable_alternative_register_allocator

Description By default, the compiler uses a register allocation scheme that enables better scheduling
and, most of the time, smaller code. The alternative register allocation method reuses
freed registers and can generate smaller code, but code that is not as good for scheduling.

Project>Options>C/C++ Compiler>Optimizations>Alternative register allocation
scheme

--enable_multibytes

Syntax --enable_multibytes

Description By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support

--error_limit

Syntax --—error_limit=n
Parameters
n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.
Description Use the --error_1limit option to specify the number of errors allowed before the

compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

IAR C/C++ Development Guide
214 Compiling and Linking for SH

Syntax

Parameters

Descriptions

--guard_calls

Syntax

Description

See also

--header_context

Syntax

Description

Compiler options _¢

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Use this option to make the compiler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--guard_calls

Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

Managing a multithreaded environment, page 118.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at

that point.

This option is not available in the IDE.

Part 2. Reference information 215

Descriptions of options

216

Syntax

Parameters

Description

See also

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for SH

-1 path

path

The search path for #include files

Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

Include file search procedure, page 191.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-1[a|a|b|B|c|C|D][N][H] {filename|directory}

a (default)
A

b

Q

(default)

Assembler list file
Assembler list file with C or C++ source as comments

Basic assembler list file. This file has the same contents as a list file
produced with -1a, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included -

Basic assembler list file. This file has the same contents as a list file
produced with - 12, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included *

C or C++ list file
C or C++ list file with assembler source as comments

C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

No diagnostics in file

Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

* This makes the list file less useful as input to the assembler, but more useful for reading by a

human.

Description

--mfc

Syntax

Description

Example

See also

--no_clustering

Syntax

Description

Compiler options _¢

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.
To set related options, choose:

Project>Options>C/C++ Compiler>List

--mfc

Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which makes
interprocedural optimizations such as inlining, cross call, and cross jump possible.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

iccsh myfilel.c myfile2.c myfile3.c --mfc

--discard_unused_publics, page 211, --output, -0, page 224, and Multi-file compilation
units, page 177.

Project>Options>C/C++ Compiler>Multi-file compilation

--no_clustering

Use this option to disable static clustering optimizations. When static clustering is
enabled, static and global variables are arranged so that variables that are accessed in the
same function are stored close to each other. This makes it possible for the compiler to
use the same base pointer for several accesses. These optimizations, which are
performed at optimization levels Medium and High, normally reduce code size and
execution time.

Part 2. Reference information 217

Descriptions of options

--no_code_motion

Syntax

Description

--no_cse

Syntax

Description

--no_fragments

Syntax

Description

IAR C/C++ Development Guide
218 Compiling and Linking for SH

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

--no_code_motion

Use this option to disable code motion optimizations. These optimizations, which are
performed at the optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Code motion

--no_cse

Use this option to disable common subexpression elimination. At the optimization
levels Medium and High, the compiler avoids calculating the same expression more than
once. This optimization normally reduces both code size and execution time. However,
the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Common subexpression elimination

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and thus further minimize
the size of the executable image.

See also

--no_inline

Syntax

Description

Compiler options _¢

Keeping symbols and sections, page 85.

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_inline

Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time, but the resulting code might be difficult to debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for speed.

If you do not want to disable inlining for a whole module, use #pragma inline=never
on an individual function instead.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Function inlining

--no_path_in_file_macros

Syntax

Description

See also

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE _FILE_ _.

Descriptions of predefined preprocessor symbols, page 302.

This option is not available in the IDE.

Part 2. Reference information 219

Descriptions of options

220

--no_scheduling

Syntax

Description

--nO_size constraints

Syntax

Description

See also

--no_system_include

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and Linking for SH

--no_scheduling

Use this option to disable the instruction scheduler. The compiler features an instruction
scheduler to increase the performance of the generated code. To achieve that goal, the
scheduler rearranges the instructions to minimize the number of pipeline stalls
emanating from resource conflicts within the microprocessor. This optimization, which
is performed at optimization level High, normally reduces execution time. However, the
resulting code might be difficult to debug.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Scheduling

--no_size_constraints

Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

This option has no effect unless used with -Ohs.

Speed versus size, page 178.

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_system_include

By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 compiler option.

--dlib, page 211, --dlib_config, page 212, and --system_include_dir, page 228.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa

Syntax

Description

See also

Compiler options _¢

--no_tbaa

Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

Type-based alias analysis, page 180.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "foo";
will give an error message like this:

Error([Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

Part 2. Reference information 221

Descriptions of options

222

--no_unroll

Syntax

Description

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

--no_unroll

Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enabled
transformations>Loop unrolling

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

Syntax

Parameters

Description

See also

--only_stdout

Syntax

Description

Compiler options _¢

-0[n|l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by

default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Controlling compiler optimizations, page 176.

Project>Options>C/C++ Compiler>Optimizations

--only_stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

Part 2. Reference information 223

Descriptions of options

224

--output, -o

Syntax
Parameters

Description

--predef_macros

Syntax

Parameters

Description

--preinclude

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for SH

--output {filename|directory}
-o {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 200.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--predef_macros {filename|directory}

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

Note that this option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude includefile

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Compiler options _¢

Description Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess([=[c] [n] [1]] {filename|directory}

Parameters
C Preserve comments
n Preprocess only
1 Generate #1ine directives
For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=value]
Parameters

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol
Description This option is equivalent to defining a label in assembler language using the EQU

directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

Part 2. Reference information 225

Descriptions of options

--quad_align_labels

Syntax --quad_align_labels
Description Use this option to align internal labels on 4-byte boundaries.

This option is not available in the IDE.

--relaxed_fp

Syntax --relaxed_fp

Description Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

o The expression consists of both single- and double-precision values
o The double-precision values can be converted to single precision without loss of
accuracy

o The result of the expression is converted to single precision.

Note that performing the calculation in single precision instead of double precision
might cause a loss of accuracy.

When the --relaxed_£p option is used, errno might not be set according to
Standard C for some math functions. Thus, your source code should not rely on errno.

Example float f(float a, float b)
{
return a + b * 3.0;

}

The C standard states that 3. 0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_f£p optionis used, 3.0 will be converted to £1oat and the whole expression
can be evaluated in £loat precision.

Project>Options>C/C++ Compiler>Language>Relaxed floating-point precision

IAR C/C++ Development Guide
226 Compiling and Linking for SH

Compiler options _¢

--remarks
Syntax --remarks
Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.
See also Severity levels, page 195.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Project>Options>C/C++ Compiler>Language>Require prototypes

--silent
Syntax --silent
Description By default, the compiler issues introductory messages and a final statistics report. Use

this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

Part 2. Reference information 227

Descriptions of options

-=strict

Syntax

Description

See also

--system_include_dir

Syntax

Parameters

Description

See also

--strict
By default, the compiler accepts a relaxed superset of Standard C and C++. Use this

option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.
Enabling language extensions, page 145.

Project>Options>C/C++ Compiler>Language>Language conformance>Strict

--system_include_dir path

path The path to the system include files. For information about
specifying a path, see Rules for specifying a filename or directory as

parameters, page 200.

By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

--dlib, page 211, --dlib_config, page 212, and --no_system_include, page 220.

This option is not available in the IDE.

--use_unix_directory_separators

Syntax

Description

IAR C/C++ Development Guide
228 Compiling and Linking for SH

--use_unix_directory_separators

Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--via

Syntax

Description

See also

Ep

Compiler options _¢

--vla

Use this option to allow variable length arrays. Note that this option requires Standard
C and cannot be used together the --c89 compiler option.

C language overview, page 143.

Project>Options>C/C++ Compiler>Language>Allow VLA

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

--diag_warning, page 210.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

Part 2. Reference information 229

Descriptions of options

IAR C/C++ Development Guide
230 Compiling and Linking for SH

Linker options

This chapter gives detailed reference information about each linker option.

For general syntax rules, see Options syntax, page 199.

Summary of linker options

This table summarizes the linker options:

Command line option

Description

--config

--config_def

--cpp_init_routine

--debug_lib
--define_symbol
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables

--entry

--error_limit

--export_builtin_config
-f

--force_output

--GBR

--image_input

--keep

--log

Specifies the linker configuration file to be used by
the linker

Defines symbols for the configuration file

Specifies a user-defined C++ dynamic initialization
routine

Uses the C-SPY debug library

Defines symbols that can be used by the application
Lists file dependencies

Treats these message tags as errors

Treats these message tags as remarks

Suppresses these diagnostic messages

Treats these message tags as warnings

Lists all diagnostic messages

Treats the symbol as a root symbol and as the start
of the application

Specifies the allowed number of errors before
linking stops

Produces an icf file for the default configuration
Extends the command line

Produces an output file even if errors occurred
Specifies the GBR address

Puts an image file in a section

Forces a symbol to be included in the application

Enables log output for selected topics

Table 30: Linker options summary

Part 2. Reference information 231

Summary of linker options

232

IAR C/C++ Development Guide
Compiling and Linking for SH

Command line option

Description

--log_file
--mangled_names_in_messages
--map

--misracl998

--misrac2004

--misrac_verbose

--no_fragments
--no_library_ search

--no_locals

--no_range_reservations
--no_remove
--no_warnings
--no_wrap_diagnostics
-0

--only_stdout

--output

--place_holder

--redirect

--remarks

--search

--silent

--strip

Directs the log to a file
Adds mangled names in messages
Produces a map file

Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:1998
Reference Guide and the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

Disables section fragment handling

Disables automatic runtime library search
Removes local symbols from the ELF executable
image.

Disables range reservations for absolute symbols
Disables removal of unused sections

Disables generation of warnings

Does not wrap long lines in diagnostic messages
Sets the object filename. Alias for --output.
Uses standard output only

Sets the object filename

Reserve a place in ROM to be filled by some other
tool, for example a checksum calculated by
ielftool.

Redirects a reference to a symbol to another
symbol

Enables remarks

Specifies more directories to search for object and
library files

Sets silent operation

Removes debug information from the executable
image

Table 30: Linker options summary (Continued)

Linker options __¢

Command line option Description
--warnings_affect_exit_code Warnings affect exit code
--warnings_are_errors Warnings are treated as errors

Table 30: Linker options summary (Continued)

Descriptions of options

The following section gives detailed reference information about each compiler and
linker option.

& Note that if you use the options page Extra Options to specify specific command line
= options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--config

Syntax --config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Description Use this option to specify the configuration file to be used by the linker (the default
filename extension is ic£). If no configuration file is specified, a default configuration
is used. This option can only be used once on the command line.

See also The chapter The linker configuration file.
Project>Options>Linker>Config>Linker configuration file

--config_def
Syntax --config_def symbol[=constant_value]
Parameters

symbol The name of the symbol to be used in the configuration file. By
default, the value 0 (zero) is used.

constant_value The constant value of the configuration symbol.

Part 2. Reference information 233

Descriptions of options

Description

See also

--cpp_init_routine

Syntax

Parameters

Description

--debug lib

Syntax
Description

See also

IAR C/C++ Development Guide
234 Compiling and Linking for SH

Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more that once on the command line.

--define_symbol, page 235 and Interaction between ILINK and the application, page 89.

Project>Options>Linker>Config>Defined symbols for configuration file

--cpp_init_routine routine

routine A user-defined C++ dynamic initialization routine.

When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine isnamed __iar_cstart_call_ctors andis called by the startup
code in the standard library. Use this option if you are not using the standard library and
require another routine to handle these section types.

To set this option, use Project>Options>Linker>Extra Options.

--debug_lib
Use this option to include the C-SPY debug library.

Application debug support, page 99 for more information about the C-SPY debug
library.

Project>Options>Linker>Library>Include C-SPY debugging support

--define_symbol

Syntax

Parameters

Description

See also

--dependencies

Syntax

Parameters

Description

Example

Linker options __¢

--define_symbol symbol=constant_value

symbol The name of the constant symbol that can be used by the
application.
constant_value The constant value of the symbol.

Use this option to define a constant symbol that can be used by your application. This
option can be used more than once on the command line. Note that his option is different
from the define symbol directive.

--config_def, page 233 and Interaction between ILINK and the application, page 89.

Project>Options>Linker>#define>Defined symbols

--dependencies[=[1i|m]] {filename|directory}
i (default) Lists only the names of files
m Lists in makefile style

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 200.

Use this option to make the linker list the names of the linker configuration, object, and
library files opened for input into a file with the default filename extension 1.

If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\myproject\foo.o
d:\myproject\bar.o

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the output file, a colon, a space, and the name of an input file. For example:

a.out: c:\myproject\foo.o

Part 2. Reference information 235

Descriptions of options

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Description

IAR C/C++ Development Guide
236 Compiling and Linking for SH

a.out: d:\myproject\bar.o

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
problem of such severity that an executable image will not be generated. The exit code
will be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image. This option may be used more than once on
the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

--diag_suppress

Syntax

Parameters

Description

--diag_warning

Syntax

Parameters

Description

--diagnostics_tables

Syntax

Parameters

Linker options __¢

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel17

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pe826

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Project>Options>Linker>Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 200.

Part 2. Reference information 237

Descriptions of options

Description Use this option to list all possible diagnostic messages in a named file.

This option cannot be given together with other options.

This option is not available in the IDE.

--entry
Syntax --entry symbol
Parameters
symbol The name of the symbol to be treated as a root symbol and start
label
Description Use this option to make a symbol be treated as a root symbol and the start label of the

application. This is useful for loaders. If this option is not used, the default start symbol
is__iar program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included and a module part of a library is only included if needed.

Project>Options>Linker>Library>Override default program entry

--error_limit

Syntax ——error_limit=n
Parameters
n The number of errors before the linker stops linking. n must be a
positive integer; 0 indicates no limit.
Description Use the --error_1limit option to specify the number of errors allowed before the

linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--export_builtin_config

Syntax --export_builtin_config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

IAR C/C++ Development Guide
238 Compiling and Linking for SH

Linker options __¢

Description Exports the configuration used by default to a file.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Descriptions Use this option to make the linker read command line options from the named file, with
the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>Linker>Extra Options.

--force_output

Syntax --force_output
Description Use this option to produce an output executable image regardless of any linking errors.

To set this option, use Project>Options>Linker>Extra Options

--GBR
Syntax --GBR address
Parameters
address The memory address to which the GBR register should point
Description Use this option to specify where the global base register (GBR) should point to.

This option is not available in the IDE.

Part 2. Reference information 239

Descriptions of options

240

--image_input
Syntax

Parameters

Description

Example

See also

--keep

Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

--image_input filename [symbol, [section[,alignment]]]

filename The pure binary file containing the raw image you want to link
symbol The symbol which the binary data can be referenced with.
section The section where the binary data will be placed; default is . text.
alignment The alignment of the section; default is 1.

Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

The section where the contents of the £ilename file are placed, is only included if the
symbol symbo1 is required by your application. Use the --keep option if you want to
force a reference to the section.

--image_input bootstrap.abs,Bootstrap, CSTARTUPCODE, 4

The contents of the pure binary file bootstrap.abs are placed in the section
CSTARTUPCODE. The section where the contents are placed is 4-byte aligned and will
only be included if your application (or the command line option --keep) includes a
reference to the symbol Bootstrap.

--keep, page 240.

Project>Options>Linker>Input>Raw binary image

--keep symbol

symbol The name of the symbol to be treated as a root symbol

Normally, the linker keeps a symbol only if it is needed by your application. Use this
option to make a symbol always be included in the final application.

Project>Options>Linker>Input>Keep symbols

--log

Syntax

Parameters

Description

See also

--log_file

Syntax

Parameters

Description

See also

Linker options __¢

--log topic, topic, ...

initialization Log initialization decisions
modules Log module selections
sections Log section selections

Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

--log file, page 241.

Project>Options>Linker>List>Generate log file

--log_file filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

Use this option to direct the log output to the specified file.
--log, page 241.

Project>Options>Linker>List>Generate log file

--mangled_names_in_messages

Syntax

Descriptions

--mangled_names_in_messages

Use this option to produce both mangled and unmangled names for C/C++ symbols in
messages. Mangling is a technique used for mapping a complex C name or a C++ name
(for example, for overloading) into a simple name. For example, void h(int, char)

becomes _zlhic.

This option is not available in the IDE.

Part 2. Reference information 241

Descriptions of options

--map

Syntax

Description

--no_fragments

Syntax

Description

IAR C/C++ Development Guide
242 Compiling and Linking for SH

--map {filename|directory}

Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains:

e Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.

A summary of IAR-specific runtime attributes.

Placement summary which lists each section/block in address order, sorted by
placement directives.

e Initialization table layout which lists the data ranges, packing methods, and
compression ratios.

e Module summary which lists contributions from each module to the image, sorted
by directory and library.

e Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.

e Some of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and thus further minimize
the size of the executable image.

See also

--no_library_search

Syntax

Description

--no_locals

Syntax

Description

Linker options __¢

Keeping symbols and sections, page 85.

To set this option, use Project>Options>Linker>Extra Options

--no_library_search
Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the

application needs a user-built standard library, etc.

Project>Options>Linker>Library>Automatic runtime library selection

--no_locals
Use this option to remove local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information
in the executable image.

Project>Options>Linker>Output

--no_range_reservations

Syntax

Description

--no_range_reservations

Normally, the linker reserves any ranges used by absolute symbols with a non-zero size,
excluding them from consideration for place in commands.

When this option is used, these reservations are disabled, and the linker is free to place
sections in such a way as to overlap the extent of absolute symbols.

To set this option, use Project>Options>Linker>Extra Options.

Part 2. Reference information 243

Descriptions of options

--nO_remove

Syntax

Description

See also

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

--only_stdout

Syntax

Description

IAR C/C++ Development Guide
244 Compiling and Linking for SH

—-—-no_remove

When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.

Keeping symbols and sections, page 85.

To set this option, use Project>Options>Linker>Extra Options

--no_warnings

By default, the linker issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--only_stdout

Use this option to make the linker use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

Linker options __¢

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

Description By default, the object executable image produced by the linker is located in a file with
the name a . out. Use this option to explicitly specify a different output filename, which

by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--place_holder

Syntax --place_holder symboll[,sizel,section|,alignment]]]
Parameters
symbol The name of the symbol to create
size Size in ROM; by default 4 bytes
section Section name to use; by default . text
alignment Alignment of section; by default 1
Description Use this option to reserve a place in ROM to be filled by some other tool, for example a

checksum calculated by ielftool. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will
only be included in your application if the section appears to be needed. The --keep
linker option, or the keep linker directive can be used for forcing such section to be
included.

See also IAR utilities, page 347.

To set this option, use Project>Options>Linker>Extra Options

Part 2. Reference information 245

Descriptions of options

--redirect

Syntax

Parameters

Description

--remarks

Syntax

Description

See also

--search

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
246 Compiling and Linking for SH

--redirect from_symbol=to_symbol

from_symbol The name of the source symbol

to_symbol The name of the destination symbol

Use this option to change a reference from one symbol to another symbol.

To set this option, use Project>Options>Linker>Extra Options

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.

Severity levels, page 195.

Project>Options>Linker>Diagnostics>Enable remarks

--search path

path A path to a directory where the linker should search for object
and library files.

Use this option to specify more directories for the linker to search for object and library
files in.

By default, the linker searches for object and library files only in the working directory.
Each use of this option on the command line adds another search directory.

The linking process, page 72.

This option is not available in the IDE.

--silent

Syntax

Description

--strip

Syntax

Description

Linker options __¢

--silent
By default, the linker issues introductory messages and a final statistics report. Use this

option to make the linker operate without sending these messages to the standard output
stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strip

By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors
Use this option to make the linker treat all warnings as errors. If the linker encounters

an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

Part 2. Reference information 247

Descriptions of options

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning directive will also be treated as errors when
--warnings_are_errors is used.

See also --diag warning, page 237 and --diag warning, page 210.

Project>Options>Linker>Diagnostics>Treat all warnings as errors

IAR C/C++ Development Guide
248 Compiling and Linking for SH

Data representation

This chapter describes the data types, pointers, and structure types supported
by the compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte 1ong integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use the #pragma pack directive.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
256.

Note that with the #pragma data_alignment directive you canincrease the alignment
demands on specific variables.

ALIGNMENT ON THE SH MICROPROCESSOR

The SH microprocessor can access memory using 8- to 32-bit accesses. However, when
an unaligned access is performed, an exception is generated. The compiler avoids this

Part 2. Reference information

249

Basic data types

by assigning an alignment to every data type, which means that the SH microprocessor
can read the data efficiently.

Basic data types

The compiler supports both all Standard C basic data types and some additional types.

INTEGER TYPES

This table gives the size, range, and alignment of each integer data type:
Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32 bits 230230 4
unsigned int 32 bits 0 to 2°2.| 4
signed long 32 bits 23 w023 4
unsigned long 32 bits 0to 232 4
signed long long 64 bits 283 10 283 4
unsigned long long 64 bits 0to 2% 4

Table 31: Integer types

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type 1long, unsigned long, long long, Or unsigned
long long.

IAR C/C++ Development Guide
250 Compiling and Linking for SH

Data representation ___¢

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef . h from the
runtime library.

Bitfields

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for SH, plain integer types are treated as signed.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed into a container of its base type from the least significant bit to
the most significant bit. If the last container is of the same type and has enough bits
available, the bitfield is placed into this container, otherwise a new container is
allocated.

If you use the directive #pragma bitfield=reversed, bitfields are placed from the
most significant bit to the least significant bit in each container. See bitfields, page 277.
Example

Assume this example:

struct bitfield example

Part 2. Reference information 251

Basic data types

252

IAR C/C++ Development Guide
Compiling and Linking for SH

{
uint32_t a 12;
uintlé_t b : 3;
uintlé_t c : 7;
uint8_t d;

}i

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order, each bitfield is instead placed starting from the most
significant bit of its container.

This is the layout of bitfield example:

MSB LSB MSB LSB
uint32_t a uintl6_t c |b = padding
MSE LSB MsB LSB MSB LS8 MSB LSB MsB LSB MSB LS8 MSB LSB
a a c c b d
0 | 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LB MSB LSB
a a b c c d reversed

A\ MsB 18/
uint32_t a uintl6_t b| ¢

~_MsB LSB -

Figure 14: Layout of bitfield_example

Data representation ___¢

FLOATING-POINT TYPES

In the IAR C/C++ Compiler for SH, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

Type Size if --double=32 Size if --double=64
float 32 bits 32 bits
double 32 bits 64 bits
long double 32 bits 64 bits

Table 32: Floating-point types

Note: The size of double and long double depends on the --double={32|64}
option, see --double, page 212. (By default, they are 32-bit.) The type Long double uses
the same precision as double.

The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported.
32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

31 30 2322 0
’ S ‘ Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)S » 2(Exponent-127) « 1 Mantissa
The range of the number is:

+1.18E-38 to *3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

Part 2. Reference information 253

Pointer types

254

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

63 62 52 51 0
’ S ‘ Exponent Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.
The value of the number is:
(-1)S * p(Exponent-1023) « 1 Mantissa
The range of the number is:

+2.23E-308 to +1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

This list describes the representation of special floating-point numbers:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

Pointer types

IAR C/C++ Development Guide
Compiling and Linking for SH

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The function pointer of the IAR C/C++ Compiler for SHis __code32. It is a 32-bit
pointer that can address the entire memory. The internal representation of the function
pointer is the actual address it refers to.

DATA POINTERS

The data pointer of the IAR C/C++ Compiler for SH is __data32. It is a 32-bit
signed int pointer that can address the entire memory.

Data representation ___¢

CASTING

Casts between pointers have these characteristics:

e Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

e Casting a value of an integer type to a pointer of a larger type is performed by
integral promotion first and then to a pointer

Casting a pointer type to a smaller integer type is performed by truncation
Casting a pointer type to a larger integer type is performed by zero extension

Casting a data pointer to a function pointer and vice versa is illegal

Casting a function pointer to an integer type gives an undefined result

size t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the IAR C/C++ Compiler for SH, the size of size_t is 32 bits.

ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the IAR C/C++ Compiler for SH, the size of
ptrdiff_t is 32 bits.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for SH, the size of intptr_t is 32 bits.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types have the same alignment as the member with the highest
alignment requirement. The size of a struct is also adjusted to allow arrays of aligned
structure objects.

Part 2. Reference information 255

Structure types

256

IAR C/C++ Development Guide
Compiling and Linking for SH

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Example

struct First
{
char c;
short s;
} os;

This diagram shows the layout in memory:

c pad s

0 | 2 3
Figure 15: Structure layout

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The #pragma pack directive is used for relaxing the alignment requirements of the
members of a structure. This changes the layout of the structure. The members are
placed in the same order as when declared, but there might be less pad space between
members.

Note that accessing an object that is not correctly aligned requires code that is both
larger and slower. If such structure members are accessed many times, it is usually better
to construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work.

Data representation ___¢

Example
This example declares a packed structure:

#pragma pack(1l)
struct S
{
char c;
short s;
}i

#pragma pack()

In this example, the structure s has this memory layout:

c S

0 | 2
Figure 16: Packed structure layout

This example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2

{
struct S s;
long 1;

Y

52 has this memory layout

c s pad 1

0 | 2 3 4 5! 6 7
Figure 17: Packed structure layout

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 4, which means that alignment of
the structure 52 will become 4.

For more information, see Alignment of elements in a structure, page 170.

Part 2. Reference information 257

Type qualifiers

258

Type qualifiers

IAR C/C++ Development Guide
Compiling and Linking for SH

According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

e Shared access; the object is shared between several tasks in a multitasking
environment

e Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

o Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

e The compiler considers each read and write access to an object declared volatile
as an access

o The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a =>5; /* A write access */
a += 6; /* First a read then a write access */

e An access to a bitfield is treated as an access to the underlying type
e Adding a const qualifier to a volatile object will make write accesses to the
object impossible, but the placement of the object will not change.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for SH are described
below.

Rules for accesses

In the IAR C/C++ Compiler for SH, accesses to volatile declared objects are subject
to these rules:

e All accesses are preserved

e All accesses are complete, that is, the whole object is accessed

o All accesses are performed in the same order as given in the abstract machine

Data representation ___¢

e Read and Write accesses are atomic up to 32-bit accesses, that is, they cannot be
interrupted.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, the volatile object will be write-protected,
but nothing else will change. This can be used for protecting objects stored in flash
memory.

To protect an object in flash memory from write accesses, define the variables like this:
const volatile int x @ "FLASH";

The compiler will generate the read-write section FLASH. That section should be placed
in ROM and used for manually initializing the variables when the application starts up.

Thereafter, the initializers can be reflashed with other values at any time.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.

Part 2. Reference information 259

Data types in C++

IAR C/C++ Development Guide
260 Compiling and Linking for SH

Extended keywords

This chapter describes the extended keywords that support specific features
of the SH microprocessor and the general syntax rules for the keywords.
Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Section reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar

with some related concepts.

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the SH microprocessor. There are two types of
attributes—t#ype attributes and object attributes:

e Type attributes affect the external functionality of the data object or function
e Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 265.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 213 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

Part 2. Reference information 261

General syntax rules for extended keywords

262

IAR C/C++ Development Guide
Compiling and Linking for SH

You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
MiCroprocessor.

e Available function memory attributes: __codel6, __code20, __code28,
__code32,and __tbr
e Available data memory attributes: __datal6, __data20,__data28, and

__data32

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can specify one memory attribute for each level of pointer indirection.

General type attributes
These general type attributes are available:

e Function type attributes affect how the function should be called: __interrupt,

__monitor task, and __trap

s ——

e Data type attributes: const and volatile
You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
258.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __data20 type attribute to the variables i and 3;
in other words, the variable i and j is placed in data20 memory. The variables k and 1
behave in the same way:

__data20 int i, 3j;
int __data20 k, 1;

Note that the attribute affects both identifiers.

Extended keywords ___4

This declaration of i and 7 is equivalent with the previous one:

#pragma type_attribute=__data20
int i, 3J;
The advantage of using pragma directives for specifying keywords is that it offers you a

method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 60.

An easier way of specifying storage is to use type definitions. These two declarations
are equivalent:

typedef char __data20 Byte;
Byte b;

and
__data20 char b;

Note that #pragma type_attribute can be used together with a typedef
declaration.

Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

int * __data20 p; The pointer is located in data20 memory.

__data20 int * p; The pointer is located in data20 memory.

Syntax for type attributes on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__interrupt void my_handler (void) ;

or

void (__interrupt my_handler) (void) ;

This declaration of my_handler is equivalent with the previous one:

#pragma type_attribute=__interrupt
void my_handler (void) ;

Part 2. Reference information 263

Summary of extended keywords

264

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

These object attributes are available:

o Object attributes that can be used for variables: __no_init

e Object attributes that can be used for functions and variables: location, @,
__root,and __weak,

e Object attributes that can be used for functions: __fast_interrupt,
__intrinsic,and __noreturn, and vector.

You can specify as many object attributes as required for a specific function or data
object.

For more information about 1ocation and @, see Controlling data and function
placement in memory, page 173. For more information about vector, see vector, page
292.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init

int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords

This table summarizes the extended keywords:

Extended keyword Description

__codelé6 Controls the storage of functions
__code20 Controls the storage of functions
__code28 Controls the storage of functions
__code32 Controls the storage of functions

Table 33: Extended keywords summary

IAR C/C++ Development Guide
Compiling and Linking for SH

Extended keyword

Extended keywords ___4

Description

__datalsé6
__data20
__data28
__data32

__fast_interrupt

__interrupt
__intrinsic
__monitor
__no_init
_noreturn

__root

__task

_tbr

__trap

__weak

Controls the storage of data objects
Controls the storage of data objects
Controls the storage of data objects
Controls the storage of data objects

Specifies a fast method of saving registers for interrupt
functions

Supports interrupt functions

Reserved for compiler internal use only

Supports atomic execution of a function

Supports non-volatile memory

Informs the compiler that the function will not return

Ensures that a function or variable is included in the object
code even if unused

Relaxes the rules for preserving registers

Places individual functions in the table that the TBR register
points to

Supports trap functions

Declares a symbol to be externally weakly linked

Table 33: Extended keywords summary (Continued)

Descriptions of extended keywords

These sections give detailed information about each extended keyword.

__codel 6

Syntax

Description

Storage information

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 261.

The __codel6 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code16 memory.

e Addressranges: 0x00000000-0x00007FFF and OxFFFF8000-0xFFFFFFFF (2x32

Kbytes)

e Maximum size: 32 Kbytes-1

e Pointer size: 4 bytes

Part 2. Reference information 265

Descriptions of extended keywords

Example

See also

__code20

Syntax

Description

Storage information

Example

See also

__code28

Syntax

Description

Storage information

Example

See also

IAR C/C++ Development Guide
266 Compiling and Linking for SH

__codel6 void myfunction(void) ;

Code models and memory attributes for function storage, page 63.

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 261.

The __code20 memory attribute overrides the default storage of functions given by the

selected code model and places individual functions in code20 memory.

o Address range: 0x00000000-0x0007FFFF and 0xFFF80000-0xFFFFFFFF
(2x512 Kbytes)

e Maximum size: 512 Kbytes-1

e Pointer size: 4 bytes

__code20 void myfunction(void) ;

Code models and memory attributes for function storage, page 63.

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 261.

The __code28 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code28 memory.

® Address range: 0x00000000-0x07FFFFFF and 0xF8000000-0xFFFFFFFF
(2x128 Mbytes)

e Maximum size: 128 Mbytes-1

e Pointer size: 4 bytes
__code28 void myfunction(void) ;

Code models and memory attributes for function storage, page 63.

__code32

Syntax

Description

Storage information

Example

See also

__datalé6

Syntax

Description

Storage information

Example

See also

__data20

Syntax

Description

Extended keywords ___4

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 261.

The __code32 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code32 memory.

e Address range: 0x00000000-0xFFFFFFFF (4 Gbytes)
e Maximum object size: 4 Gbytes

e Pointer size: 4 bytes
__code32 void myfunction(void) ;

Code models and memory attributes for function storage, page 63.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 261.

The __datalé memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in datal6 memory.

e Addressranges: 0x00000000-0x00007FFF and OxFFFF8000-0xFFFFFFFF (2x32
Kbytes)

e Maximum size: 32 Kbytes-1

e Pointer size: 4 bytes

__datalé int x;

Memory types, page 57.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 261.

The __data20 memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in data20 memory.

Part 2. Reference information 267

Descriptions of extended keywords

Storage information

Example

See also

__data28

Syntax

Description

Storage information

Example

See also

__data32

Syntax

Description

Storage information

Example

IAR C/C++ Development Guide
268 Compiling and Linking for SH

e Address range: 0x00000000-0x0007FFFF and 0xFFF80000-0xFFFFFFFF
(2x512 Kbytes)

e Maximum size: 512 Kbytes-1

e Pointer size: 4 bytes
__data20 int x;

Memory types, page 57.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 261.

The __data28 memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in data28 memory.

o Address range: 0x00000000-0x07FFFFFF and 0xF8000000-0xFFFFFFFF
(2x128 Mbytes)

e Maximum size: 128 Mbytes-1

e Pointer size: 4 bytes

__data28 int x;

Memory types, page 57.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 261.

The __data32 memory attribute overrides the default storage of variables given by the

selected data model and places individual variables and constants in data32 memory.

e Address range: 0x00000000-0xFFFFFFFF (4 Gbytes)
e Maximum object size: 4 Gbytes

e Pointer size: 4 bytes

__data32 int x;

Extended keywords ___4

See also Memory types, page 57.

__fast_interrupt

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 264.

Description The __fast_interrupt keyword specifies the register bank mechanism to be used
with interrupt functions when many common registers are saved.

Example __fast_interrupt __interrupt void my_interrupt_handler (void) ;
__interrupt
Syntax Follows the generic syntax rules for type attributes that can be used on functions, see

Type attributes, page 261.

Description The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.
The header file iodevice.h, where device corresponds to the selected device,

contains predefined names for the existing interrupt vectors.

Example #pragma vector=0x14
_interrupt void my_interrupt_handler (void) ;

See also Interrupt functions, page 65, vector, page 292, .intvec, page 346.
___intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.
__monitor

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see

Type attributes, page 261.

Part 2. Reference information 269

Descriptions of extended keywords

Description

Example

See also

__no_init
Syntax

Description

Example

See also

__noreturn

Syntax

Description

Example

__root

Syntax

Description

Example

IAR C/C++ Development Guide
270 Compiling and Linking for SH

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

__monitor int get_lock(void) ;
Monitor functions, page 66. Read also about the intrinsic functions __disable_interrupt,

page 295, __enable_interrupt, page 296, __get interrupt_state, page 296, and
__set_interrupt state, page 297.

Follows the generic syntax rules for object attributes, see Object attributes, page 264.

Usethe __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

__no_init int myarray[10];

Do not initialize directive, page 326.

Follows the generic syntax rules for object attributes, see Object attributes, page 264.
The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can

optimize more efficiently. Examples of functions that do not return are abort and exit.

_noreturn void terminate (void) ;

Follows the generic syntax rules for object attributes, see Object attributes, page 264.
A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are

always included and library modules are only included if needed.

__root int myarray[10];

See also

__task

Syntax

Description

Example

_tbr

Syntax

Description

Storage information

Example

See also

Extended keywords ___4

To read more about root symbols and how they are kept, see Keeping symbols and
sections, page 85.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 261.

This keyword allows functions to relax the rules for preserving registers. Typically, the
keyword is used on the start function for a task in an RTOS.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __ task do not save all
registers, and therefore require less stack space.

Because a function declared __task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

__task void my_handler (void) ;

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 261.

Calls to TBR (jump table base register) functions can be performed by executing a JSR
instruction. The __ tbr memory attribute places individual function entries in the table
that the TBR register points to.

Pointer size: 4 bytes

Declaring a TBR function:

__tbr void my_ TBR_function(int my_int) ;

To read more about the ELF section where the jump table is placed, see .tbr_table, page
346.

Part 2. Reference information 271

Descriptions of extended keywords

272

__trap

Syntax

Description

Example

See also

__weak

Syntax

Description

Example

IAR C/C++ Development Guide
Compiling and Linking for SH

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 261.

A trap function is called and then executed by the TRAPA assembler instruction and
returned by the RTE instruction. To specify one or several vectors, use the

#pragma vector directive. See the chip manufacturer’s hardware documentation for
information about the trap vector range. If a trap vector is not given, an error will be
issued if the function is called. A trap function can take parameters and return a value
and it has the same calling convention as other functions. You can call the trap functions
from your C or C++ application.

#pragma vector=0x25
__trap int my_trap_function(void) ;

The range where the trap vector can be placed is 0x20—0x3F.

Calling convention, page 131 and Trap functions, page 66.

Follows the generic syntax rules for object attributes, see Object attributes, page 264.

Using the __weak object attribute on an external declaration of a symbol makes all
references to that symbol in the module weak.

Using the __weak object attribute on a public definition of a symbol makes that
definition a weak definition.

The linker will not include a module from a library solely to satisfy weak references to
a symbol, nor will the lack of a definition for a weak reference result in an error. If no
definition is included, the address of the object will be zero.

When linking, a symbol can have any number of weak definitions, and at most one
non-weak definition. If the symbol is needed, and there is a non-weak definition, this
definition will be used. If there is no non-weak definition, one of the weak definitions
will be used.

extern __weak int foo; /* A weak reference */

__weak void bar(void); /* A weak definition */
{

/* Increment foo if it was included */

if (&foo != 0)

Extended keywords ___4

++foo;

Part 2. Reference information 273

Descriptions of extended keywords

IAR C/C++ Development Guide
274 Compiling and Linking for SH

Pragma directives

This chapter describes the pragma directives of the compiler.

The #tpragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive Description

basic_template_matching Makes a template function fully memory-attribute aware

bitfields Controls the order of bitfield members
constseg Places constant variables in a named section
data_alignment Gives a variable a higher (more strict) alignment
dataseg Places variables in a named section
diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
error Signals an error while parsing

include_alias Specifies an alias for an include file

inline Controls inlining of a function

language Controls the IAR Systems language extensions

Table 34: Pragma directives summary

Part 2. Reference information

275

Summary of pragma directives

276

IAR C/C++ Development Guide
Compiling and Linking for SH

Pragma directive

Description

location

message
monitor_level
object_attribute
optimize

pack

__printf_args

required

rtmodel

__scanf_args

section

STDC CX_LIMITED_RANGE

STDC FENV_ACCESS

STDC FP_CONTRACT

type_attribute

vector

weak

Specifies the absolute address of a variable, or places groups
of functions or variables in named sections

Prints a message

Sets the level of disabled interrupts for monitor functions.
Changes the definition of a variable or a function
Specifies the type and level of an optimization

Specifies the alignment of structures and union members

Verifies that a function with a printf-style format string is
called with the correct arguments

Ensures that a symbol that is needed by another symbol is
included in the linked output

Adds a runtime model attribute to the module

Verifies that a function with a scanf-style format string is
called with the correct arguments

Declares a section name to be used by intrinsic functions

Specifies whether the compiler can use normal complex
mathematical formulas or not

Specifies whether your source code accesses the
floating-point environment or not.

Specifies whether the compiler is allowed to contract
floating-point expressions or not.

Changes the declaration and definitions of a variable or
function

Specifies the vector of an interrupt function

Makes a definition a weak definition, or creates a weak alias
for a function or a variable

Table 34: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page

384.

Pragma directives __4

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

basic_template_matching

Syntax #pragma basic_template_matching

Description Use this pragma directive in front of a template function declaration to make the
function fully memory-attribute aware, in the rare cases where this is useful. That
template function will then match the template without any modifications.

Example #pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __data20 *) 0); /* Template parameter T becomes
int __data20 */

bitfields

Syntax #pragma bitfields=disjoint_types|joined_types|
reversed_disjoint_types|reversed|default}

Parameters
disjoint_types Bitfield members are placed from the least significant bit to

the most significant bit in the container type. Storage
containers of bitfields with different base types will not
overlap.

joined_types Bitfield members are placed depending on the byte order.
Storage containers of bitfields will overlap other structure
members. For more information, see Bitfields, page 251.

reversed_disjoint_types Bitfield members are placed from the most significant bit to
the least significant bit in the container type. Storage
containers of bitfields with different base types will not
overlap.

reversed This is an alias for reversed_disjoint_types.

default Restores to default layout of bitfield members. The default
behavior for the compiler is joined_types.

Description Use this pragma directive to control the order of bitfield members.

Part 2. Reference information 277

Descriptions of pragma directives

278

Example

See also

constseg

Syntax

Parameters

Description

Example

data_alignment

Syntax

Parameters

Description

IAR C/C++ Development Guide

Compiling and Linking for SH

#pragma bitfields=disjoint_types
/* Structure that uses disjoint bitfield types. */
{

unsigned char error :1;

unsigned char size :4;

unsigned short code :10;

}
#pragma bitfields=default /* Restores to default setting. */

Bitfields, page 251.

#pragma constseg=[__memoryattribute]{SECTION;NAME|defau1t}

__memoryattribute An optional memory attribute denoting in what memory the
section will be placed; if not specified, default memory is used.

SECTION_NAME A user-defined section name; cannot be a section name predefined
for use by the compiler and linker.

default Uses the default section for constants.

Use this pragma directive to place constant variables in a named section. The section
name cannot be a section name predefined for use by the compiler and linker. The setting
remains active until you turn it off again with the #pragma constseg=default
directive.

#pragma constseg=__data28 MY_CONSTANTS

const int factorySettings([] = {42, 15, -128, 0};
#pragma constseg=default

#pragma data_alignment=expression

expression A constant which must be a power of two (1, 2, 4, etc.).

Use this pragma directive to give a variable a higher (more strict) alignment of the start
address than it would otherwise have. This directive can be used on variables with static
and automatic storage duration.

Pragma directives __4

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can thus be used for creating situations where the size is not a
multiple of the alignment.

dataseg

Syntax #pragma dataseg=[__memoryattribute]{SECTION_NAME|default}

Parameters
__memoryattribute An optional memory attribute denoting in what memory the

section will be placed; if not specified, default memory is used.
SECTION_NAME A user-defined section name; cannot be a section name predefined
for use by the compiler and linker.
default Uses the default section.

Description Use this pragma directive to place variables in a named section. The section name cannot
be a section name predefined for use by the compiler and linker. The variable will not
be initialized at startup, and can for this reason not have an initializer, which means it
must be declared __no_init. The setting remains active until you turn it off again with
the #pragma constseg=default directive.

Example #pragma dataseg=__data28 MY_SECTION

__no_init char myBuffer[1000];
#pragma dataseg=default

diag default

Syntax #pragma diag_default=tagl, tag, ...]
Parameters

tag The number of a diagnostic message, for example the message
number Pel17.

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,

Part 2. Reference information 279

Descriptions of pragma directives

280

See also

diag_error

Syntax

Parameters

Description

See also

diag remark

Syntax

Parameters

Description

See also

diag suppress

Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags.

Diagnostics, page 194.

#pragma diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7.

Use this pragma directive to change the severity level to error for the specified
diagnostics.

Diagnostics, page 194.

#pragma diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

Diagnostics, page 194.

#pragma diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7.

Use this pragma directive to suppress the specified diagnostic messages.

Pragma directives __4

See also Diagnostics, page 194.

diag_warning

Syntax #pragma diag_warning=tagl, tag, ...]
Parameters

tag The number of a diagnostic message, for example the message
number Pe826.

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 194.
error
Syntax #pragma error message
Parameters
message A string that represents the error message.
Description Use this pragma directive to cause an error message when it is parsed. This mechanism

is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

Example #if FOO_AVAILABLE
#define FOO
#else
#define FOO _Pragma("error\"Foo is not available\"")
#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

Part 2. Reference information 281

Descriptions of pragma directives

282

include_alias

Syntax

Parameters

Description

Example

See also

inline
Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

#pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig _header> , <subst_header>)

orig header The name of a header file for which you want to create an alias.

subst_header The alias for the original header file.

Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

#pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

Include file search procedure, page 191.

#pragma inline[=forced|never]

No parameter Has the same effect as the inline keyword.
forced Disables the compiler’s heuristics and forces inlining.
never Disables the compiler’s heuristics and makes sure that the function

will not be inlined.

Use #pragma inline to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually occurs is subject to the
compiler’s heuristics.

#pragma inline is similar to the C++ keyword inline. The difference is that the
compiler uses C++ inline semantics for the #pragma inline directive, but uses the
Standard C semantics for the inline keyword.

See also

language
Syntax

Parameters

Description

Example |

Example 2

Pragma directives __4

Specifying #pragma inline=never disables the compiler’s heuristics and makes sure
that the function will not be inlined.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like print £), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

Function inlining, page 179.

#pragma language={extended|default |save|restore}

extended Enables the IAR Systems language extensions from the first use of
the pragma directive and onward.

default From the first use of the pragma directive and onward, restores the
settings for the IAR Systems language extensions to whatever that
was specified by compiler options.

save|restore Saves and restores, respectively, the IAR Systems language
extensions setting around a piece of source code.
Each use of save must be followed by a matching restore in the
same file without any intervening #include directive.

Use this pragma directive to control the use of language extensions.

At the top of a file that needs to be compiled with IAR Systems extensions enabled:
#pragma language=extended

/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR Systems

extensions enabled:

#pragma language=extended
/* Part of source code. */
#pragma language=default

Part 2. Reference information 283

Descriptions of pragma directives

284

Example 3

See also

location

Syntax

Parameters

Description

Example

See also

IAR C/C++ Development Guide
Compiling and Linking for SH

Around a particular part of the source code—normally in a system header file—that
needs to be compiled with IAR Systems extensions enabled, but where the state before
the sequence cannot be assumed to be the same as that specified by the compiler options
in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

-e, page 213 and --strict, page 228.

#pragma location={address|NAME}

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined section name; cannot be a section name predefined
for use by the compiler and linker.

Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared __no_init. Alternatively, the directive can take a string specifying a section
for placing either a variable or a function whose declaration follows the pragma
directive.

#pragma location=0xFFFF2000
__no_init volatile char PORT1; /* PORT1l is located at address

0xFFFF2000 */

#pragma location="foo"
char PORT1; /* PORT1l is located in section foo */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma ("location=\"FLASH\"")

FLASH int 1i; /* i1 is placed in the FLASH section */

Controlling data and function placement in memory, page 173.

message

Syntax

Parameters

Description

Example:

monitor_level

Syntax

Parameters

Description

Example:

object_attribute

Syntax

Parameters

Description

Pragma directives __4

#pragma message (message)

message The message that you want to direct to the standard output stream.

Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

#ifdef TESTING

#pragma message ("Testing")
#endif

#pragma monitor_level=Ievel

level The level of disabled interrupts, an integer from 0 to 5.

Use this pragma directive to set the level of disabled interrupts for monitor functions.

#pragma monitor_level=4
__monitor void myfunction() ;

{

#pragma object_attribute=object_attributel[,object_attribute,...]

For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 264.

Use this pragma directive to declare a variable or a function with an object attribute. This

directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma

Part 2. Reference information 285

Descriptions of pragma directives

286

Example

See also

optimize
Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

#pragma object_attribute=__no_init
char bar;

General syntax rules for extended keywords, page 261.

#pragma optimize=param[param...]

balanced|size|speed|no_size_ Optimizes balanced between speed and size,

constraints optimizes for size, optimizes for speed, or optimizes
for speed, but relaxes the normal restrictions for
code size expansion.

none | low|medium|high Specifies the level of optimization
no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination
no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis
no_unroll Turns off loop unrolling

Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use
preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Pragma directives °

Example #pragma optimize=speed
int small_and_used_often()

{

#pragma optimize=size no_inline
int big_and_seldom_used()

{
}
pack

Syntax #pragma pack (n)
#pragma pack()
#pragma pack({push|pop} [,name] [,n])

Parameters
n Sets an optional structure alignment; one of: 1, 2, 4, 8, 0or 16
Empty list Restores the structure alignment to default
push Sets a temporary structure alignment
pop Restores the structure alignment from a temporarily pushed alignment
name An optional pushed or popped alignment label

Description Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or end of file.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Part 2. Reference information 287

Descriptions of pragma directives

288

See also

__printf_args
Syntax

Description

Example

required

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
Compiling and Linking for SH

Structure types, page 255.

#pragma __printf_args

Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example $d) is syntactically correct.

#pragma __printf_args
int printf (char const *,...);

/* Function call */
printf("%d",x); /* Compiler checks that x is an integer */

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the section it
resides in.

const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{

/* Do something here. */

}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

rtmodel

Syntax

Parameters

Description

Example

See also

__scanf_args

Syntax

Description

Example

Pragma directives __4

#pragma rtmodel="key", "value"

"key™" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.

Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.
#pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with

a module that does not have the corresponding runtime model attributes defined.

Checking module consistency, page 123.

#pragma __scanf_args

Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma __scanf_args
int printf (char const *,...);

/* Function call */
scanf ("%d",x); /* Compiler checks that x is an integer */

Part 2. Reference information 289

Descriptions of pragma directives

section

Syntax

Parameters

Description

Example

See also

#pragma section="NAME" [__memoryattribute] [align]
alias

#pragma segment="NAME" [__memoryattribute] [align]
NAME The name of the section or segment

__memoryattribute An optional memory attribute identifying the memory the section
will be placed in; if not specified, default memory is used.

align Specifies an alignment for the section. The value must be a constant
integer expression to the power of two.

Use this pragma directive to define a section name that can be used by the section
operators __section_begin, _section_end, and __section_size. All section
declarations for a specific section must have the same memory type attribute and
alignment.

If an optional memory attribute is used, the return type of the section operators
__section_beginand __section_end is:

void __memoryattribute *.
#pragma section="MYHUGE" __data32 4

Dedicated section operators, page 147. For more information about sections, see the
chapter Linking your application.

STDC CX_LIMITED_RANGE

Syntax

Parameters

Description

IAR C/C++ Development Guide
290 Compiling and Linking for SH

#pragma STDC CX_LIMITED_RANGE {ON| OFF | DEFAULT}

ON Normal complex mathematics formulas can be used.
OFF Normal complex mathematics formulas cannot be used.
DEFAULT Sets the default behavior, that is OFF.

Use this pragma directive to specify that the compiler can use the normal complex
mathematics formulas for x (multiplication), / (division), and abs.

Pragma directives __4

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF |DEFAULT}

Parameters
ON Source code accesses the floating-point environment. Note that this
argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.
DEFAULT Sets the default behavior, that is OFF.
Description Use this pragma directive to specify whether your source code accesses the

floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF |DEFAULT}

Parameters
ON The compiler is allowed to contract floating-point expressions.
OFF The compiler is not allowed to contract floating-point expressions.

Note that this argument is not supported by the compiler.

DEFAULT Sets the default behavior, that is ON.

Description Use this pragma directive to specify whether the compiler is allowed to contract
floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC_FP_CONTRACT=ON

type_attribute

Syntax #pragma type_attribute=type_attributel, type_attribute,...]

Parameters For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 261.

Part 2. Reference information 291

Descriptions of pragma directives

Description

Example

See also

vector

Syntax

Parameters

Description

Example

weak

Syntax

Parameters

Description

IAR C/C++ Development Guide
292 Compiling and Linking for SH

Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
In this example, an int object with the memory attribute __datal6 is defined:

#pragma type_attribute=__datalé6
int x;

This declaration, which uses extended keywords, is equivalent:

__datalé int x;

See the chapter Extended keywords for more details.

#pragma vector=vectorl[, vector2, vector3, ...]

vector The vector number(s) of an interrupt or trap function.

Use this pragma directive to specify the vector(s) of an interrupt or trap function whose
declaration follows the pragma directive. Note that several vectors can be defined for
each function.

#pragma vector=0x14
__interrupt void my_handler (void) ;

#pragma weak symboll={symbol2}

symboll A function or variable with external linkage.

symbol2 A defined function or variable.

This pragma directive can be used in one of two ways:

e To make the definition of a function or variable with external linkage a weak
definition. The __weak attribute can also be used for this purpose.

Pragma directives __4

e To create a weak alias for another function or variable. You can make more than one
alias for the same function or variable.
Example To make the definition of foo a weak definition, write:
#pragma weak foo
To make NMI_Handler a weak alias for Default_Handler, write:
#pragma weak NMI_Handler=Default_Handler
If N\MI_Handler is not defined elsewhere in the program, all references to

NMI_Handler will refer to Default_Handler.

See also __weak, page 272.

Part 2. Reference information 293

Descriptions of pragma directives

IAR C/C++ Development Guide
294 Compiling and Linking for SH

Intrinsic functions

This chapter gives reference information about the intrinsic functions, a
predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into inline code, either as a single instruction or as a short

sequence of instructions.

Descriptions of intrinsic functions

This section gives reference information about each intrinsic function.

To use intrinsic functions in an application, include the header file intrinsics.h.
There are two sets of functions for convenient access to low-level functions; one set of
intrinsic functions developed by IAR Systems and one set of intrinsic functions for
compatibility with the Renesas SH compiler.

Note that the IAR intrinsic function names start with double underscores, but the names
of functions for compatibility with the Renesas SH compiler start with only one
underscore.

IAR intrinsic functions
These functions have been developed by IAR Systems to provide convenient access to
low-level functions:

__disable_interrupt

Syntax void __disable_interrupt (void) ;

Description Disables interrupts by setting the interrupt level to 15.

Part 2. Reference information 295

IAR intrinsic functions

296

__enable_interrupt

Syntax

Description

__get_interrupt_state

Syntax

Description

Example

__get_interrupt_table

Syntax

Description

__ho_operation

Syntax

Description

__prefetch

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

void __enable_interrupt (void) ;

Enables interrupts by setting the interrupt level to 0.

__listate_t __get_interrupt_state(void) ;

Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

__listate_t s = __get_interrupt_state();
__disable_interrupt () ;

/* Do something here. */

__set_interrupt_state(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

void *__get_interrupt_table(void) ;

Returns the value of the TBR register.

void __no_operation(void) ;

Inserts a NOP instruction.

void __prefetch(void * address);

Inserts a PREFETCH instruction.

__set_interrupt_state

Intrinsic functions __¢

Symnx void __set_interrupt_state(__istate_t);

Descriptions Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see __get interrupt state, page 296.

__set_interrupt_table

Syntax void __set_interrupt_table(void *);

Description Writes a specific value to the TBR register.
__sleep

Syntax void __sleep(void);

Description Inserts a SLEEP instruction.

Renesas intrinsic functions

This set of intrinsic functions is provided for compatibility with the Renesas SH

compiler. For information about these functions, see the documentation from Renesas.

Function

Syntax

_builtin_addc
_builtin_addv
_builtin_clipsb
_builtin_clipsw

_builtin_clipub

_builtin_clipuw

_builtin_clrt
_builtin_divO0s

_builtin_divOu

long _builtin_addc(long, long) ;
long _builtin_addv(long, long) ;
long _builtin_clipsb(long) ;
long _builtin_clipsw(long) ;

unsigned long _builtin_clipub (unsigned
long) ;

unsigned long _builtin_clipuw(unsigned
long) ;

void _builtin_clrt(void) ;
int _builtin_divO0s(long, long);

void _builtin_divOu(void) ;

Table 35: Intrinsic functions for compatibility with Renesas compiler

Part 2. Reference information

297

Renesas intrinsic functions

298

IAR C/C++ Development Guide

Compiling and Linking for SH

Function

Syntax

_builtin_divl

_builtin_dmuls_h
_builtin_dmuls_1

_builtin_dmulu_h

_builtin_dmulu_1

_builtin_end_cnvl

_builtin_gbr_and_byte

_builtin_gbr_or_byte

_builtin_gbr_read_long

_builtin_gbr_read_byte

_builtin_gbr_read_word

_builtin_gbr_tst_byte

_builtin_gbr_write_long

_builtin_gbr_write_byte

_builtin_gbr_write_word

_builtin_gbr_xor_byte

_builtin_get_cr
_builtin_get_gbr
_builtin_get_tbr

_builtin_get_vbr

unsigned long _builtin_divl (unsigned
long, unsigned long) ;

long _builtin_dmuls_h(long, long);

unsigned long _builtin_dmuls_1 (long,
long) ;

unsigned long _builtin_dmulu_h (unsigned
long, unsigned long) ;

unsigned long _builtin_dmulu_1 (unsigned
long, unsigned long) ;

unsigned long _builtin_end_cnvl (unsigned
long);

void _builtin_gbr_and_byte(int, unsigned
char) ;

void _builtin_gbr_or_byte(int, unsigned
char) ;

unsigned long
_builtin_gbr_read_long (int) ;

unsigned char
_builtin_gbr_read_byte(int) ;

unsigned short
_builtin_gbr_read_word(int) ;

int _builtin_gbr_tst_byte(int, unsigned
char) ;

void _builtin_gbr_write_long(int,
unsigned long) ;

void _builtin_gbr_write_byte(int,
unsigned char) ;

void _builtin_gbr_write_word(int,
unsigned short) ;

void _builtin_gbr_xor_byte(int, unsigned
char) ;

int _builtin_get_cr(void);
void *_builtin_get_gbr (void) ;
void *_builtin_get_tbr (void) ;

void *_builtin_get_vbr (void) ;

Table 35: Intrinsic functions for compatibility with Renesas compiler (Continued)

Intrinsic functions __¢

Function Syntax

_builtin_macl int _builtin_macl (int *, int *, unsigned
int) ;

_builtin_macll int _builtin_macll(int *, int *,

unsigned int, unsigned int);

_builtin_macw int _builtin_macw(short *, short *,
unsigned int);

_builtin_macwl int _builtin_macwl (short *, short *,
unsigned int, unsigned int);

_builtin_movt int _builtin_movt (void) ;

_builtin_negc long _builtin_negc (long) ;

_builtin_nop void _builtin_nop(void) ;

_builtin_ovf_addc int _builtin_ovf_addc (long, long);

_builtin_prefetch void _builtin_prefetch(void *);

_builtin_rotcl unsigned long _builtin_rotcl (unsigned
long) ;

_builtin_rotcr unsigned long _builtin_rotcr (unsigned
long) ;

_builtin_rotl unsigned long _builtin_rotl (unsigned
long) ;

_builtin_rotr unsigned long _builtin_rotr (unsigned
long) ;

_builtin_set_cr void _builtin_set_cr(int);

_builtin_set_gbr void _builtin_set_gbr (void *);

_builtin_sett void _builtin_sett (void) ;

_builtin_set_tbr void _builtin_set_tbr (void *);

_builtin_set_vbr void _builtin_set_vbr (void *);

_builtin_shar long _builtin_shar (long) ;

_builtin_shll unsigned long _builtin_shll (unsigned
long) ;

_builtin_shlr unsigned long _builtin_shlr (unsigned
long) ;

_builtin_sleep void _builtin_sleep(void) ;

_builtin_subc long _builtin_subc (long, long) ;

_builtin_subv long _builtin_subv(long, long) ;

Table 35: Intrinsic functions for compatibility with Renesas compiler (Continued)

Part 2. Reference information 299

Renesas intrinsic functions

Function Syntax

_builtin_swapb unsigned short _builtin_swapb (unsigned
short) ;

_builtin_swapw unsigned long _builtin_swapw (unsigned
long) ;

_builtin_tas int _builtin_tas(char *);

_builtin_unf_subc int _builtin_unf_subc(long, long);

_builtin_unf_subv int _builtin_unf_subv(long, long);

_builtin_xtrct unsigned long _builtin_xtrct (unsigned

long, unsigned long) ;

Table 35: Intrinsic functions for compatibility with Renesas compiler (Continued)

IAR C/C++ Development Guide
300 Compiling and Linking for SH

The preprocessor

This chapter gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other
related information.

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for SH adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:
e Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 302.

e User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 206.

e Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives in this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the

preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 304.

e Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 225.

To specify a path for an include file, use forward slashes:
#include "mydirectory/myfile"

In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");

Note that backslashes can also be used. In this case, use one in include file paths and two
in source code strings.

Part 2. Reference information 301

Descriptions of predefined preprocessor symbols

302

Descriptions of predefined preprocessor symbols
This table describes the predefined preprocessor symbols:

Predefined symbol

Identifies

__BASE_FILE__

__BUILD_NUMBER_ _

__CODE_MODEL_ _

__CORE__

cplusplus

__DATA_MODEL__

__DATE_ _

__DOUBLE_ _

A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __FILE__, page
303, and —-no_path_in_file_macros, page 219.

A unique integer that identifies the build number of the
compiler currently in use.

An integer that identifies the code model in use. The symbol
reflects the --code_model option and is defined to
__CODE_MODEL_SMALL_ _,
__CODE_MODEL_MEDIUM__,
__CODE_MODEL_LARGE__, or
__CODE_MODEL_HUGE_ _. These symbolic names can be
used when testing the __ CODE_MODEL_ _ symbol.

An integer that identifies the chip core in use. The symbol
reflects the --core option and is defined to __SH2A__ or

__SH2AFPU_ _. These symbolic names can be used when
testing the __CORE__ symbol.

An integer which is defined when the compiler runs in any of
the C++ modes, otherwise it is undefined. When defined, its
value is 199711L. This symbol can be used with #ifdef to
detect whether the compiler accepts C++ code. It is
particularly useful when creating header files that are to be
shared by C and C++ code.”

An integer that identifies the data model in use. The symbol
reflects the --data_model option and is defined to
__DATA_MODEL_SMALL_ _,
__DATA_MODEL_MEDIUM__,
__DATA_MODEL_LARGE_ _,
__DATA_MODEL_HUGE_ _. These symbolic names can be
used when testing the __DATA_MODEL_ _ symbol.

or

A string that identifies the date of compilation, which is
returned in the form "Mmm dd yyyy", for example "Mar 30
2010""

An integer that identifies the size of the data type double.

The symbol reflects the --double option and is defined to
32 or 64.

Table 36: Predefined symbols

IAR C/C++ Development Guide
Compiling and Linking for SH

The preprocessor __4

Predefined symbol Identifies

_ _embedded_cplusplus An integer which is defined to 1 when the compiler runs in
any of the C++ modes, otherwise the symbol is undefined.
This symbol can be used with #ifdef to detect whether the
compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++
code.”

__FILE__ A string that identifies the name of the file being compiled,
which can be both the base source file and any included
header file. See also __BASE_FILE__, page 302, and
—no_path_in_file_macros, page 219.°

__func__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 213. See also __PRETTY_FUNCTION__,
page 303.

__FUNCTION_ _ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 213. See also __PRETTY_FUNCTION__,
page 303.

__IAR_SYSTEMS_ICC__ An integer that identifies the IAR compiler platform. The
current value is 8. Note that the number could be higher in a
future version of the product. This symbol can be tested with
#1ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICCSH__ An integer that is set to 1 when the code is compiled with the
IAR C/C++ Compiler for SH, and otherwise to 0.

__LINE__ An integer that identifies the current source line number of
the file being compiled, which can be both the base source file
and any included header file."

__PRETTY_FUNCTION__ A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func (char) ". This symbol is
useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled, see -e, page
213. See also __func__, page 303.

Table 36: Predefined symbols (Continued)

Part 2. Reference information 303

Descriptions of miscellaneous preprocessor extensions

Predefined symbol Identifies

__STDC_ _ An integer that is set to 1, which means the compiler adheres
to Standard C. This symbol can be tested with #ifdef to
detect whether the compiler in use adheres to Standard cr

__STDC_VERSION_ _ An integer that identifies the version of the C standard in use.
The symbol expands to 199901L,unless the --c89 compiler
option is used in which case the symbol expands to 199409L.
This symbol does not apply in EC++ mode.”

_ _SUBVERSION_ _ An integer that identifies the subversion number of the
compiler version number, for example 3 in 1.2.3.4.

__TIME__ A string that identifies the time of compilation in the form
"hh:mm:ss".

__VER__ An integer that identifies the version number of the IAR

compiler in use. The value of the number is calculated in this
way: (100 * the major version number + the
minor version number). For example, for compiler
version 3.34, 3 is the major version number and 34 is the
minor version number. Hence, the value of __VER__ is 334.

Table 36: Predefined symbols (Continued)
* This symbol is required by Standard C.

Descriptions of miscellaneous preprocessor extensions

NDEBUG

Description

IAR C/C++ Development Guide
304 Compiling and Linking for SH

This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

e not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

The preprocessor __4

Note that the assert macro is defined in the assert . h standard include file.

See also Assert, page 117.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

#warning message
Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.

Part 2. Reference information 305

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Development Guide
306 Compiling and Linking for SH

Library functions

This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Library overview

The IAR DLIB Library is a complete library, compliant with Standard C and C++. It
supports floating-point numbers in IEEE 754 format and it can be configured to include
different levels of support for locale, file descriptors, multibyte characters, et cetera.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic project configuration, page 51. The linker will
include only those routines that are required—directly or indirectly—by your
application.

Part 2. Reference information 307

IAR DLIB Library

308

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant because they need static data:

e Heap functions—malloc, free, realloc, calloc, and the C++ operators new
and delete
o Time functions—asctime, localtime, gmtime, mktime

e Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wertomb, wesrtomb,
wctomb

o The miscellaneous functions setlocale, rand, atexit, strerror, strtok
e Functions that use files or the heap in some way. This includes printf, sprintf,

scanf, scanf, getchar, and putchar.

Some functions also share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it is read. Among these functions are:

exp, expl0, ldexp, log, logl0, pow, sgrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

e Do not use non-reentrant functions in interrupt service routines

e Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library

IAR C/C++ Development Guide
Compiling and Linking for SH

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

e Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For additional information, see the chapter Implementation-defined
behavior in this guide.

Standard C library definitions, for user programs.
Embedded C++ library definitions, for user programs.

® CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

e Runtime support libraries; for example low-level floating-point routines.

Library functions __¢

e Intrinsic functions, allowing low-level use of SH features. See the chapter Intrinsic
functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, see Added C
functionality, page 312.
C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Using C.

This table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute
complex.h Computing common complex mathematical functions
ctype.h Classifying characters

errno.h Testing error codes reported by library functions
fenv.h Floating-point exception flags

float.h Testing floating-point type properties

inttypes.h Defining formatters for all types defined in stdint.h
iso0646.h Using Amendment |—iso646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments
stdbool.h Adds support for the bool data type in C.
stddef.h Defining several useful types and macros
stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

tgmath.h Type-generic mathematical functions

time.h Converting between various time and date formats
uchar.h Unicode functionality (IAR extension to Standard C)

Table 37: Traditional Standard C header files—DLIB

Part 2. Reference information 309

IAR DLIB Library

310

IAR C/C++ Development Guide
Compiling and Linking for SH

Header file Usage
wchar.h Support for wide characters
wctype.h Classifying wide characters

Table 37: Traditional Standard C header files—DLIB (Continued)
C++ HEADER FILES

This section lists the C++ header files.

Embedded C++
This table lists the Embedded C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several /O stream classes that manipulate string containers

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer 1/O stream operations

string Defining a class that implements a string container

strstream Defining several /O stream classes that manipulate in-memory character
sequences

Table 38: Embedded C++ header files

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header
files:

Header file Description

algorithm Defines several common operations on sequences

Table 39: Standard template library header files

Library functions __¢

Header file Description

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm
hash_set A set associative container, based on a hash algorithm
iterator Defines common iterators, and operations on iterators
list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences
queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 39: Standard template library header files (Continued)

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h.

This table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute
ccomplex Computing common complex mathematical functions
cctype Classifying characters

cerrno Testing error codes reported by library functions
cfenv.h Floating-point exception flags

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h
ciso646 Using Amendment |—iso646.h standard header
climits Testing integer type properties

Table 40: New Standard C header files—DLIB

Part 2. Reference information 311

IAR DLIB Library

Header file Usage

clocale Adapting to different cultural conventions
cmath Computing common mathematical functions
csetjmp Executing non-local goto statements
csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstdbool Adds support for the bool data type in C.
cstddef Defining several useful types and macros
cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations
cstring Manipulating several kinds of strings
ctgmath.h Type-generic mathematical functions

ctime Converting between various time and date formats
cwchar Support for wide characters

cwctype Classifying wide characters

Table 40: New Standard C header files—DLIB (Continued)

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY
The IAR DLIB Library includes some added C functionality.

The following include files provide these features:

fenv.h
stdio.h
stdlib.h

string.h

fenv.h

In fenv.h, trap handling support for floating-point numbers is defined with the
functions fegettrapenable and fegettrapdisable. No floating-point status flags
are supported.

IAR C/C++ Development Guide
312 Compiling and Linking for SH

Library functions __¢

stdio.h

These functions provide additional I/O functionality:

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

putw Puts a wchar_t character to stdout.

__ungetchar Corresponds to ungetc on stdout.

__write_array Corresponds to fwrite on stdout.

string.h

These are the additional functions defined in string.h:

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.
strncasecmp Compares strings case-insensitive and bounded.
strnlen Bounded string length.

Part 2. Reference information 313

IAR DLIB Library

IAR C/C++ Development Guide
314 Compiling and Linking for SH

The linker configuration
file

This chapter describes the purpose of the linker configuration file and

describes its contents.

To read this chapter you must be familiar with the concept of sections, see

Modules and sections, page 71.

Overview

To link and locate an application in memory according to your requirements, ILINK
needs information about how to handle sections and how to place them into the available
memory regions. In other words, ILINK needs a configuration, passed to it by means of
the linker configuration file.

This file consists of a sequence of directives and typically, provides facilities for:

Defining available addressable memories

giving the linker information about the maximum size of possible addresses and
defining the available physical memory, as well as dealing with memories that can be
addressed in different ways.

Defining the regions of the available memories that are populated with ROM or
RAM

giving the start and end address for each region.
Section groups

dealing with how to group sections into blocks and overlays depending on the section
requirements.

Defining how to handle initialization of the application

giving information about which sections that are to be initialized, and how that
initialization should be made.

Memory allocation
defining where—in what memory region—each set of sections should be placed.
Using symbols, expressions, and numbers

expressing addresses and sizes, etc, in the other configuration directives. The
symbols can also be used in the application itself.

Part 2. Reference information

315

Defining memories and regions

e Structural configuration
meaning that you can include or exclude directives depending on a condition, and to
split the configuration file into several different files.

Comments can be written either as C comments (/*. . . */) or as C++ comments
//...).

Defining memories and regions
ILINK needs information about the available memory spaces, or more specifically it
needs information about:
o The maximum size of possible addressable memories

The define memory directive defines a memory space with a given size, which is
the maximum possible amount of addressable memory, not necessarily physically
available. See Define memory directive, page 316.

e Available physical memory

The define region directive defines a region in the available memories in which
specific sections of application code and sections of application data can be placed.
See Define region directive, page 317.

A region consists of one or several memory ranges. A range is a continuous sequence
of bytes in a memory and several ranges can be expressed by using region
expressions. See Region expression, page 319.

o Whether a physical memory appears in more than one memory space, or in more
than one location in a memory space

Define memory directive

Syntax define memory [name] with size = size expr [,unit-size 1;
where unit-sizeis one of:

unitbitsize = bitsize expr
unitbytesize = bytesize_expr

and where expr is an expression, see Expressions, page 333.
Parameters

size_expr Specifies how many units the memory space contains; always
counted from address zero.

bitsize_expr Specifies how many bits each unit contains.

IAR C/C++ Development Guide
316 Compiling and Linking for SH

Define region directive

Description

Example

Syntax

Parameters

Description

Example

The linker configuration file __4

bytesize_expr Specifies how many bytes each unit contains. Each byte
contains 8 bits.

The define memory directive defines a memory space with a given size, which is the
maximum possible amount of addressable memory, not necessarily physically available.
This sets the limits for the possible addresses to be used in the linker configuration file.
For many microcontrollers, one memory space is sufficient. However, some
microcontrollers require two or more. For example, a Harvard architecture usually
requires two different memory spaces, one for code and one for data. If only one
memory is defined, the memory name is optional. If no unit-size is given, the unit
contains 8 bits.

/* Declare the memory space Mem of four Gigabytes */
define memory Mem with size = 4G;

define region name = region-expr;

where region-expr is a region expression, see also Regions, page 317.

name The name of the region.

The define region directive defines a region in which specific sections of code and
sections of data can be placed. A region consists of one or several memory ranges, where
each memory range consists of a continuous sequence of bytes in a specific memory.
Several ranges can be combined by using region expressions. Note that those ranges do
not need to be consecutive or even in the same memory.

/* Define the 0x10000-byte code region ROM located at address
0x10000 in memory Mem */
define region ROM = Mem: [from 0x10000 size 0x100007;

Regions

A region is s a set of non-overlapping memory ranges. A region expression is built up
out of region literals and set operations (union, intersection, and difference) on regions.

Part 2. Reference information 317

Regions

318

Region literal

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
Compiling and Linking for SH

[memory-name:][from expr { to expr | size expr }

[repeat expr [displacement expr]11]

where expr is an expression, see Expressions, page 333.

memory-name The name of the memory space in which the region literal will be
located. If there is only one memory, the name is optional.

from The start address of the memory range (inclusive).

to The end address of the memory range (inclusive).

size The size of the memory range.

repeat Defines several ranges in the same memory for the region literal.
displacement Displacement from the previous range start in the repeat sequence.

Default displacement is the same value as the range size.

A region literal consists of one memory range. When you define a range, the memory it
resides in, a start address, and a size must be specified. The range size can be stated
explicitly by specifying a size, or implicitly by specifying the final address of the range.
The final address is included in the range and a zero-sized range will only contain an
address. A range can span over the address zero and the range can even be expressed by
unsigned values, because it is known where the memory wraps.

The repeat parameter will create a region literal that contains several ranges, one for
each repeat. This is useful for banked or far regions.

/* The 5-byte size range spans over the address zero */
Mem: [from -2 to 2]

/* The 512-byte size range spans over zero, in a 64-Kbyte memory
*/
Mem: [from OxFF00 to OxFF]

/* Defining several ranges in the same memory, a repeating
literal */
Mem: [from 0 size 0x100 repeat 3 displacement 0x1000]

The linker configuration file __4

/* Resulting in a region containing:
Mem: [from 0 size 0x100]
Mem: [from 0x1000 size 0x100]
Mem: [from 0x2000 size 0x100]

*/
See also Define region directive, page 317, and Region expression, page 319.
Region expression
Syntax region-operand
| region-expr | region-operand
| region-expr - region-operand

| region-expr & region-operand
where region-operand is one of:

(region-expr)
region-name
region-literal
empty-region

where region-name is a region, see Define region directive, page 317
where region-1literal is aregion literal, see Region literal, page 318

and where empty-region is an empty region, see Empty region, page 320.

Description Normally, a region consists of one memory range, which means a region literal is
sufficient to express it. When a region contains several ranges, possibly in different
memories, it is instead necessary to use a region expression to express it. Region
expressions are actually set expressions on sets of memory ranges.

To create region expressions, three operators are available: union (|), intersection (&),
and difference (-). These operators work as in set theory. For example, if you have the
sets A and B, then the result of the operators would be:

e A | B:all elements in either set A or set B

e A & B:all elements in both set A and B

e A - B:all elements in set A but not in B.

Example /* Resulting in a range starting at 1000 and ending at 2FFF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] | Mem: [from 0x1500 to Ox2FFF]

Part 2. Reference information 319

Section handling

320

Empty region
Syntax

Description

Example

See also

/* Resulting in a range starting at 1500 and ending at 1FFF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] & Mem: [from 0x1500 to Ox2FFF]

/* Resulting in a range starting at 1000 and ending at 14FF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] - Mem: [from 0x1500 to Ox2FFF]

/* Resulting in two ranges. The first starting at 1000 and ending
at 1FFF, the second starting at 2501 and ending at 2FFF.
Both located in memory Mem */

Mem: [from 0x1000 to Ox2FFF] - Mem: [from 0x2000 to O0x24FF]

The empty region does not contain any memory ranges. If the empty region is used in a
placement directive that actually is used for placing one or more sections, ILINK will
issue an error.

define region Code = Mem: [from 0 size 0x100001];
if (Banked) {
define region Bank = Mem: [from 0x8000 size 0x1000];
} else {
define region Bank = [];
}

define region NonBanked = Code - Bank;
/* Depending on the Banked symbol, the NonBanked region is either

one range with 0x10000 bytes, or two ranges with 0x8000 and
0x7000 bytes, respectively. */

Region expression, page 319.

Section handling

IAR C/C++ Development Guide
Compiling and Linking for SH

Section handling describes how ILINK should handle the sections of the execution
image, which means:

e Placing sections in regions

The place at and place into directives place sets of sections with similar
attributes into previously defined regions. See Place at directive, page 327 and Place
in directive, page 328.

Define block directive

Syntax

Parameters

The linker configuration file __4

o Making sets of sections with special requirements

The block directive makes it possible to create empty sections with specific sizes
and alignments, sequentially sorted sections of different types, etc.

The overlay directive makes it possible to create an area of memory that can
contain several overlay images. See Define block directive, page 321, and Define
overlay directive, page 322.

e [Initializing the application

The directives initialize and do not initialize control how the application
should be started. With these directives, the application can initialize global symbols
at startup, and copy pieces of code. The initializers can be stored in several ways, for
example they can be compressed. See Initialize directive, page 323 and Do not
initialize directive, page 326.

e Keeping removed sections

The keep directive retains sections even though they are not referred to by the rest
of the application, which means it is equivalent to the oot concept in the assembler
and compiler. See Keep directive, page 326.

define block name
[with param, param...]

extended-selectors
}
[except
{
section_selectors
11

where param can be one of:

size = expr
maximum size = expr
alignment = expr

fixed order

and where the rest of the directive selects sections to include in the block, see Section
selection, page 328.

name The name of the defined block.

size Customizes the size of the block. By default, the size of a block is
the sum of its parts dependent of its contents.

Part 2. Reference information 321

Section handling

Description

Example

See also

maximum size Specifies an upper limit for the size of the block. An error is
generated if the sections in the block do not fit.

alignment Specifies a minimum alignment for the block. If any section in the
block has a higher alignment than the minimum alignment, the block
will have that alighment.

fixed order Places sections in fixed order; if not specified, the order of the
sections will be arbitrary.

The block directive defines a named set of sections. By defining a block you can create
empty blocks of bytes that can be used, for example as stacks or heaps. Another use for
the directive is to group certain types of sections, consecutive or non-consecutive. A
third example of use for the directive is to group sections into one memory area to access
the start and end of that area from the application.

/* Create a 0x1000-byte block for the heap */
define block HEAP with size = 0x1000, alignment = 4 { };

Interaction between the tools and your application, page 163. See Define overlay
directive, page 322 for an accessing example.

Define overlay directive

Syntax

Parameters

IAR C/C++ Development Guide
322 Compiling and Linking for SH

define overlay name [with param, param...]

{

extended-selectors;
}
[except
{

section_selectors
11

For information about extended selectors and except clauses, see Section selection, page
328.

name The name of the overlay.

size Customizes the size of the overlay. By default, the size of a overlay is
the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the overlay. An error is
generated if the sections in the overlay do not fit.

The linker configuration file __4

alignment Specifies a minimum alignment for the overlay. If any section in the
overlay has a higher alignment than the minimum alignment, the
overlay will have that alignment.

fixed order Places sections in fixed order; if not specified, the order of the
sections will be arbitrary.

Description The overlay directive defines a named set of sections. In contrast to the block
directive, the overlay directive can define the same name several times. Each definition
will then be grouped in memory at the same place as all other definitions of the same
name. This creates an overlaid memory area, which can be useful for an application that
has several independent sub-applications.

Place each sub-application image in ROM and reserve a RAM overlay area that can hold
all sub-applications. To execute a sub-application, first copy it from ROM to the RAM
overlay. Note that ILINK does not help you with managing interdependent overlay
definitions, apart from generating a diagnostic message for any reference from one
overlay to another overlay.

The size of an overlay will be the same size as the largest definition of that overlay name
and the alignment requirements will be the same as for the definition with the highest
alignment requirements.

Note: Sections that were overlaid must be split into a RAM and a ROM part and you
must take care of all the copying needed.

See also Manual initialization, page 87.

Initialize directive

Syntax initialize { by copy | manually }
[with param, param...]
{
section-selectors
}
[except
{
section_selectors
11

where paramis one of:

packing = { none | zeros | packbits | bwt | lzw | auto |
smallest }

Part 2. Reference information 323

Section handling

324

Parameters

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

and where the rest of the directive selects sections to include in the block. See Section

selection, page 328.

by copy Splits the section into sections for initializers and initialized data,

and handles the initialization at application startup automatically.

manually Splits the section into sections for initializers and initialized data.

The initialization at application startup is not handled automatically.

packing Specifies how to handle the initializers. Choose between:

none

zeros

packbits

bwt

lzw

auto

smallest

Disables compression of the selected
section contents. This is the default method
for initialize manually.

Compresses sequential bytes with the value
zero.

Compresses with the PackBits algorithm.
This method generates good results for data
with many consecutive bytes of the same
value.

Compresses with the Burrows-Wheeler
algorithm. This method improves the
packbits method by transforming blocks
of data before they are compressed.

Compresses with the Lempel-Ziv-Welch
algorithm. This method uses a dictionary to
store byte patterns in the data.

Similar to smallest, but ILINK chooses
between none and packbits. This is the
default method for initialize by
copy.

ILINK estimates the resulting size using each
packing method (except for auto), and
then chooses the packing method that
produces the smallest estimated size. Note
that the size of the decompressor is also
included.

The initialize directive splits the initialization section into one section holding the
initializers and another section holding the initialized data. You can choose whether the

Example

The linker configuration file __4

initialization at startup should be handled automatically (initialize by copy) or
whether you should handle it yourself (initialize manually).

When you use the packing method auto (default for initialize by copy) or
smallest, ILINK will automatically choose an appropriate packing algorithm for the
initializers and automatically revert it at the initialization process when the application
starts. To override this, specify a different packing method. Use the copy routine
parameter to override the method for copying the initializers. The --1og
initialization option shows how ILINK decided which packing algorithm to use.

When initializers are compressed, a decompressor is automatically added to the image.
The decompressors for bwt and 1zw use significantly more execution time and RAM
than zeros and packbits. Approximately 9 Kbytes of stack space is needed for bwt
and 3.5 Kbytes for 1zw.

When initializers are compressed, the exact size of the compressed initializers is
unknown until the exact content of the uncompressed data is known. If this data contains
other addresses, and some of these addresses are dependent on the size of the
compressed initializers, the linker fails with error Lp017. To avoid this, place
compressed initializers last, or in a memory region together with sections whose
addresses do not need to be known.

Optionally, ILINK will also produce a table that an initialization function in the system
startup code uses for copying the section contents from the initializer sections to the
corresponding original sections. Normally, the section content is initialized variables.

Zero-initialized sections are not affected by the initialize directive.

Sections that must execute before the initialization finishes are not affected by the
initialize by copy directive. This includes the __low_level_init function and
anything it references.

Anything reachable from the program entry label is considered needed for initialization
unless reached via a section fragment with a label starting with __iar_init$$done.
The --1log sections option can be used for creating a log of this process (in addition
to the more general process of marking section fragments to be included in the
application).

The initialize directive can be used for copying other things as well, for example
copying executable code from slow ROM to fast RAM. For another example, see Define
overlay directive, page 322.

/* Copy all read-write sections automatically from ROM to RAM at
program start */

initialize by copy { rw };

place in RAM { rw };

place in ROM { ro };

Part 2. Reference information 325

Section handling

326

See also

Initialization at system startup, page 77, and Do not initialize directive, page 326.

Do not initialize directive

Syntax

Description

Example

See also

Keep directive

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

do not initialize
{
section-selectors
}
[except
{

section-selectors
11;

For information about extended selectors and except clauses, see Section selection, page
328.

The do not initialize directive specifies the sections that should not be initialized
by the system startup code. The directive can only be used on zeroinit sections.

The compiler keyword __no_init places variables into sections that must be handled
by a do not initialize directive.

/* Do not initialize read-write sections whose name ends with
_noinit at program start */

do not initialize { rw section .*_noinit };

place in RAM { rw section .*_noinit };

Initialization at system startup, page 77, and Initialize directive, page 323.

keep
{
section-selectors
}
[except
{
section-selectors

31
For information about extended selectors and except clauses, see Section selection, page
328.

The keep directive specifies that all selected sections should be kept in the executable
image, even if there are no references to the sections.

Example

Place at directive

Syntax

Parameters

Description

Example

See also

The linker configuration file __4

keep { section .keep* } except {section .keep};

["name": 1]
place at { address [memory: 1 expr | start of region_expr |
end of region_expr }

extended-selectors
}
[except
{

section-selectors
11;

For information about extended selectors and except clauses, see Section selection, page
328.

memory: expr A specific address in a specific memory. The address must be
available in the supplied memory defined by the define
memory directive. The memory specifier is optional if there is
only one memory.

start of region_expr A region expression. The start of the region is used.

end of region_expr A region expression. The end of the region is used.

The place at directive places sections and blocks either at a specific address or, at the
beginning or the end of a region. The same address cannot be used for two different
place at directives. It is also not possible to use an empty region in a place at
directive. If placed in a region, the sections and blocks will be placed before any other
sections or blocks placed in the same region with a place in directive.

The sections and blocks will be placed in the region in an arbitrary order. To specify a
specific order, use the block directive.

The name, if specified, is used in the map file and in some log messages.
/* Place the read-only section .startup at the beginning of the
code_region */

"START": place at start of ROM { readonly section .startup };

Place in directive, page 328.

Part 2. Reference information 327

Section selection

328

Place in directive

Syntax

Description

Example

See also

["name":]
place in region-expr
{

extended-selectors
}
[except{
section-selectors
11

where region-expr is a region expression, see also Regions, page 317.

and where the rest of the directive selects sections to include in the block. See Section
selection, page 328.

The place in directive places sections and blocks in a specific region. The sections and
blocks will be placed in the region in an arbitrary order.

To specity a specific order, use the block directive. The region can have several ranges.

The name, if specified, is used in the map file and in some log messages.

/* Place the read-only sections in the code_region */
"ROM": place in ROM { readonly };

Place at directive, page 327.

Section selection

IAR C/C++ Development Guide
Compiling and Linking for SH

The purpose of section selection is to specify—by means of section selectors and except
clauses—the sections that an ILINK directive should be applied to. All sections that
match one or more of the section selectors will be selected, and none of the sections
selectors in the except clause, if any. Each section selector can match sections on section
attributes, section name, and object or library name.

Some directives provide functionality that requires more detailed selection capabilities,
for example directives that can be applied on both sections and blocks. In this case, the
extended-selectors are used.

Section-selectors

Syntax

Parameters

Description

The linker configuration file __4

{ [section-selector 1[, section-selector...] }

where section-selectoris:

[section-attribute][section-type][section sectionname]
[object {module | filename} 1]

where section-attributeis:

[rto [code | data] | rw [code | data 1 | zi 1]

and where ro, rw, and zi also can be readonly, readwrite, and zeroinit,

respectively.

And section-typeis:

[preinit_array | init_array]

ro or readonly
rw or readwrite

zi or zeroinit

code

data
preinit_array
init_array

sectionname

module

filename

Read-only sections.
Read/write sections.

Zero-initialized sections. These sections should be initialized with
zeros during system startup.

Sections that contain code.

Sections that contain data.

Sections of the ELF section type SHT_PREINIT_ARRAY.
Sections of the ELF section type SHT_INIT_ARRAY.

The section name. Two wildcards are allowed:
? matches any single character
* matches zero or more characters.

A name in the form objectname (1ibraryname). Sections
from object modules where both the object name and the library
name match their respective patterns are selected. An empty library
name pattern selects only sections from object files.

The name of an object file, a library, or an object in a library. Two
wildcards are allowed:

? matches any single character

* matches zero or more characters.

A section selector selects all sections that match the section attribute, section type,
section name, and the name of the object, where object is an object file, a library, or an

Part 2. Reference information 329

Section selection

330

Example

IAR C/C++ Development Guide
Compiling and Linking for SH

object in a library. Only up to three of the four conditions can be omitted. If the section
attribute is omitted, any section will be selected, without restrictions on the section
attribute. If the section type is omitted, sections of any type will be selected.

If the section name part or the object name part is omitted, sections will be selected
without restrictions on the section name or object name, respectively.

It is also possible to use only { } without any section selectors, which can be useful
when defining blocks.

Note that a section selector with narrower scope has higher priority than a more generic
section selector.

If more than one section selector matches for the same purpose, one of them must be
more specific. A section selector is more specific than another one if:
It specifies a section type and the other one does not

It specifies a section name or object name with no wildcards and the other one does
not

o There could be sections that match the other selector that also match this one, and
the reverse is not true.

Selector | Selector 2 More specific
section "foo*” section "f*" Selector 1
section "*x" section "f*" Neither

ro code section "f*” ro section "f*" Selector 1
init_array ro section "xx" Selector 1
section ".intvec” ro section ".int*" Selector 1
section ".intvec” object "foo.o" Neither

Table 41: Examples of section selector specifications
{ rw } /* Selects all read-write sections */

{ section .mydata* } /* Selects only .mydata* sections */
/* Selects .mydata* sections available in the object special.o */
{ section .mydata* object special.o }

Assuming a section in an object named foo. o in a library named 1ib. a, any of these
selectors will select that section:

object foo.o(lib.a)
object f*(lib¥*)
object foo.o
object lib.a

The linker configuration file __4

See also Initialize directive, page 323, Do not initialize directive, page 326, and Keep directive,
page 326.
Extended-selectors
Syntax { [extended-selector][, extended-selector...] }

where extended-selectoris:

[first | last 1{ section-selector |
block name [inline-block-def 1|
overlay name }

where inline-block-def is:
[block-params] extended-selectors
Parameters
first Places the selected name first in the region, block, or overlay.
last Places the selected name last in the region, block, or overlay.
block The name of the block.

overlay The name of the overlay.

Description In addition to what the section-selector does, extended-selector provides
functionality for placing blocks or overlays first or last in a set of sections, a block, or
an overlay. It is also possible to create an inline definition of a block. This means that
you can get more precise control over section placement.

Example define block First { section .first }; /* Define a block holding
the section .first */
define block Table { first block First }; /* Define a block where
the first is placed
first */

or, equivalently using an inline definition of the block First:

define block Table { first block First { section .first }};

See also Define block directive, page 321, Define overlay directive, page 322, and Place at
directive, page 327.

Part 2. Reference information 331

Using symbols, expressions, and numbers

Using symbols, expressions, and numbers

In the linker configuration file, you can also:

e Define and export symbols

The define symbol directive defines a symbol with a specified value that can be
used in expressions in the configuration file. The symbol can also be exported to be
used by the application or the debugger. See Define symbol directive, page 332, and
Export directive, page 333.

e Use expressions and numbers

In the linker configuration file, expressions and numbers are used for specifying
addresses, sizes, etc. See Expressions, page 333.

Define symbol directive

Syntax

Parameters

Description

Example

See also

IAR C/C++ Development Guide
332 Compiling and Linking for SH

define [exported] symbol name = expr;

exported Exports the symbol to be usable by the executable image.
name The name of the symbol.
expr The symbol value.

The define symbol directive defines a symbol with a specified value. The symbol can
then be used in expressions in the configuration file. The symbols defined in this way
work exactly like the symbols defined with the option --config_def outside of the
configuration file.

The define exported symbol variant of this directive is a shortcut for using the
directive define symbol in combination with the export symbol directive. On the
command line this would require both a --config_def option and a
--define_symbol option to achieve the same effect.

Note:

e A symbol cannot be redefined

e Symbols that are either prefixed by _x, where X is a capital letter, or that contain
__ (double underscore) are reserved for toolset vendors.

/* Define the symbol my_symbol with the value 4 */
define symbol my_symbol = 4;

Export directive, page 333 and Interaction between ILINK and the application, page 89.

The linker configuration file __4

Export directive

Syntax export symbol name;
Parameters
name The name of the symbol.
Description The export directive defines a symbol to be exported, so that it can be used both from

the executable image and from a global label. The application, or the debugger, can then
refer to it for setup purposes etc.

Example /* Define the symbol my_symbol to be exported */
export symbol my_symbol;

Expressions

Syntax An expression is built up of the following constituents:

expression binop expression

unop expression

expression ? expression : expression
(expression)

number

symbol

func-operator

where binop is one of these binary operators:
o B % << > > =, 1S 8, | &,
where unop is one of this unary operators:
om0t~

where number is a number, see Numbers, page 334

where symbo1 is a defined symbol, see Define symbol directive, page 332 and
--config_def, page 233

and where func-operator is one of these function-like operators:

minimum (expr, expr) Returns the smallest of the two parameters.
maximum (expr, expr) Returns the largest of the two parameters.
isempty (r) Returns True if the region is empty, otherwise False.

Part 2. Reference information 333

Using symbols, expressions, and numbers

334

Description

Numbers

Syntax

Description

Example

IAR C/C++ Development Guide
Compiling and Linking for SH

isdefinedsymbol (expr-symbol) Returns True if the expression symbol is defined,
otherwise False.

start (r) Returns the lowest address in the region.
end (r) Returns the highest address in the region.
size(r) Returns the size of the complete region.

where expr is an expression, and r is a region expression, see Region expression, page
319.

In the linker configuration file, an expression is a 65-bit value with the range -2"64 to
2764. The expression syntax closely follows C syntax with some minor exceptions.
There are no assignments, casts, pre- or post-operations, and no address operations (*,
&, [1, ->,and .). Some operations that extract a value from a region expression, etc, use
a syntax resembling that of a function call. A boolean expression returns O (false) or 1
(true).

nr [nr-suffix]
where nr is either a decimal number or a hexadecimal number (0x. .. or 0X...).

and where nr-suffixis one of:

K /* Kilo = (1 << 10) 1024 */

M /* Mega = (1 << 20) 1048576 */

G /* Giga = (1 << 30) 1073741824 */

T /* Tera = (1 << 40) 1099511627776 */

P /* Peta = (1 << 50) 1125899906842624 */

A number can be expressed either by normal C means or by suffixing it with a set of
useful suffixes, which provides a compact way of specifying numbers.

1024 is the same as 0x400, which is the same as 1K.

The linker configuration file __4

Structural configuration

If directive

Syntax

Parameters

Description

Example

The structural directives provide means for creating structure within the configuration,
such as:

e Conditional inclusion

An if directive includes or excludes other directives depending on a condition,
which makes it possible to have directives for several different memory
configurations in the same file. See If directive, page 335.

e Dividing the linker configuration file into several different files

The include directive makes it possible to divide the configuration file into several
logically distinct files. See Include directive, page 336.

if (expr) {
directives

[} else if (expr) {
directives]

[} else {
directives]

}

where expr is an expression, see Expressions, page 333.

directives Any ILINK directive.

An if directive includes or excludes other directives depending on a condition, which
makes it possible to have directives for several different memory configurations, for
example both a banked and non-banked memory configuration, in the same file.

The directives inside an i f part, else if part, or an else part are syntax checked and
processed regardless of whether the conditional expression was true or false, but only
the directives in the part where the conditional expression was true, or the else part if
none of the conditions were true, will have any effect outside the i £ directive. The i £
directives can be nested.

See Empty region, page 320.

Part 2. Reference information 335

Structural configuration

Include directive

Syntax include filename;
Parameters
filename A string literal where both / and \ can be used as the directory
delimiter.
Description The include directive makes it possible to divide the configuration file into several

logically distinct files. For instance, files that you need to change often and files that you
seldom edit.

IAR C/C++ Development Guide
336 Compiling and Linking for SH

Section reference

The compiler places code and data into sections. Based on a configuration

specified in the linker configuration file, ILINK places sections in memory.

This chapter lists all predefined sections and blocks that are available for the

IAR build tools for SH, and gives detailed reference information about each

section.

For more information about sections, see the chapter Modules and sections,

page 71.

Summary of sections

This table lists the sections and blocks that are used by the IAR build tools:

Section Description

.codel6.text Holds program code declared _ _codelé6.

.code20. text Holds program code declared _ _code20.

.code28.text Holds program code declared _ _code28.

.code32.text Holds program code declared _ _code32.

CSTACK Holds the stack used by C or C++ programs.

.datal6.bss Holds zero-initialized __datalé6 static and global variables.

.datal6.data Holds __datalé6 static and global initialized variables.

.datalé6.data_init Holds initializers for .datal6 .data sections when the linker
directive initialize by copy is used.

.datal6.noinit Holds __no_init __datalé6 static and global variables.

.datal6.rodata Holds __datal6 constant data.

.data20.bss Holds zero-initialized __data?20 static and global variables.

.data20.data Holds __data20 static and global initialized variables.

.data20.data_init Holds initializers for .data20.data sections when the linker
directive initialize by copy is used.

.data20.noinit Holds __no_init __data20 static and global variables.

.data20.rodata Holds __data20 constant data.

.data28.bss Holds zero-initialized __data?28 static and global variables.

Table 42: Section summary

Part 2. Reference information

337

Summary of sections

338

IAR C/C++ Development Guide
Compiling and Linking for SH

Section Description

.data28.data Holds __data28 static and global initialized variables.

.data28.data_init Holds initializers for .data28.data sections when the linker
directive initialize by copy is used.

.data28.noinit Holds __no_init __data28 static and global variables.
.data28.rodata Holds __data28 constant data.

.data32.bss Holds zero-initialized __data32 static and global variables.
.data32.data Holds __data32 static and global initialized variables.

.data32.data_init Holds initializers for .data32.data sections when the linker
directive initialize by copy is used.

.data32.noinit Holds __no_init __data3?2 static and global variables.
.data32.rodata Holds __data32 constant data.
.difunct Holds pointers to code, typically C++ constructors, that should be

executed by the system startup code before main is called.

_ _DLIB_PERTHREAD Holds variables that contain static states for DLIB modules.

HEAP Holds the heap used for dynamically allocated data.
.lar.dynexit Holds the atexit table.

.inttable Holds the interrupt table (except reset vectors).
.intvec Holds the reset vector table.

.tbr_table Holds the jump table for TBR calls.

Table 42: Section summary (Continued)

In addition to the ELF sections used for your application, the tools use a number of other

ELF sections for a variety of purposes:

e Sections starting with . debug generally contain debug information in the DWARF
format

e Sections starting with . iar.debug contain supplemental debug information in an
IAR format

e The section . comment contains the tools and command lines used for building the
file

Sections starting with . rel or .rela contain ELF relocation information
The section . symtab contains the symbol table for a file

The section . strtab contains the names of the symbol in the symbol table

The section . shstrtab contains the names of the sections.

Section reference __o

Descriptions of sections and blocks

.codel 6.text

Description
Memory placement

See also

.code20.text

Description
Memory placement

See also

.code28.text

Description
Memory placement

See also

.code32.text

Description

Memory placement

This section gives reference information about each section, where the:

e Description describes what type of content the section is holding and, where
required, how the section is treated by the linker

® Memory placement describes memory placement restrictions.

For information about how to allocate sections in memory by modifying the linker
configuration file, see the Placing code and data—the linker configuration file, page 74.

Holds program code declared __codel6, except the code for system initialization.
0x00000000-0x00007FFF or OxFFFF8000-0XFFFFFFFF

Using function memory attributes, page 64.

Holds program code declared __code20, except the code for system initialization.
0x00000000-0x0007FFFF Oor OxFFF80000-0XFFFFFFFF

Using function memory attributes, page 64.

Holds program code declared __code28, except the code for system initialization.
0x00000000-0x07FFFFFF Or 0xF8000000-0XFFFFFFFF

Using function memory attributes, page 64.

Holds program code declared __code32, except the code for system initialization.

This section can be placed anywhere in memory.

Part 2. Reference information 339

Descriptions of sections and blocks

See also

CSTACK

Description
Memory placement

See also

.datal 6.bss

Description
Memory placement

See also

.datal 6.data

Description

Memory placement

See also

.datal 6.data_init

Description

Memory placement

See also

IAR C/C++ Development Guide
340 Compiling and Linking for SH

Using function memory attributes, page 64.

Block that holds the internal data stack.
This block can be placed anywhere in memory.

Setting up the stack, page 86.

Holds zero-initialized __datal6 static and global variables.
0x00000000-0x00007FFF or OXFFFF8000-0xXFFFFFFFF

Memory types, page 57.

Holds __datalé static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize by copyisused, acorresponding
.datal6.data_init section is created for each .datal6.data section, holding the
possibly compressed initial values.

0x00000000-0x00007FFF or OxFFFF8000-0XFFFFFFFF

Memory types, page 57.

Holds the possibly compressed initial values for .datal6 .data sections. This section
is created by the linker if the initialize by copy linker directive is used.

0x00000000-0x00007FFF or OxFFFF8000-0XFFFFFFFF

Memory types, page 57.

.datal 6.noinit

Description
Memory placement

See also

.datal 6.rodata

Description

Memory placement

See also

.data20.bss

Description
Memory placement

See also

.data20.data

Description

Memory placement

See also

Section reference __o

Holds static and global __no_init __datalé variables.
0x00000000-0x00007FFF or OxFFFF8000-0xXFFFFFFFF

Memory types, page 57.

Holds __datal6 constant data. This can include constant variables, string and
aggregate literals, etc.

0x00000000-0x00007FFF or OxFFFF8000-0XFFFFFFFF

Memory types, page 57.

Holds zero-initialized __data20 static and global variables.
0x00000000-0x0007FFFF Oor 0xFFF80000-0XFFFFFFFF

Memory types, page 57.

Holds __data20 static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize by copyisused, acorresponding
.data20.data_init section is created for each .data20.data section, holding the
possibly compressed initial values.

0x00000000-0x0007FFFF Oor OxFFF80000-0XFFFFFFFF

Memory types, page 57.

Part 2. Reference information 341

Descriptions of sections and blocks

.data20.data_init

Description

Memory placement

See also

.data20.noinit

Description
Memory placement

See also

.data20.rodata

Description

Memory placement

See also

.data28.bss

Description
Memory placement

See also

.data28.data

Description

IAR C/C++ Development Guide
342 Compiling and Linking for SH

Holds the possibly compressed initial values for .data20 .data sections. This section
is created by the linker if the initialize by copy linker directive is used.

0x00000000-0x0007FFFF or 0xFFF80000-0XFFFFFFFF

Memory types, page 57.

Holds static and global __no_init __data20 variables.
0x00000000-0x0007FFFF or OxFFF80000-0XFFFFFFFF

Memory types, page 57.

Holds __data20 constant data. This can include constant variables, string and
aggregate literals, etc.

0x00000000-0x0007FFFF or 0xFFF80000-0XFFFFFFFF

Memory types, page 57.

Holds zero-initialized __data28 static and global variables.
0x00000000-0x07FFFFFF Or 0xF8000000-0XFFFFFFFF

Memory types, page 57.

Holds __data28 static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize by copyisused, acorresponding

Memory placement

See also

.data28.data_init

Description

Memory placement

See also

.data28.noinit

Description
Memory placement

See also

.data28.rodata

Description

Memory placement

See also

.data32.bss

Description
Memory placement

See also

Section reference __o

.data28.data_init section is created for each .data28.data section, holding the
possibly compressed initial values.

0x00000000-0x07FFFFFF Oor 0xF8000000-0xXFFFFFFFF

Memory types, page 57.

Holds the possibly compressed initial values for .data28.data sections. This section
is created by the linker if the initialize by copy linker directive is used.

0x00000000-0x07FFFFFF Oor 0xF8000000-0xXFFFFFFFF

Memory types, page 57.

Holds static and global __no_init __data28 variables.
0x00000000-0x07FFFFFF or 0xF8000000-0xXxFFFFFFFF

Memory types, page 57.

Holds __data28 constant data. This can include constant variables, string and
aggregate literals, etc.

0x00000000-0x07FFFFFF Oor 0xF8000000-0xFFFFFFFF

Memory types, page 57.

Holds zero-initialized __data32 static and global variables.
This section can be placed anywhere in memory.

Memory types, page 57.

Part 2. Reference information

343

Descriptions of sections and blocks

.data32.data

Description

Memory placement

See also

.data32.data_init

Description

Memory placement

See also

.data32.noinit

Description
Memory placement

See also

.data32.rodata

Description

Memory placement

See also

IAR C/C++ Development Guide
344 Compiling and Linking for SH

Holds __data32 static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize by copyisused, acorresponding
.data32.data_init section is created for each .data32.data section, holding the
possibly compressed initial values.

This section can be placed anywhere in memory.

Memory types, page 57.

Holds the possibly compressed initial values for .data32.data sections. This section
is created by the linker if the initialize by copy linker directive is used.

This section can be placed anywhere in memory.

Memory types, page 57.

Holds static and global __no_init __data32 variables.
This section can be placed anywhere in memory.

Memory types, page 57.

Holds __data32 constant data. This can include constant variables, string and
aggregate literals, etc.

This section can be placed anywhere in memory.

Memory types, page 57.

difunct

Description

Memory placement

__DLIB_PERTHREAD

Description

Memory placement

See also

HEAP

Description

Memory placement

See also

.iar.dynexit

Description
Memory placement

See also

.inttable

Description

Section reference __o

Holds the dynamic initialization vector used by C++.

In the Small data model, this section must be placed in the first 64 Kbytes of memory.
In other data models, this section can be placed anywhere in memory.

Holds thread-local static and global initialized variables used by the main thread.

This section is placed automatically. If you change the placement, you must not change
its initialization. The initialization of this section must be controlled with the
initialize by copy directive.

This section can be placed anywhere in memory.

Managing a multithreaded environment, page 118.

Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

This section can be placed anywhere in memory.

Setting up the heap, page 86.

Holds the table of calls to be made at exit.
This section can be placed anywhere in memory.

Setting up the atexit limit, page 86.

Holds the interrupt vector table generated by the use of the __interrupt extended
keyword in combination with the #pragma vector directive.

Part 2. Reference information

345

Descriptions of sections and blocks

.intvec

Description

Memory placement

.tbr_table

Description

Memory placement

IAR C/C++ Development Guide
346 Compiling and Linking for SH

Holds the reset vector table.

This section must be placed at address 0x0.

Holds the jump table for TBR calls.

This section can be placed anywhere in memory.

IAR utilities

This chapter describes the IAR command line utilities that are available:

e The IAR Archive Tool—iarchive—creates and manipulates a library (an
archive) of several ELF object files

e The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as fill, checksum, format conversions, etc)

e The IAR ELF Dumper for SH—ielfdumpsh—creates a text representation
of the contents of an ELF relocatable or executable image

e The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

e The IAR Absolute Symbol Exporter—isymexport—exports absolute
symbols from a ROM image file, so that they can be used when you link an
add-on application.

The IAR Archive Tool—iarchive

The IAR Archive Tool, iarchive, can create a library (an archive) file from several
ELF object files. You can also use iarchaive to manipulate ELF libraries.

A library file contains several relocatable ELF object modules, each of which can be
independently used by a linker. In contrast with object modules specified directly to the
linker, each module in a library is only included if it is needed.

For information about how to build a library in the IDE, see the /AR Embedded
Workbench® IDE User Guide.

INVOCATION SYNTAX
The invocation syntax for the archive builder is:

iarchive parameters

Part 2. Reference information 347

The IAR Archive Tool—iarchive

348

IAR C/C++ Development Guide

Compiling and Linking for SH

Parameters
The parameters are:

Parameter Description

command Command line options that define an operation to be performed. Such
an option must be specified before the name of the library file.

libraryfile The library file to be operated on.

objectfilel ... The object file(s) that the specified command operates on.
objectfileN

options Command line options that define actions to be performed. These

options can be placed anywhere on the command line.

Table 43: iarchive parameters

Examples

This example creates a library file called mylibrary.a from the source object files
modulel.o, module.2.o, and module3.o:

iarchive mylibrary.a modulel.o module2.o module3.o.
This example lists the contents of mylibrary.a:
iarchive --toc mylibrary.a

This example replaces module3 . o in the library with the content in the module3. o file
and appends module4 .o tomylibrary.a:

iarchive --replace mylibrary.a module3.o moduled.o

SUMMARY OF IARCHIVE COMMANDS

This table summarizes the iarchive commands:

Command line option Description

--create Creates a library that contains the listed object files.
--delete, -4 Deletes the listed object files from the library.
--extract, -x Extracts the listed object files from the library.
--replace, -r Replaces or appends the listed object files to the library.
--symbols Lists all symbols defined by files in the library.

--toc, -t Lists all files in the library.

Table 44: iarchive commands summary

For detailed descriptions, see Descriptions of options, page 361.

IAR utilities __¢

SUMMARY OF IARCHIVE OPTIONS

This table summarizes the iarchive options:

Command line option Description

-f Extends the command line.
--output, -o Specifies the library file.
--silent Sets silent operation.
--verbose, -V Reports all performed operations.

Table 45: iarchive options summary

For detailed descriptions, see Descriptions of options, page 361.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iarchive:

La00I: could not open file filename

iarchive failed to open an object file.

La002: illegal path pathname

The path pathname is not a valid path.

La006: too many parameters to cmd command

A list of object modules was specified as parameters to a command that only accepts a
single library file.

La007: too few parameters to cmd command

A command that takes a list of object modules was issued without the expected modules.

La008: lib is not a library file

The library file did not pass a basic syntax check. Most likely the file is not the intended
library file.

La009: lib has no symbol table

The library file does not contain the expected symbol information. The reason might be
that the file is not the intended library file, or that it does not contain any ELF object
modules.

Part 2. Reference information 349

The IAR ELF Tool—ielftool

350

La010: no library parameter given

The tool could not identify which library file to operate on. The reason might be that a
library file has not been specified.

LaO0lI: file file already exists

The file could not be created because a file with the same name already exists.

La013: file confusions, lib given as both library and object

The library file was also mentioned in the list of object modules.

La0l4: module module not present in archive lib

The specified object module could not be found in the archive.

La0l5: internal error

The invocation triggered an unexpected error in iarchive.

Ms003: could not open file filename for writing

iarchive failed to open the archive file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file £ilename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file £ilename.

The IAR ELF Tool—ielftool

IAR C/C++ Development Guide
Compiling and Linking for SH

The IAR ELF Tool, ielftool, can generate a checksum on specific ranges of
memories. This checksum can be compared with a checksum calculated on your
application.

The source code for ielftool and a Microsoft VisualStudio 2005 template project are
available in the sh\src\elfutils directory. If you have specific requirements for how
the checksum should be generated or requirements for format conversion, you can
modify the source code accordingly.

IAR utilities __¢

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Tool is:

ielftool [options] inputfile outputfile [options]

The ielftool tool will first process all the fill options, then it will process all the
checksum options (from left to right).

Parameters

The parameters are:

Parameter Description
inputfile An absolute ELF executable image produced by the ILINK linker.
options Any of the available command line options, see Summary of ielftool

options, page 351.

outputfile An absolute ELF executable image.

Table 46: ielftool parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

Example

This example fills a memory range with 0xFF and then calculates a checksum on the
same range:

ielftool my_input.out my_output.out --fill OxFF;0-0xFF
—--checksum __checksum:4,crc32;0-0xFF

SUMMARY OF IELFTOOL OPTIONS
This table summarizes the ielftool command line options:

Command line option Description

--bin Sets the format of the output file to binary.
--checksum Generates a checksum.

--fill Specifies fill requirements.

--ihex Sets the format of the output file to linear Intel hex.
--self_reloc Not for general use.

--silent Sets silent operation.

--simple Sets the format of the output file to Simple code.
--srec Sets the format of the output file to Motorola S-records.

Table 47 ielftool options summary

Part 2. Reference information 351

The IAR ELF Dumper for SH—ielfdumpsh

352

Command line option Description

--srec-len Restricts the number of data bytes in each S-record.
--srec-s3only Restricts the S-record output to contain only a subset of records.
--strip Removes debug information.

--verbose, -V Prints all performed operations.

Table 47 ielftool options summary (Continued)

For detailed descriptions, see Descriptions of options, page 361.

The IAR ELF Dumper for SH—ielfdumpsh

IAR C/C++ Development Guide
Compiling and Linking for SH

The IAR ELF Dumper for SH, ielfdumpsh, can be used for creating a text
representation of the contents of a relocatable or absolute ELF file.

ielfdumpsh can be used in one of three ways:

e To produce a listing of the general properties of the input file and the ELF segments
and ELF sections it contains. This is the default behavior when no command line
options are used.

e To also include a textual representation of the contents of each ELF section in the
input file. To specify this behavior, use the command line option --al1l.

e To produce a textual representation of selected ELF sections from the input file. To
specify this behavior, use the command line option --section.

INVOCATION SYNTAX

The invocation syntax for ielfdumpsh is:

ielfdumpsh input_file [output_file]

Note: ielfdumpsh is a command line tool which is not primarily intended to be used

in the IDE.

Parameters

The parameters are:

Parameter Description
input_file An ELF relocatable or executable file to use as input.
output_file A file or directory where the output is emitted. If absent and no

--output option is specified, output is directed to the console.

Table 48: ielfdumpsh parameters

IAR utilities __¢

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

SUMMARY OF IELFDUMPSH OPTIONS
This table summarizes the ielfdumpsh command line options:

Command line option Description

--all Generates output for all input sections regardless of their names or
numbers.

--code Dumps all sections that contain executable code.

-f Extends the command line.

--output, -o Specifies an output file.

--no_strtab Suppresses dumping of string table sections.

--raw Uses the generic hexadecimal/ASCII output format for the contents of

any selected section, instead of any dedicated output format for that
section.

--section, -s Generates output for selected input sections.

Table 49: ielfdumpsh options summary

For detailed descriptions, see Descriptions of options, page 361.

The IAR ELF Object Tool—iobjmanip

Use the IAR ELF Object Tool, i objmanip, to perform low-level manipulation of ELF
object files.

INVOCATION SYNTAX
The invocation syntax for the IAR ELF Object Tool is:

iobjmanip options inputfile outputfile

Parameters
The parameters are:

Parameter Description

options Command line options that define actions to be performed. These
options can be placed anywhere on the command line. At least one of
the options must be specified.

inputfile A relocatable ELF object file.

Table 50: iobjmanip parameters

Part 2. Reference information 353

The IAR ELF Object Tool—iobjmanip

354

IAR C/C++ Development Guide
Compiling and Linking for SH

Parameter Description

outputfile A relocatable ELF object file with all the requested operations applied.

Table 50: iobjmanip parameters (Continued)

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.
Examples

This example renames the section . example in input.o to .example2 and stores the
result in output.o:

iobjmanip --rename_section .example=.example2 input.o output.o

SUMMARY OF IOBJMANIP OPTIONS

This table summarizes the iobjmanip options:

Command line option Description

-f Extends the command line.
--remove_section Removes a section.
--rename_section Renames a section.
--rename_symbol Renames a symbol.
--strip Removes debug information.

Table 51: iobjmanip options summary

For detailed descriptions, see Descriptions of options, page 361.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iobjmanip:

LmO00I: No operation given

None of the command line parameters specified an operation to perform.

LmO002: Expected nr parameters but got nr

Too few or too many parameters. Check invocation syntax for iobjmanip and for the
used command line options.

LmO003: Invalid section/symbol renaming pattern pattern

The pattern does not define a valid renaming operation.

IAR utilities __¢

LmO004: Could not open file filename

iobjmanip failed to open the input file.

LmO005: ELF format error msg
The input file is not a valid ELF object file.

LmO006: Unsupported section type nr

The object file contains a section that iobjmanip cannot handle. This section will be
ignored when generating the output file.

LmO007: Unknown section type nr

iobjmanip encountered an unrecognized section. iobjmanip will try to copy the
content as is.

LmO008: Symbol symbol has unsupported format

iobjmanip encountered a symbol that cannot be handled. i objmanip will ignore this
symbol when generating the output file.

LmO009: Group type nr not supported

iobjmanip only supports groups of type GRP_COMDAT. If any other group type is
encountered, the result is undefined.

LmO010: Unsupported ELF feature in file: msg

The input file uses a feature that iobjmanip does not support.

LmOI I: Unsupported ELF file type

The input file is not a relocatable object file.

LmO012: Ambiguous rename for section/symbol name (altl and alt2)
An ambiguity was detected while renaming a section or symbol. One of the alternatives
will be used.

LmOI3: Section name removed due to transitive dependency on
name

A section was removed as it depends on an explicitly removed section.

Part 2. Reference information 355

The IAR Absolute Symbol Exporter—isymexport

LmO14: File has no section with index nr

A section index, used as a parameter to --remove_section Or --rename_section,
did not refer to a section in the input file.

Ms003: could not open file filename for writing

iobjmanip failed to open the output file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file £ilename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file £ilename.

The IAR Absolute Symbol Exporter—isymexport

The IAR Absolute Symbol Exporter, i symexport, can export absolute symbols from a
ROM image file, so that they can be used when you link an add-on application.

INVOCATION SYNTAX
The invocation syntax for the IAR Absolute Symbol Exporter is:

isymexport [options] inputfile outputfile [options]

IAR C/C++ Development Guide
356 Compiling and Linking for SH

IAR utilities __¢

Parameters

The parameters are:

Parameter Description

inputfile A ROM image in the form of an executable ELF file (output from
linking).

options Any of the available command line options, see Summary of isymexport

options, page 357.

outputfile A relocatable ELF file that can be used as input to linking, and which
contains all or a selection of the absolute symbols in the input file. The
output file contains only the symbols, not the actual code or data
sections. A steering file can be used to control which symbols that are
included, and also to rename some of the symbols if that is desired.

Table 52: ielftool parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

SUMMARY OF ISYMEXPORT OPTIONS

This table summarizes the isymexport command line options:

Command line option Description

--edit Specifies a steering file.

-f Extends the command line.

--ram_reserve_ranges Generates symbols to reserve the areas in RAM that the
image uses.

--reserve_ranges Generates symbols to reserve the areas in ROM and RAM

that the image uses.

Table 53: isymexport options summary

For detailed descriptions, see Descriptions of options, page 361.

STEERING FILES

A steering file can be used for controlling which symbols that are included, and also to
rename some of the symbols if that is desired. In the file, you can use show and hide
directives to select which public symbols from the input file that are to be included in
the output file. rename directives can be used for changing the names of symbols in the
input file.

Syntax
The following syntax rules apply:

Part 2. Reference information 357

The IAR Absolute Symbol Exporter—isymexport

e FEach directive is specified on a separate line.
C comments (/*. ..*/)and C++ comments (// . . .) can be used.

Patterns can contain wildcard characters that match more than one possible
character in a symbol name.

The * character matches any sequence of zero or more characters in a symbol name.

The 2 character matches any single character in a symbol name.

Example
rename Xxx_* as YYY_* /*Change symbol prefix from xxx_ to YYY_ */
show YYY_* /* Export all symbols from YYY package */
hide *_internal /* But do not export internal symbols */
show zzz? /* Export zzza, but not zzzaaa */
hide zzzx /* But do not export zzzx */
Show directive

Syntax show pattern

Parameters
pattern A pattern to match against a symbol name.

Description A symbol with a name that matches the pattern will be included in the output file unless
this is overridden by a later hide directive.

Example /* Include all public symbols ending in _pub. */
show *_pub

Hide directive

Syntax hide pattern

Parameters
pattern A pattern to match against a symbol name.

Description A symbol with a name that matches the pattern will not be included in the output file
unless this is overridden by a later show directive.

Example /* Do not include public symbols ending in _sys. */

hide *_sys

IAR C/C++ Development Guide
358 Compiling and Linking for SH

IAR utilities __¢

Rename directive

Syntax rename patternl pattern2

Parameters
patternl A pattern used for finding symbols to be renamed. The pattern can
contain no more than one * or ? wildcard character.

pattern2 A pattern used for the new name for a symbol. If the pattern contains a
wildcard character, it must be of the same kind as in patternli.

Description Use this directive to rename symbols from the output file to the input file. No exported
symbol is allowed to match more than one rename pattern.

rename directives can be placed anywhere in the steering file, but they are executed
before any show and hide directives. Thus, if a symbol will be renamed, all show and
hide directives in the steering file must refer to the new name.

If the name of a symbol matches a patterni pattern that contains no wildcard
characters, the symbol will be renamed pattern2 in the output file.

If the name of a symbol matches a patterni pattern that contains a wildcard character,
the symbol will be renamed pa t ternz in the output file, with part of the name matching
the wildcard character preserved.

Example /* xxx_start will be renamed Y_start_X in the output file,

xxx_stop will be renamed Y_stop_X in the output file. */
rename xxx_* Y_*_X

DIAGNOSTIC MESSAGES

This section lists the messages produced by isymexport:

Es001: could not open file filename

isymexport failed to open the specified file.

Es002: illegal path pathname

The path pathname is not a valid path.

Es003: format error: message

A problem occurred while reading the input file.

Part 2. Reference information 359

The IAR Absolute Symbol Exporter—isymexport

Es004: no input file

No input file was specified.

Es005: no output file

An input file, but no output file was specified.

Es006: too many input files

More than two files were specified.

Es007: input file is not an ELF executable

The input file is not an ELF executable file.

Es008: unknown directive: directive

The specified directive in the steering file is not recognized.

Es009: unexpected end of file

The steering file ended when more input was required.

Es010: unexpected end of line

A line in the steering file ended before the directive was complete.

EsOl I: unexpected text after end of directive

There is more text on the same line after the end of a steering file directive.

EsO12: expected text

The specified text was not present in the steering file, but must be present for the
directive to be correct.

EsO13: pattern can contain at most one * or ?

Each pattern in the current directive can contain at most one * or one ? wildcard
character.

EsO14: rename patterns have different wildcards

Both patterns in the current directive must contain exactly the same kind of wildcard.
That is, both must either contain:

o No wildcards

IAR C/C++ Development Guide
360 Compiling and Linking for SH

IAR utilities __¢

e Exactly one *

e Exactly one ?

This error occurs if the patterns are not the same in this regard.

Es014: ambiguous pattern match: symbol matches more than one
rename pattern

A symbol in the input file matches more than one rename pattern.

Descriptions of options

This section gives detailed reference information about each command line option
available for the different utilities.

--all
Syntax --all
Tool ielfdumpsh
Description Use this option to include the contents of all ELF sections in the output, in addition to
the general properties of the input file. Sections are output in index order, except that
each relocation section is output immediately after the section it holds relocations for.
By default, no section contents are included in the output.
This option is not available in the IDE.
--bin
Syntax --bin
Tool ielftool
Description Sets the format of the output file to binary.

To set related options, choose:

Project>Options>Output converter

Part 2. Reference information 361

Descriptions of options

362

--checksum

Syntax

Parameters

Tool

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

--checksum {symbol[+offset] |address} :size,algorithm[: flags]
[,start]; rangel; range...]

symbol

offset
address

size

algorithm

flags

start

range

ielftool

The name of the symbol where the checksum value should be stored.
Note that it must exist in the symbol table in the input ELF file.

An offset to the symbol.
The absolute address where the checksum value should be stored.

The number of bytes in the checksum: 1, 2, or 4; must not be larger
than the size of the checksum symbol.

The checksum algorithm used, one of:

* sum, a byte-wise calculated arithmetic sum. The result is truncated to
8 bits.

* sum8wide, a byte-wise calculated arithmetic sum. The result is
truncated to the size of the symbol.

* sum32, a word-wise (32 bits) calculated arithmetic sum

* crcle, CRCI6 (generating polynomial 0x11021); used by default

* crc32, CRC32 (generating polynomial 0x104C11DB7)

* crc=n, CRC with a generating polynomial of n.

1 specifies one's complement and 2 specifies two's complement. m
reverses the order of the bits within each byte when calculating the
checksum. For example, 2m.

By default, the initial value of the checksum is 0. If necessary, use start
to supply a different initial value.

The address range on which the checksum should be calculated.
Hexadecimal and decimal notation is allowed (for example,
0x8002-0x8FFF).

Use this option to calculate a checksum with the specified algorithm for the specified

ranges. The checksum will then replace the original value in symbol. A new absolute
symbol will be generated; with the symbol name suffixed with _value containing the
calculated checksum. This symbol can be used for accessing the checksum value later
when needed, for example during debugging.

IAR utilities __¢

If the - -checksum option is used more than once on the command line, the options are
evaluated from left to right. If a checksum is calculated for a symbo1 that is specified in
a later evaluated --checksum option, an error is issued.

To set related options, choose:

Project>Options>Linker>Checksum

--code
Syntax --code
Tool ielfdump
Description Use this option to dump all sections that contain executable code (sections with the ELF
section attribute SHF_EXECINSTR).
This option is not available in the IDE.
--Ccreate
Syntax --create libraryfile objectfilel ... objectfileN
Parameters
libraryfile The library file that the command operates on. For information about
specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.
objectfilel ... The object file(s) to build the library from.
objectfileN
Tool iarchive
Description Use this command to build a new library from a set of object files (modules). The object
files are added to the library in the exact order that they are specified on the command
line.

If no command is specified on the command line, --create is used by default.

This option is not available in the IDE.

Part 2. Reference information 363

Descriptions of options

--delete, -d

Syntax

Parameters

Tool

Description

--edit

Syntax
Tool

Description

See also

--extract, -x

Syntax

Parameters

IAR C/C++ Development Guide
364 Compiling and Linking for SH

--delete libraryfile objectfilel ... objectfileN
-d libraryfile objectfilel ... objectfileN

libraryfile The library file that the command operates on. For information about
specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.

objectfilel ... The object file(s) that the command operates on.
objectfileN

iarchive

Use this command to remove object files (modules) from an existing library. All object
files that are specified on the command line will be removed from the library.

This option is not available in the IDE.

--edit steering file
isymexport

Use this option to specity a steering file to control which symbols that are included in
the isymexport output file, and also to rename some of the symbols if that is desired.

Steering files, page 357.

This option is not available in the IDE.

--extract libraryfile [objectfilel ... objectfileN]
-x libraryfile [objectfilel ... objectfileN]
libraryfile The library file that the command operates on. For information about

specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.

Tool

Description

Syntax

Parameters

Tool

Description

-fill

Syntax

Parameters

IAR utilities __¢

objectfilel ... The object file(s) that the command operates on.
objectfileN

iarchive

Use this command to extract object files (modules) from an existing library. If a list of
object files is specified, only these files are extracted. If a list of object files is not
specified, all object files in the library are extracted.

This option is not available in the IDE.

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 200.

iarchive, ielfdumpsh, iobjmanip, and isymexport.
Use this option to make the tool read command line options from the named file, with

the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you can use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

This option is not available in the IDE.

--fill pattern;rangel;range...]

range Specifies the address range for the fill. Hexadecimal and decimal
notation is allowed (for example, 0x8002-0x8FFF). Note that each
address must be 4-byte aligned.

Part 2. Reference information 365

Descriptions of options

366

Applicability

Description

--ihex

Syntax
Tool

Description

--no_strtab

Syntax
Tool

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

pattern A hexadecimal string with the 0x prefix (for example, 0xXEF)
interpreted as a sequence of bytes, where each pair of digits
corresponds to one byte (for example 0x123456, for the sequence of
bytes 0x12, 0x34, and 0x56). This sequence is repeated over the fill
area. If the length of the fill pattern is greater than 1 byte, it is repeated
as if it started at address 0.

ielftool
Use this option to fill all gaps in one or more ranges with a pattern, which can be either
an expression or a hexadecimal string. The contents will be calculated as if the fill

pattern was repeatedly filled from the start address until the end address is passed, and
then the real contents will overwrite that pattern.

If the --£i11 option is used more than once on the command line, the fill ranges cannot
overlap each other.

To set related options, choose:

Project>Options>Linker>Checksum

--ihex
ielftool
Sets the format of the output file to linear Intel hex.

To set related options, choose:

Project>Options>Linker>Output converter

--no_strtab
ielfdumpsh

Use this option to suppress dumping of string table sections (sections of type
SHT_STRTAB).

--output, -o

Syntax

Parameters

Tool

Description

--ram_reserve_ranges

Syntax

Parameters

Tool

Description

IAR utilities __¢

This option is not available in the IDE.

-0 {filename|directory}
--output {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 200.

iarchive and ielfdumpsh

iarchive

By default, iarchive assumes that the first argument after the iarchive command is
the name of the destination library. Use this option to explicitly specify a different
filename for the library.

ielfdumpsh

By default, output from the dumper is directed to the console. Use this option to direct
the output to a file instead. The default name of the output file is the name of the input
file with an added id filename extension

You can also specify the output file by specifying a file or directory following the name
of the input file.

This option is not available in the IDE.

--ram_reserve_ranges [=symbol_prefix]

symbol_prefix The prefix of symbols created by this option.

isymexport

Use this option to generate symbols for the areas in RAM that the image uses. One
symbol will be generated for each such area. The name of each symbol is based on the
name of the area and is prefixed by the optional parameter symbol_ prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

Part 2. Reference information 367

Descriptions of options

368

See also

-=raw

Syntax
Tool

Description

--remove_section

Syntax

Parameters

Tool

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

If --ram_reserve_ranges is used together with --reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

--reserve_ranges, page 370.

This option is not available in the IDE.

—-—-raw
ielfdumpsh
By default, many ELF sections will be dumped using a text format specific to a

particular kind of section. Use this option to dump each selected ELF section using the
generic text format.

The generic text format dumps each byte in the section in hexadecimal format, and
where appropriate, as ASCII text.

This option is not available in the IDE.

--remove_section {section | number}

section The section—or sections, if there are more than one section with the
same name—to be removed.

number The number of the section to be removed. Section numbers can be
obtained from an object dump created using ielfdumpsh.

iobjmanip

Use this option to make iobjmanip omit the specified section when generating the
output file.

This option is not available in the IDE.

IAR utilities __¢

--rename_section

Syntax --rename_section {oldname|oldnumber}=newname

Parameters
oldname The section—or sections, if there are more than one section with the

same name—to be renamed.

oldnumber The number of the section to be renamed. Section numbers can be
obtained from an object dump created using ielfdumpsh.

newname The new name of the section.

Tool iobjmanip

Description Use this option to make iobjmanip rename the specified section when generating the
output file.

This option is not available in the IDE.

--rename_symbol

Syntax --rename_symbol oldname =newname

Parameters
oldname The symbol to be renamed.
newname The new name of the symbol.

Tool iobjmanip

Description Use this option to make iobjmanip rename the specified symbol when generating the
output file.

This option is not available in the IDE.

Part 2. Reference information 369

Descriptions of options

370

--replace, -r

Syntax

Parameters

Tool

Description

=--reserve_ranges

Syntax

Parameters

Tool

Description

IAR C/C++ Development Guide
Compiling and Linking for SH

--replace libraryfile objectfilel ... objectfileN
-r libraryfile objectfilel ... objectfileN

libraryfile The library file that the command operates on. For information about
specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.

objectfilel ... The object file(s) that the command operates on.
objectfileN

iarchive

Use this command to replace or add object files (modules) to an existing library. The
object files specified on the command line either replace existing object files in the
library (if they have the same name) or are appended to the library.

This option is not available in the IDE.

--reserve_ranges [=symbol_prefix]

symbol_prefix The prefix of symbols created by this option.

isymexport

Use this option to generate symbols for the areas in ROM and RAM that the image uses.
One symbol will be generated for each such area. The name of each symbol is based on
the name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --reserve_ranges is used together with --ram_reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also

--section, -s

Syntax

Parameters

Tool

Description

Example

--self _reloc

Syntax
Tool

Description

IAR utilities __¢

--ram_reserve_ranges, page 367.

This option is not available in the IDE.

--section section_number|section_name[,...]
--s section_number|section_name[,...]

section_number The number of the section to be dumped.

section_name The name of the section to be dumped.

ielfdumpsh

Use this option to dump the contents of a section with the specified number, or any
section with the specified name. If a relocation section is associated with a selected
section, its contents are output as well.

If you use this option, the general properties of the input file will not be included in the
output.

You can specify multiple section numbers or names by separating them with commas,
or by using this option more than once.

By default, no section contents are included in the output.

-s 3,17 /* Sections #3 and #17

-s .debug_frame, 42 /* Any sections named .debug_frame and

also section #42 */

This option is not available in the IDE.

--self_reloc
ielftool
This option is intentionally not documented as it is not intended for general use.

This option is not available in the IDE.

Part 2. Reference information 371

Descriptions of options

--silent

Syntax

Tool

Description

--simple
Syntax
Tool

Description

==Ssrec

Syntax
Tool

Description

IAR C/C++ Development Guide
372 Compiling and Linking for SH

--silent
-S (iarchive only)

iarchive and ielftool.

Causes the tool to operate without sending any messages to the standard output stream.

By default, ielftool sends various messages via the standard output stream. You can
use this option to prevent this. ielftool sends error and warning messages to the error
output stream, so they are displayed regardless of this setting.

This option is not available in the IDE.

--simple
ielftool
Sets the format of the output file to Simple code.

To set related options, choose:

Project>Options>Output converter

——-srec
ielftool
Sets the format of the output file to Motorola S-records.

To set related options, choose:

Project>Options>Output converter

--srec-len

Syntax

Parameters

Tool

Description

--srec-s3only

Syntax
Tool

Description

--strip

Syntax
Tool

Description

IAR utilities __¢

--srec-len=length

Ilength The number of data bytes in each S-record.

ielftool

Restricts the number of data bytes in each S-record. This option can be used in
combination with the --srec option.

This option is not available in the IDE.

--srec-s3only
ielftool

Restricts the S-record output to contain only a subset of records, that is S3 and S7
records. This option can be used in combination with the --srec option.

This option is not available in the IDE.

--strip
iobjmanip and ielftool.

Use this option to remove all sections containing debug information before the output
file is written.

Note that ielftool needs an unstripped input ELF image. If you use the --strip
option in the linker, remove it and use the --strip option in ielftool instead.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

Part 2. Reference information 373

Descriptions of options

--symbols

Syntax

Parameters

Tool

Description

--toc, -t

Syntax

Parameters

Tool

Description

--verbose, -V

Syntax

IAR C/C++ Development Guide
374 Compiling and Linking for SH

--symbols libraryfile

libraryfile The library file that the command operates on. For information about
specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.

iarchive

Use this command to list all external symbols that are defined by any object file
(module) in the specified library, together with the name of the object file (module) that
defines it.

In silent mode (--silent), this command performs symbol table-related syntax checks
on the library file and displays only errors and warnings.

This option is not available in the IDE.

--toc libraryfile
-t libraryfile

libraryfile The library file that the command operates on. For information about
specifying a filename, see Rules for specifying a filename or directory as
parameters, page 200.

iarchive

Use this command to list the names of all object files (modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

--verbose
-V (iarchive only)

IAR utilities __¢

Tool iarchive and ielftool.

Description Use this option to make the tool report which operations it performs, in addition to
giving diagnostic messages.

This option is not available in the IDE because this setting is always enabled.

Part 2. Reference information 375

Descriptions of options

IAR C/C++ Development Guide
376 Compiling and Linking for SH

Implementation-defined
behavior

This chapter describes how IAR Systems handles the implementation-defined

areas of the C language.

Note: The IAR Systems implementation adheres to a freestanding
implementation of Standard C. This means that parts of a standard library can

be excluded in the implementation.

Descriptions of implementation-defined behavior

J.3.1 Translation

This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

Diagnostics (3.10, 5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.

Part 2. Reference information

377

Descriptions of implementation-defined behavior

J.3.2 Environment

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, if you use the
--enable_multibytes compiler option, the host character set is used instead.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see Customizing system initialization, page 107.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
to main).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Signals, their semantics, and the default handling (7.14)

In the DLIB library, the set of supported signals is the same as in Standard C. A raised
signal will do nothing, unless the signal function is customized to fit the application.
Signal values for computational exceptions (7.14.1.1)

In the DLIB library, there are no implementation-defined values that correspond to a
computational exception.

Signals at system startup (7.14.1.1)

In the DLIB library, there are no implementation-defined signals that are executed at
system startup.

IAR C/C++ Development Guide
378 Compiling and Linking for SH

Implementation-defined behavior __¢

Environment names (7.20.4.5)

In the DLIB library, there are no implementation-defined environment names that are
used by the getenv function.

The system function (7.20.4.6)

The system function is not supported.

J.3.3 Identifiers

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may not appear in identifiers.

Significant characters in identifiers (5.2.4.1, 6.1.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 Characters

Number of bits in a byte (3.6)
A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the host
character set.

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a-7, \b-8, \£-12, \n-10,
\r-13, \t-9, and \v-11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char.

Part 2. Reference information 379

Descriptions of implementation-defined behavior

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. By
default, the source character set is the standard ASCII character set. However, if you use
the command line option --enable_multibytes, the source character set will be the
host computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. By default, the execution character set is the standard ASCII character set.

However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set. See
Locale, page 113.

Integer character constants with more than one character (6.4.4.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

Wide character constants with more than one character (6.4.4.4)
A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Locale used for wide string literals (6.4.5)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

IAR C/C++ Development Guide
380 Compiling and Linking for SH

Implementation-defined behavior __¢

J.3.5 Integers
Extended integer types (6.2.5)

There are no extended integer types.

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 250, for information about the ranges for the different integer

types.

The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.

Signed bitwise operations (6.5)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

J.3.6 Floating point
Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FLT ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT_EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integral value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Part 2. Reference information 381

Descriptions of implementation-defined behavior

Converting floating-point values to floating-point values (6.3.1.5)
When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS is OFF.

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is OFF.

J.3.7 Arrays and pointers

J.3.8 Hints

IAR C/C++ Development Guide
382 Compiling and Linking for SH

Conversion from/to pointers (6.3.2.3)

See Casting, page 255, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff t, page 255.

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Implementation-defined behavior __¢

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See the pragma directive
inline, page 282.

J.3.9 Structures, unions, enumerations, and bitfields

J.3.10 Qualifiers

Sign of 'plain’ bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain' int bitfield is treated, see Bitfields, page 251.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
213.

Bitfields straddling a storage-unit boundary (6.7.2.1)

A bitfield is always placed in one—and one only—storage unit, which means that the
bitfield cannot straddle a storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 251.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 249.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

Access to volatile objects (6.7.3)

Any reference to an object with volatile qualified type is an access, see Declaring
objects volatile, page 258.

Part 2. Reference information 383

Descriptions of implementation-defined behavior

384

J.3.11 Preprocessing directives

IAR C/C++ Development Guide
Compiling and Linking for SH

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash "\
is not treated as an escape sequence. See Overview of the preprocessor, page 301.
Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 205.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 191.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 191.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

Universal character names (6.10.3.2)

Universal character names (UCN) are not supported.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the Pragma directives chapter and here, the information
provided in the Pragma directives chapter overrides the information here.

alignment

Implementation-defined behavior __¢

baseaddr

building_ runtime
can_instantiate
codeseg
Cspy_support
define_type_info
do_not_instantiate
early_dynamic_initialization
function

hdrstop
important_typedef
instantiate
keep_definition
memory

module_name

no_pch

once

public_equ
system_include

warnings

Default __DATE__ and __TIME__ (6.10.8)

The definitions for __TIME _ and __DATE__ are always available.

J.3.12 Library functions

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—requiere a low-level implementation in the application. For more
details, see The DLIB runtime environment, page 93.

Diagnostic printed by the assert function (7.2.1.1)

The assert () function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Part 2. Reference information 385

Descriptions of implementation-defined behavior

386

IAR C/C++ Development Guide
Compiling and Linking for SH

Representation of the floating-point status flags (7.6.2.2)

For information about the floating-point status flags, see fenv.h, page 312.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see fenv.h, page 312.

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the set1locale function, see Locale, page 113.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematics functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematics functions set errno to the macro ERANGE (a macro in errno.h) and
return zero for underflow errors.

fmod return value (7.12.10.1)

The £mod function returns a floating-point NaN when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

signal() (7.14.1.1)
The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 116.

Implementation-defined behavior __¢

NULL macro (7.17)

The NULL macro is defined to 0.

Terminating newline character (7.19.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Space characters before a newline character (7.19.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.19.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.19.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.19.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 112.

File buffering (7.19.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.19.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.19.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

Number of times a file can be opened (7.19.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

Part 2. Reference information 387

Descriptions of implementation-defined behavior

Multibyte characters in a file (7.19.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.

remove() (7.19.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 112.
rename() (7.19.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 112.

Removal of open temporary files (7.19.4.3)

Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.19.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.19.6.1, 7.24.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(InF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.19.6.1, 7.24.2.1)

The argument to a $p conversion specifier, print pointer, to print£ () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

Reading ranges in scanf (7.19.6.2, 7.24.2.1)

A - (dash) character is always treated as a range symbol.

%p in scanf (7.19.6.2, 7.24.2.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

IAR C/C++ Development Guide
388 Compiling and Linking for SH

Implementation-defined behavior __¢

File position errors (7.19.9.1, 7.19.9.3, 7.19.9.4)

On file position errors, the functions fgetpos, ftell, and £setpos store EFPOS in

errno.

An n-char-sequence after nan (7.20.1.3, 7.24.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.20.1.3, 7.24.4.1.1)

errno 18 set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.20.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.20.4.1, 7.20.4.4)

A callto abort () or _Exit () will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.20.4.1, 7.20.4.3, 7.20.4.4)
The termination status will be propagated to __exit () as a parameter. exit () and
_Exit () use the input parameter, whereas abort uses EXIT_FAILURE.

The system function return value (7.20.4.6)

The system function is not supported.

The time zone (7.23.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see Time, page 117.

Range and precision of time (7.23)

The implementation uses signed long for representing clock_t and time_t, based
at the start of the year 1970. This gives a range of approximately plus or minus 69 years
in seconds. However, the application must supply the actual implementation for the
functions time and clock. See Time, page 117.

clock() (7.23.2.1)

The application must supply an implementation of the clock function. See Time, page
117.

Part 2. Reference information 389

Descriptions of implementation-defined behavior

%Z replacement string (7.23.3.5, 7.24.5.1)

By default, ":" is used as a replacement for $z. Your application should implement the
time zone handling. See Time, page 117.

Math functions rounding mode (F.9)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 Architecture

Values and expressions assigned to some macros (5.2.4.2, 7.18.2,
7.18.3)

There are always 8 bits in a byte.
MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
249.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint . h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value O (treat as is).
The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 249.

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 249.

J.4 Locale

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. If the compiler option --enable multibytes is used, the host multibyte
characters are accepted in comments and string literals as well.

IAR C/C++ Development Guide
390 Compiling and Linking for SH

Implementation-defined behavior __¢

The meaning of the additional character set (5.2.1.2)

Any multibyte characters in the extended source character set is translated verbatim into
the extended execution character set. It is up to your application with the support of the
library configuration to handle the characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

Using the compiler option --enable_multibytes enables the use of the host’s default
multibyte characters as extended source characters.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

The decimal point character (7.1.1)

The default decimal-point character is a '.". You can redefine it by defining the library
configuration symbol _LOCALE_DECIMAL_POINT.

Printing characters (7.4, 7.25.2)

The set of printing characters is determined by the chosen locale.

Control characters (7.4, 7.25.2)

The set of control characters is determined by the chosen locale.

Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10,
7.4.1.11,7.25.2.1.2,7.25.5.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10,
7.25.2.1.11)

The sets of characters tested are determined by the chosen locale.

The native environment (7.1.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.20.1,
7.24.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.21.4.3, 7.24.4.4.2)

The collation of the execution character set is determined by the chosen locale.

Part 2. Reference information 391

Descriptions of implementation-defined behavior

Message returned by strerror (7.21.6.2)

The messages returned by the strerror function depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS filepositioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 54: Message returned by strerror()—IAR DLIB library

IAR C/C++ Development Guide
392 Compiling and Linking for SH

A

abort
implementation-defined behavior. 389
system termination.c..c.o.iuin .. 107
absolute location
data, placingat (@) L., 174
language supportfor 146
#pragmalocation. 284

addressing. See memory types, data models,
and code models

algorithm (STL headerfile) 310
alignment L 249
forcing stricter (#pragma data_alignment).......... 278
in structures (#pragmapack), 287
in structures, causing problems 170
of an object (_ALIGNOF__) 146
ofdatatypes.o 249
restrictions for inline assembler. 128
alignment (pragma directive) 384
__ALIGNOF_ (0operator)c..cuueun... 146
--all (ielfdump option) 361
ANONYMOUS SLIUCIUIES « . ¢ v ov v et et et et een s 171
anonymous symbols, creating. 143
application
building, overview of L oLl 50
startup and termination 104
architecture
more informationabout 27
of SH 55
argv (argument), implementation-defined behavior 378
arrays
designated initializersin 143
implementation-defined behavior. 382
incomplete atend of structs 143
non-lvalue L il 149
of incomplete types L. 148
single-value initialization. 150
asm, __asm (language extension) 144

Index __o

assembler code

callingfromC i 128
callingfrom C++.o i 130
insertinginline. 127
assembler directives
for call frame information 138
using in inline assemblercode 128
assembler instructions, inserting inline. 127
assembler labels
making public (--public_equ). 225
prefixed by extra underscore 127
assembler language interface 125
calling convention. See assembler code
assembler list file, generating 216
assembler outputfile. 130
assembler,inline. 144
ASSETLS . . o vt ettt e e 117
implementation-defined behaviorof 385
including in application 304
assert.h (library headerfile) 309
ALEXIL. « . ot 118
reserving space forcalls............ 86
atexit limit, settingup o 86
AtOMIC OPETAtIONS . . ¢ v vttt et e e e 66
CMONIOT ..ot 270
attributes
ODJECt. o oottt 264
By P « et e e 261
auto variables i o 60-61
at functionentrance, 133
programming hints for efficientcode. 181
using in inline assemblercode 128
auto, packing algorithm for initializers............... 324

backtrace information See call frame information
Barr, Michael 30
baseaddr (pragma directive) 385

393

394

__BASE _FILE__ (predefined symbol)............... 302

basic_template_matching (pragma directive) 277
batch files
eITOr return Codes. . ..o vt i e i ens 193
none for building library from command line 103
--bin (ielftool option), 361
binary Streams.t 387
bitnegation.uuiu it 183
bitfields
data representationof. L. 251
hints. 169
implementation-defined behavior. 383
non-standard typesin.............. 147
bitfields (pragma directive). 277
bits in a byte, implementation-defined behavior 379
bold style, inthis guide. 31
bool (datatype).cvve i 250
adding support forinDLIB 309, 312
building_runtime (pragma directive). 385
__BUILD_NUMBER___ (predefined symbol) 302
_builtin_addc (intrinsic function) 297
_builtin_addv (intrinsic function) 297
_builtin_clipsb (intrinsic function) 297
_builtin_clipsw (intrinsic function). 297
_builtin_clipub (intrinsic function) 297
_builtin_clipuw (intrinsic function). 297
_builtin_clrt (intrinsic function) 297
_builtin_divOs (intrinsic function). 297
_builtin_divOu (intrinsic function) 297
_builtin_div1 (intrinsic function) 298
_builtin_dmuls_h (intrinsic function) 298
_builtin_dmuls_I (intrinsic function). 298
_builtin_dmulu_h (intrinsic function) 298
_builtin_dmulu_I (intrinsic function) 298
_builtin_end_cnvl (intrinsic function). 298
_builtin_gbr_and_byte (intrinsic function) 298
_builtin_gbr_or_byte (intrinsic function) 298
_builtin_gbr_read_byte (intrinsic function). 298
_builtin_gbr_read_long (intrinsic function) 298

IAR C/C++ Development Guide
Compiling and Linking for SH

_builtin_gbr_read_word (intrinsic function) 298
_builtin_gbr_tst_byte (intrinsic function) 298
_builtin_gbr_write_byte (intrinsic function) 298
_builtin_gbr_write_long (intrinsic function). 298
_builtin_gbr_write_word (intrinsic function) 298
_builtin_gbr_xor_byte (intrinsic function) 298
_builtin_get_cr (intrinsic function) 298
_builtin_get_gbr (intrinsic function) 298
_builtin_get_tbr (intrinsic function) 298
_builtin_get_vbr (intrinsic function) 298
_builtin_macl (intrinsic function) 299
_builtin_macll (intrinsic function) 299
_builtin_macw (intrinsic function) 299
_builtin_macwl (intrinsic function). 299
_builtin_movt (intrinsic function). 299
_builtin_negc (intrinsic function) 299
_builtin_nop (intrinsic function) 299
_builtin_ovf_addc (intrinsic function). 299
_builtin_prefetch (intrinsic function) 299
_builtin_rotcl (intrinsic function) 299
_builtin_rotcr (intrinsic function) 299
_builtin_rotl (intrinsic function) 299
_builtin_rotr (intrinsic function) 299
_builtin_sett (intrinsic function) 299
_builtin_set_cr (intrinsic function) 299
_builtin_set_gbr (intrinsic function) 299
_builtin_set_tbr (intrinsic function). 299
_builtin_set_vbr (intrinsic function) 299
_builtin_shar (intrinsic function). 299
_builtin_shll (intrinsic function) 299
_builtin_shlr (intrinsic function) 299
_builtin_sleep (intrinsic function). 299
_builtin_subc (intrinsic function) 299
_builtin_subv (intrinsic function) 299
_builtin_swapb (intrinsic function) 300
_builtin_swapw (intrinsic function) 300
_builtin_tas (intrinsic function). 300
_builtin_unf_subc (intrinsic function). 300
_builtin_unf_subv (intrinsic function). 300

_builtin_xtrct (intrinsic function) 300
Burrows-Wheeler algorithm, for packing initializers324
bwt, packing algorithm for initializers 324
CandC++linkaget 132
C/C++ calling convention. See calling convention
Cheaderfiles 309
C language

OVEIVIEW ...ttt 143

StandardC.......... oL 143
call frame information 138

inassembler listfile........... 130

in assembler listfile (-1A) 216
callstack.......... i 138
callee-save registers, stored on stack. 61
calling convention

C++, requiring C linkage 130

incompiler. L L i 131
callinginstruction 137
calloc (library function) 62

See also heap
can_instantiate (pragma directive) 385
cassert (library headerfile) 311
cast operators

inExtended EC++........................ 154, 157

missing from Embedded C++ 154
casting

of pointers and integers 255

pointers to integers, language extension. 149
ccomplex (library header file). 311
cctype (DLIB headerfile) 311
cerrno (DLIB header file) 311
cexit (system termination code)

inDLIB........ ... 104
cfenv (library header file) 311
CFI (assembler directive)ou. .. 138
CFI_COMMON (call frame information macro) 141

Index

CFI_NAMES (call frame information macro). 141
cfi.m (CFI header example file) 141
cfloat (DLIB headerfile). 311
char (datatype).........covninininnininnen .. 250
changing default representation (--char_is_unsigned) . 205
changing representation (--char_is_signed) 205
implementation-defined behavior. 379
signed and unsigned. 250-251
character set, implementation-defined behavior 378
characters, implementation-defined behaviorof 379
character-based I/O
inDLIB 109
overriding in runtime library 94, 101
--char_is_signed (compiler option). 205
--char_is_unsigned (compiler option) 205
checksum
calculationof Ll 164
display format in C-SPY for symbol 168
--checksum (ielftool option) 362
cinttypes (DLIB header file) 311
cis0646 (library headerfile) 311
Classes. 155
climits (DLIB header file). 311
clocale (DLIB headerfile) 312
clock (library function)
implementation-defined behavior 389
clockic ... 117
__close (DLIB library function) 113
clustering (compiler transformation). 181
disabling (--no_clustering). 217
cmath (DLIB headerfile) 312
code
executionof L 52
interruption of execution 65
--code (ielfdump option). 363
codemodels i 63
configuration 52
identifying (_ CODE_MODEL__)............... 302
specifying on command line (--code_model). 205

—e

395

396

code motion (compiler transformation).

disabling (--no_code_motion)
codeseg (pragma directive)
__CODE_MODEL__ (predefined symbol).
--code_model (compiler option)
__codel6 (extended keyword)
.codel6.text (ELF section)
__code20 (extended keyword)
.code20.text (ELF section)
__code28 (extended keyword)
.code28.text (ELF section)
__code32 (extended keyword)
.code32.text (ELF section)
command line options

part of compiler invocation syntax.

part of linker invocation syntax

PaASSING. . ottt

See also compiler options

See also linker options

typographic convention
command prompt icon, in this guide.
commands, iarchive.
.comment (ELFsection)
comments

after preprocessor directives.

C++ style,usinginCcode.
common block (call frame information)
common subexpr elimination (compiler transformation) .

disabling (--n0_Cs€)o
compilation date

exacttimeof (_TIME_)......................

identifying (_DATE_)
compiler

environment variables L.

INVOCAtioN SYNEAX . « v vt oo e e

outputfrom L i
compiler listing, generating (-I).
compilerobjectfile. L L

including debug information in (--debug, -r)

IAR C/C++ Development Guide
Compiling and Linking for SH

output fromcompiler. 192
compiler optimization levels. 177
compiler options 199

passing tocompiler 190

reading from file (-f) L. 215

specifying parameterso.on.... 201

SUMMATY . o v ovvoe e ettt et e e e e ee e eaenen 202

SYILAX. © o vt ettt et 199

for creating skeletoncode 129

--warnings_affect_exit_code 193
compiler platform, identifying 303
compiler subversion number. 304
compiler transformations 176
compiler versionnumber, 304
compiling

from the commandline 50

SYIEAX. © o vt ettt et 189
complex numbers, supported in Embedded C++. 154
complex (library header file). 310
complex.h (library header file) 309
compound literals, 143
computer style, typographic convention 31
--config (linkeroption) 233
--config_def (linker option). 233
configuration

basic project settings 51

_dow_level init oL o il 107

configuration file for linker
See also linker configuration file
configuration symbols

for file inputandoutputl 112
forlocale il 114
forprintfandscanf. 111
forstrtod 117
in library configuration files. 103, 108
in linker configuration files 332
specifying forlinker. Lo L 233
consistency, module 123

const

declaring objects oL 259

non-toplevel 149
constants, placing in named segment 278
constseg (pragma directive) 278
const_cast (Cast OPerator)cueueneraenan. 154
contents, of thisguide. 28
control characters,
implementation-defined behavior 391
conventions, used in thisguide 30
copyright noticet 2
__CORE__ (predefined symbol). 302
core

configuration i 51

identifying i 302

specifying on command line 206
--core (compileroption), 206
__cplusplus (predefined symbol) 302
--cpp_init_routine (linker option) 234
--create (iarchive option). 363
csetjmp (DLIB headerfile) 312
csignal (DLIB headerfile) 312
cspy_support (pragma directive). 385
CSTACK (ELFblock). ... ovvvii i 340

example 161

See also stack
cstartup (system startup code)

CSLATTUP.S « o v e et ettt e e e e 104

CUSTOMUZING .« . o vttt e e e ee 108

overriding in runtime library 94, 101
cstdarg (DLIB headerfile) 312
cstdbool (DLIB headerfile) 312
cstddef (DLIB headerfile) 312
cstdio (DLIB headerfile) 312
cstdlib (DLIB headerfile). 312
cstring (DLIB header file). 312
ctgmath (library header file) 312
ctime (DLIB headerfile).......................... 312
ctype.h (library header file). 309
cwctype.h (library header file) 312

Index

C_INCLUDE (environment variable) 191
C-SPY
interface to system termination 107
STL container Supportcovoenenenennn.. 157
C++
See also Embedded C++ and Extended Embedded C++
absolute location 175
callingconvention, 130
features excluded from EC++ 153
headerfiles........... i i, 310
language extensions.ot 158
special function types. 69
static member variables 175
SUpport for 37
C++ objects, placing in memory type 60
C++terminology.o v i 30
Ct++-stylecomments.c.oovninnnnnenen... 143
--c89 (compileroption). L. 205

C99. See Standard C

D

-D (compileroption). i 206
-d (farchive option)t 364
--data_model (compileroption) 207
data
alignmentof......... i oL 249
different ways of storing 55
located, declaringextern 174
placing...... i 173,279, 337
at absolute location 174
representation of L il 249
SEOTAZE .+ v v v e et e ettt 55
data block (call frame information). 138
data memory attributes, using. 58
datamodels. i 56
configuration i 51
identifying (__DATA_MODEL__) 302
datapointer.t 254

—e

397

398

data tyPes « v v v vt e 250

floatingpoint i 253

INCH 259

INEEEETS . vttt et e e 250
dataseg (pragma directive) 279
data_alignment (pragma directive) 278
__DATA_MODEL__ (predefined symbol)............ 302
datal6 (Memory type). . .« oo vv et e 57
__datal6 (extended keyword), 267
.datal6.bss (ELFsection) 340
.datal6.data (ELFsection) 340
.datal6.data_init (ELF section)..................... 340
.datal6.noinit (ELF section) 341
.datal6.rodata (ELF section). 341
__data20 (extended keyword) 267
data20 (Memory type). . .« v vvv et e 57
.data20.bss (ELF section) 341
.data20.data (ELF section) 341
.data20.data_init (ELF section)..................... 342
.data20.noinit (ELF section) 342
.data20.rodata (ELF section). 342
__data28 (extended keyword) 268
data28 (Memory type). cvvvn e 57
.data28.bss (ELFsection) 342
.data28.data (ELF section) 342
.data28.data_init (ELF section)..................... 343
.data28.noinit (ELF section) 343
.data28.rodata (ELF section). 343
__data32 (extended keyword) 268
data32 (Memory type). cvvvn e 58
.data32.bss (ELFsection) 343
.data32.data (ELF section) 344
.data32.data_init (ELF section)..................... 344
.data32.noinit (ELF section) 344
.data32.rodata (ELF section). 344
_ DATE__ (predefined symbol).................... 302
date (library function), configuring support for. 117
DC32 (assembler directive)., 128
--debug (compileroption) oLl 208

IAR C/C++ Development Guide
Compiling and Linking for SH

debug information, including in objectfile............ 208
.debug (ELF section).covuininiunnnen.. 338
--debug_lib (linker option) 234
decimal point, implementation-defined behavior 391
declarations
CIIPLY - o v vt e e e e 150
inforloops....... ... oo 143
Kernighan & Ritchie 182
of functions L 132
declarations and statements, mixing 143
define block (linker directive). 321
define overlay (linker directive) 322
define symbol (linker directive) 332
--define_symbol (linker option) 235
define_type_info (pragma directive). 385
--delete (iarchive option). 364
delete (keyword)t 62
--dependencies (compiler option) 208
--dependencies (linker option) 235
deque (STL headerfile) 311
destructors and interrupts, using 157
device description files, preconfigured 38
diagnostic MeSSageso v vt 194
classifying as compilationerrors 209
classifying as compilation remarks 209
classifying as compiler warnings 210
classifying as linker warnings 237
classifying as linking errors 236
classifying as linking remarks 236
disabling compiler warnings 222
disabling linker warnings. 244
disabling wrapping of incompiler................ 222
disabling wrapping of inlinker 244
enabling compiler remarks. oL 227
enabling linker remarks 246
listing all used by compiler 210
listing all used by linker. 237
suppressing incompiler. 210
suppressinginlinker o L. 237

diagnostics
farchive 349
objmanip. 354
ISYMEXPOIt. . oottt 359
--diagnostics_tables (compiler option) 210
--diagnostics_tables (linker option). 237
diagnostics, implementation-defined behavior 377
diag_default (pragma directive) 279
--diag_error (compiler option) 209
--diag_error (linker option). 236
diag_error (pragma directive) 280
--diag_remark (compiler option). 209
--diag_remark (linker option) 236
diag_remark (pragma directive) 280
--diag_suppress (compiler option) 210
--diag_suppress (linker option) 237
diag_suppress (pragma directive) 280
--diag_warning (compiler option). 210
--diag_warning (linker option) 237
diag_warning (pragma directive) 281
Jdifunct (ELF section)., 345
directives
Pragma. . .o .vvt ettt e 39,275
tothelinker 315
directory, specifying as parameter. 200
__disable_interrupt (intrinsic function). 295
--discard_unused_publics (compiler option). 211
disclaimer............ i i 2
DLIB. 53, 308
configurations i 108
configuring. L i 94,212
including debug support. L. 99
reference information. See the online help system. . . .307
runtime environment 93
--dlib (compileroption).o 211
--dlib_config (compiler option). 212
DLib_Defaults.h (library configuration file). 103, 108
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 112
dishlibnameh 104

Index __o

do not initialize (linker directive) 326
document CONVENtioNS.o v v enn e 30
documentation, library 307
domain errors, implementation-defined behavior 386
__DOUBLE__ (predefined symbol)................. 302
--double (compileroption) 212
double size, identifying. 302
double (datatype)covuenininnnnii... 253

avoiding. 169

configuring size of floating-point type.............. 52

in parameter Passingc.euerener ... 133
do_not_instantiate (pragma directive)................ 385
dynamic initialization o ... 104
dynamic initialization for C++ 78
dynamic MEmMOTYvuvt ittt 62
-e (compileroption) i 213
early_initialization (pragma directive) 385
--ec++ (compiler option).o 213
EC++headerfiles............ 310
--edit (isymexport option) 364
edition, of thisguide il 2
--eec++ (compileroption). 213
ELFutilities 347
Embedded C++....... ..., 153

differences from C4++. L. 153

enabling......... L i 213

function linkage. L. 132

language extensions. L. 153

OVEIVIEWttt 153
Embedded C++ Technical Committee 30
embedded systems, IAR special supportfor............ 39
__embedded_cplusplus (predefined symbol) 303
empty region (in linker configuration file) 320
--enable_alternative_register_allocator (compiler option). 214
__enable_interrupt (intrinsic function) 296
--enable_multibytes (compiler option) 214

399

400

--entry (linkeroption), 238

entry label, program i 105
enumerations, implementation-defined behavior. 383
enums
datarepresentation.i.iiinan.. 250
forward declarationsof 148
environment
implementation-defined behavior. 378
runtime (DLIB) i, 93

environment names, implementation-defined behavior. . . 379
environment variables

C_INCLUDE. i 191
ILINKSH CMD_LINE 191
QCCSH 191
environment (native), implementation-defined behavior. . 391
EQU (assembler directive) 225
ERANGEo e 386
errno value at underflow,
implementation-defined behavior 389
errno.h (library header file). 309
EITOT MESSAZES . v v ottt et e e et 196
classifying forcompiler. 209
classifying for linker 236
TANZE © oo vt e ittt e 90
CITOr return COdeso v ettt et 193
error (pragma directive)oiuiniiin.. 281
--error_limit (compiler option) 214
--error_limit (linker option) 238
escape sequences, implementation-defined behavior379
exception flags, no supportfor 253
exception handling, missing from Embedded C++. 153
exception (library header file). 310
_Exit (library function) L. 107
exit (library function) 106
implementation-defined behavior. 389
_exit (library function), 106
__exit (library function) 106
export keyword, missing from Extended EC++ 156
export (linker directive). i, 333
--export_builtin_config (linker option) 238

IAR C/C++ Development Guide
Compiling and Linking for SH

expressions (in linker configuration file). 333
extended command line file
forcompiler.......... i 215
forlinker i 239
Passing Optionsoiuiineinaenann.n 190
Extended Embedded C++. 154
enabling......... 213
standard template library (STL). 310
extended keywordso, 261
enabling (-€). 213
OVEIVIEW ...ttt 39
SUMMATY . o v ovvoe e ettt et e e e e ee e eaenen 264
134 1172 GO PP 58
object attributes. o i 264
type attributes on data objects. 262
type attributes on data pointers 263
type attributes on functions. 263
extended-selectors (in linker configuration file) 331
extern "C" linkage. i ... 156
--extract (iarchive option) 364
-f (compileroption). i 215
-f (iobjmanip option). i 365
-f(linkeroption) i 239
__fast_interrupt (extended keyword). 269
fatal error messages 196
fdopen,instdioh i 313
fegettrapdisable. i 312
fegettrapenable i 312
FENV_ACCESS, implementation-defined behavior. 382
fenv.h (library header file). 309, 311
additional C functionality. 312
fgetpos (library function), implementation-defined
behavior 389
__FILE__ (predefined symbol)..................... 303
file buffering, implementation-defined behavior. 387
file dependencies, tracking 208

file paths, specifying for #include files 216
file position, implementation-defined behavior. 387
file streams lock interface 120
file (zero-length), implementation-defined behavior. 387
filename
extension for device description files. 38
extension for headerfiles........................ 38
extension for linker configuration files. 38
of object executable image. 245
search procedure for. 191
specifying as parameter 200
filenames (legal), implementation-defined behavior. 387
fileno,instdioh 313
files, implementation-defined behavior
handling of temporary 388
multibyte charactersin. 388
OPEMING . . vttt et ettt e e e e 387
-fill (ielftool option). 365
float (data type).o v vt 253
floating-point constants
hexadecimal notation. 143
hints...... 170
floating-point environment, accessing ornot 291
floating-point expressions, contracting 291
floating-point format. 253
hints....... ... 169-170
implementation-defined behavior. 381
SPECial Cases. . . .o v v 254
32-Dit. e 253
64-Dit.o 254
floating-point type, configuring size of double 52
floating-point unit. See FPU
float.h (library header file) 309
FLT_EVAL_METHOD, implementation-defined
behavior oL, 381, 386, 390
FLT_ROUNDS, implementation-defined
behavior 381, 390
for loops, declarationsin. 143
--force_output (linker option) 239

Index __o

formats
floating-point values 253
standard IEEE (floating point) 253
FPU
compiler supportfor. L. 118
using floating-point types. 170
FP_CONTRACT, implementation-defined behavior. 382
fragmentation, of heapmemory 62
frame pointer register, considerations 133
free (library function). See alsoheap 62
fsetpos (library function), implementation-defined
behavior 389
fstream (library headerfile) 310
ftell (library function), implementation-defined behavior . 389
Full DLIB (library configuration) 108
__func__ (predefined symbol) 150, 303
__FUNCTION__ (predefined symbol) 150, 303
function calling instruction 137
function calls
callingconvention, 131
stackimage after L, 135
function declarations, Kernighan & Ritchie 182
function inlining (compiler transformation) 179
disabling (--no_inline) 219
function names, prefixed by extra underscore. 127
function pointer.t 254
function prototypes. ocvv e 182
enforcing 227
function return addresses 136
function (pragma directive). 385
functional (STL headerfile) 311
functions. 63
calling ... 137
C++ and special function types 69
declaringc.oo i 132, 182
inlining. oL 143, 179, 181, 282
INEETTUPL . o et ettt 65-66
INMEANSIC .+ o e e et 125, 181
1810] 0¥ 1 () P 66
PATAMELETS « . o vttt et e 133

401

402

placinginmemory............... 173, 175

recursive
avoiding 182
storing dataonstack 61-62
TEENMIANCY « o v v v vt e e e e et e e e e e e 308
related extensions. il 63
return values from L Lol 135
special function types. 65
15 1o P 66
--GBR (linkeroption) o i 239
getenv (library function), configuring support for. 115
getw,instdioh 313
getzone (library function), configuring support for. 117
GEIZOME.C. v v v vt e ettt e e e e e e 117
__get_interrupt_state (intrinsic function) 296
__get_interrupt_table (intrinsic function) 296
global base pointer register, considerations. 133
GRP_COMDAT, group typevvvvrnennennen .. 355
--guard_calls (compiler option). 215
guidelines, reading L. 27
Harbison, Samuel P. 30
hardware floating-point unit. See FPU
hardware supportincompiler. 93
hash_map (STL headerfile) 311
hash_set (STL headerfile) 311
hdrstop (pragma directive) 385
header files
C o 309
G 310
ECH+ . 310
library 307
special function registers 184
STL e 310

IAR C/C++ Development Guide
Compiling and Linking for SH

DLib_Defaults.h 103, 108
dishlibnameh. L. 104
intrinsics.h 295
stdboolho oo 250, 309
stddefh ... 251
header names, implementation-defined behavior 384
--header_context (compiler option). 215
heap
dynamic memoryc.vveni it 62
storingdata 55
heap size
andstandard I/O. L L 162
changingdefault. 86
HEAP (ELFblock)........cooviiniinnao... 162, 345
heap (zero-sized), implementation-defined behavior. 389
hide (isymexport directive) 358
hints
for good code generation 181
implementation-defined behavior. 382
using efficient datatypes 169
Hugecodemodel, 64
Hugedatamodel............. 56
-I (compileroption). 216
IAR Command Line Build Utility. 103
IAR Systems Technical Support.................... 196
iarbuild.exe (utility) L L. 103
farchive........... i i 347
commands SUMMATYvuvnerenenennnnen.. 348
OPLONS SUMMALY .« . vt vttt et e eeeeeeeenen 349
_ IAR_DLIB_PERTHREAD_INIT_SIZE (macro) 122
_ IAR_DLIB_PERTHREAD_SIZE (macro) 121
__IAR_DLIB_PERTHREAD_SYMBOL_OFFSET
(Symbolptr)o 122
__dar_maximum_atexit_calls 86
__iar_program_start (label). 105
_ TAR_SYSTEMS_ICC__ (predefined symbol) 303

dar.debug (ELF section), 338
dar.dynexit (ELF section), 345
__ICCSH__ (predefined symbol) 303
icons,inthisguide 31
IDE
building a library from. 103
overview of build tools. 35
identifiers, implementation-defined behavior 379
IEEE format, floating-point values 253
felfdumpo 352
OpLiONS SUMMATY .+« v vt v vt e e e e e e e 353
ielftool 350
OpLiONS SUMMATY .+« v vt v vt et ee e eeeeeaenen 351
if (linker directive) 335
--ihex (ielftool option). 366
ILINK options. See linker options
ILINKSH_CMD_LINE (environment variable) 191
ILINK. See linker
--image_input (linker option) 240
implementation-defined behavior 377
important_typedef (pragma directive)................ 385
include files
including before source files 224
specifying ... 191
include (linker directive). 336
include_alias (pragma directive) 282
infinity 254
infinity (style for printing), implementation-defined
behavior 388
inheritance, in Embedded C++ 153
initialization
changingdefault. 86
CHrdynamic.cooinininnn i, 78
dynamicC.ouin it e 104
manual. 87
packing algorithm for. 87
single-value i 150
initialize (linker directive). 323
initializers, static.t 149

Index __o

inlineassembler 127, 144
avoidingot 181
See also assembler language interface

inline functions L i 143
incompiler. 179

inline (pragma directive). 282

inlining functions, implementation-defined behavior 383

instantiate (pragma directive) 385

int (data type), signed and unsigned 250

INEEEETS « « v vttt e et e e e e e e 250
CaSHING o v et 255
implementation-defined behavior. 381
L7111 012 (PN 255
ptrdiff t. ... 255
SIZE b ettt e 255
UINEPEE €. ettt e e 255

integral promotion, 183

Intelhex 161

internal €rror. 196

__interrupt (extended keyword) 65, 269
using in pragma directives 292

interrupt functions. L L i 65

interrupt state, reStoringveuenenen... 297

interrupt vector table.o i 66
dnttable section L il 345

interrupt vector, specifying with pragma directive 292

interrupts
disabling 270

during function execution 66
PrOCESSOL SALE « . . o v vt ettt e e e 61
using with EC++ destructors 157

INtPtr_t (INtEET tYPe) « o v oo vttt 255

__intrinsic (extended keyword). 269

intrinsic functions L o oL ool 181
OVEIVIEWttt 125

intrinsics.h (header file) 295

introduction
linker configurationfile 315
linking 71

403

404

dnttable (ELF section) 345

inttypes.h (library header file). 309
dntvec (ELF section).oiuu... 346
INVOCAtION SYNTAXo vvv ettt e 189
Objmanipo 353
OpLiONS SUMMATY .+« v vt v vt e e e e e e e 354
iomanip (library header file) 310
ios (library headerfile) 310
iosfwd (library headerfile) 310
iostream (library header file). 310
ISO/ANSI C
C++ features excluded from EC++ 153
specifying strictusage 228
i50646.h (library header file). 309
istream (library header file). 310
ISYMEXPOTE © o v v vttt et e e e e 356
OpLiONS SUMMATY .+« . v v v vt et e e e e e eaaenen 357
italic style, inthisguide 31
iterator (STL headerfile) 311
I/O module, overriding in runtime library.......... 94, 101
--keep (linkeroption), 240
keep (linker directive). 326
keep_definition (pragma directive) 385
Kernighan & Ritchie function declarations. 182
disallowing.ot 227
Kernighan, Brian W.. 30
keywords. 261
extended, overview of L. 39
-1 (compiler option). 216
for creating skeletoncode 129
Tabels. . .o 149
assembler
makingpublic.......... oL 225

IAR C/C++ Development Guide
Compiling and Linking for SH

prefixed by extra underscore. 127
internal, aligning 226
_dar_program_start.eiinenen... 105

Labrosse,JeanJ.. 30
Lajoie, Jos€e . ..ot 30
language extensions
Embedded C++t 153
enabling......... 283
enabling (-€). 213
language OVerviewiuiiiin i 37
language (pragma directive) 283
Largecodemodel 64
Largedatamodel 56
Lempel-Ziv-Welch algorithm, for packing initializers . . .324
libraries
TUNEIME. . . oottt et 95
standard template library 310
library configuration files 108
DLib_Defaults.h 103, 108
dishlibname.h. i 104
modifying i 104
specifying ... 212
library documentation. 307
library features, missing from Embedded C++......... 154
library files, linker search path to (--search) 246
library functions i 307
reference information. o L 29
SUMMATY © e\ v tet ettt et e e e aenen 309
library header files 307
library modules
introduction il 71
overriding. 101
library objectfiles.......... L. 307
library options, setting 54
library projecttemplate. L. 53
USING .« vttt 103
lightbulb icon, in this guide. 31
limits.h (library header file) 309
__LINE__ (predefined symbol) 303

linkage, Cand C++.ot 132
linker. 71
output from 194
linker configuration file
for placingcode anddata........................ 74
indepth 315
selecting. . ..o vt 81
linker object executable image
specifying filename of (-0) 245
linker optionst 231
reading from file (-f) 239
SUIMMATY « o v vv ettt et e et e e e ee e eaens 231
typographic conventionc........ 31
linking
from the command line 50
Process for. 72
OVEIVIEW . . oottt 44
Lippman, Stanley B.. 30
list (STL headerfile). 311
listing, generatingotitniit 216
literals, compound.l 143
literature, recommended, 30
local variables, See auto variables
locale SUPPOIt . . . oottt 113
adding 115
changingatruntime 115
TEMOVING . o v vv ettt e et e e e e 114
locale, implementation-defined behavior 380, 390
locale.h (library header file) 309
located data, declaringextern 174
location (pragma directive) 174, 284
--log (linkeroption) i, 241
--log_file (linker option) 241
long double (datatype).........cooninininnenenan. 253
long float (data type), synonym for double 149
long long (data type)
signed and unsigned. oL 250
long long (data type), avoiding 169
long (data type)
signed and unsigned. 250

Index __o

loop overhead, reducing 222
loop unrolling (compiler transformation) 179
disabling 222
loop-invariant eXpressions.oiien ... 180
_dow_level dnmit. ... 105
CUSTOMIZING .« v e ettt e e ee e 107
low_level dnit.c. 104
low_level dnit.s. 104
low-level processor operations 145, 295
ACCESSINE & o v vttt et et e 125
__Iseek (library function) 113
lzw, packing algorithm for initializers. 324
-map (linkeroption) 242
macros
embedded in #pragma optimize 286
ERANGE (inerrmo.h), 386
inclusionof assert, 304
NULL
implementation-defined behavior 387
substituted in #pragma directives. 145
variadic 143
main (function), implementation-defined behavior. 378
malloc (library function). 62
Seealsoheap 62
--mangled_names_in_messages (linker option) 241
Mann,Bernhard o oo 30
map file, producing. Lo 242
map (STL header file). 311
math functions rounding mode,
implementation-defined behavior 390
math.h (library header file) 309
MB_LEN_MAX, implementation-defined behavior. 390
Mediumcodemodel 64
Mediumdatamodel, 56
memory
allocating in C++. 62

405

406

heap 62
non-initialized oL 185
RAM,Savingovini e 182
releasing in C++. 62
Stack. . .. 60
SAVINE oot ve ettt e 182
used by global or static variables 55
memory layout, SH. L. 55
memory management, type-safe 153
memory map, output from linker 194
memory placement
using pragma directive. 59
using type definitions. 59, 263
MEMOTY LYPES - « v ettt ettt e e e e e 57
Gt 60
placing variablesin 60
specifying 58
SIIUCLUIES &« « . v v e et et e e e e e 59
SUMMATY « v ve ettt et e et e e 58
memory (pragma directive). 385
memory (STL headerfile). 311
message (pragma directive)., 285
messages
disabling il 227,247
forcing 285
--mfc (compileroption). oL 217
--misrac_verbose (compiler option) 203
--misrac_verbose (linker option). 232
--misrac1998 (compiler option) 203
--misrac1998 (linker option) 232
--misrac2004 (compiler option) 203
--misrac2004 (linker option) 232
mode changing, implementation-defined behavior 388
module consistency. 123
rtmodel. L 289
modules, introduction oL 71
module_name (pragma directive) 385
__monitor (extended keyword) 184, 270

IAR C/C++ Development Guide
Compiling and Linking for SH

monitor functions 66, 269
monitor_level (pragma directive) 285
Motorola S-records. i 161
multibyte character support. 214
multibyte characters, implementation-defined
behavior L 379, 391
multiple inheritance

inExtended EC++....... L. 154

missing from Embedded C++ 153
multithreaded environment 118
multi-file compilation. 177
mutable attribute, in Extended EC++ 154, 157
names block (call frame information)................ 138
namespace support

inExtended EC++........................ 154, 157

missing from Embedded C++ 154
Naming CONVENtIONS vvvt v v vnne e 31
NaN, implementation-defined behavior 388
native environment, implementation-defined behavior . . . 391
NDEBUG (preprocessor symbol) 304
new (keyword) 62
new (library headerfile) 310
non-initialized variables, hints for. 185
non-scalar parameters, avoiding 182
NOP (assembler instruction). 296
__noreturn (extended keyword) 270
Normal DLIB (library configuration) 108
Notanumber (NaN)..........iiinn. 254
--no_clustering (compiler option) 217
--no_code_motion (compiler option) 218
--no_cse (compileroption) 218
--no_fragments (compiler option). 218
--no_fragments (linkeroption) 242
__no_init (extended keyword) 185, 270
--no_inline (compiler option) 219
--no_library_search (linker option). 243

--no_locals (linker option) 243
__no_operation (intrinsic function). 296
--no_path_in_file_macros (compiler option). 219
no_pch (pragma directive) 385
--no_range_reservations (linker option) 243
--no_remove (linkeroption) 244
--no_scheduling (compiler option) 220
--no_size_constraints (compiler option) 220
--no_strtab (ielfdump option) 366
--no_system_include (compiler option) 220
--no_tbaa (compiler option) 221
--no_typedefs_in_diagnostics (compiler option). 221
--no_unroll (compiler option) 222
--no_warnings (compiler option) 222
--no_warnings (linker option) 244
--no_wrap_diagnostics (compiler option) 222
--no_wrap_diagnostics (linker option) 244
NULL, implementation-defined behavior............. 387
numbers (in linker configuration file) 334
numeric (STL headerfile). 311
-O (compileroption)., 223
-0 (larchive option) ot 367
-o (felfdumpoption) 367
-0 (linker option). 245
objectattributes. Lo 264
object filename

specifying ... 367
object filename, specifying. 367
object files, linker search path to (--search). 246
object_attribute (pragma directive) 185, 285
once (pragma directive) 385
--only_stdout (compiler option) 223
--only_stdout (linker option). 244
__open (library function) 113
optimization

clustering, disabling. 217

Index __o

loop unrolling, disabling
scheduling, disabling
specifying (-0).o
techniques i
type-based alias analysis, disabling (--tbaa).........
using inline assemblercode
using pragma directive.
optimizationlevels,
optimize (pragma directive)
OPLioN PArAMELers oottt e e e
options, compiler. See compiler options
options, iarchive. See iarchive options
options, ielfdump. See ielfdump options
options, ielftool. See ielftool options
options, iobjmanip. See iobjmanip options
options, isymexport. See isymexport options
options, linker. See linker options
Oram, Andyot
ostream (library header file)
output
from preprocessor,
specifying forlinker. Lo L
--output (compiler option). oL
--output (iarchive option)
--output (ielfdump option)
--output (linkeroption)
overhead, reducing

P

pack (pragma directive) 256,
packbits, packing algorithm for initializers............
packed structure types.t

407

408

packing, algorithms for initializers 324
parameters
function 133
hidden i 134
non-scalar, avoiding. oL 182
TEZISIEr . . ottt e e 133-134
rules for specifying a file or directory 200
specifying 201
stack. ... 133-134
typographic conventionc........ 31
part number, of thisguide 2
Permanent registers.ov vt it i 133
place at (linker directive) 327
place in (linker directive) 328
placement
codeanddata.............. ... 337
innamed SeCtions.t 175
of code and data, introductionto 74
--place_holder (linker option) 245
plain char, implementation-defined behavior 379
pointer
data ... 254
function i 254
POINLET LYPES « « . v v e et et e e e e 254
MIXING . ¢ ov et e 149
pointers
CASHINE ¢ v ettt e e e e e 255
implementation-defined behavior. 382
polymorphism, in Embedded C++ 153
porting, code containing pragma directives. 276
pragma directivesc. i 39
SUMMALY « . v vet et et et e e e e e 275
for absolute located data 174
list of all recognized. 384
PaCK . oo 256, 287
type_attribute, USing.t 59
_Pragma (preprocessor operator) 143
predefined symbols
OVEIVIEW ...ttt 39

IAR C/C++ Development Guide
Compiling and Linking for SH

SUMMATY . ¢ v v voet et et et e e e e e e eaenen 302

--predef_macro (compiler option). 224
__prefetch (intrinsic function). 296
PREFETCH (assembler instruction). 296
--preinclude (compiler option) 224
--preprocess (compiler option) 225
preprocessor

OULPUL. & v v ettt et e e e e e e e 225

overview of 301

preprocessor directives

comments attheendof 149
implementation-defined behavior. 384
HPragma.o 275
preprocessor extensions
_ VA ARGS__ .. 143
H#Warning mMesSaAZE . .« o« v v v et 305
preprocessor operator, _Pragma()................... 143
preprocessor symbols L oo 302
defining i 206, 235
preserved regiStersvuiit i 133
__ PRETTY_FUNCTION__ (predefined symbol). 303
primitives, for special functions 65
print formatter, selecting. 98
printf (library function)., 97
choosing formatter. 97
configuration symbols 111
implementation-defined behavior. 388
__printf_args (pragma directive). 288

printing characters, implementation-defined behavior . ..391
processor operations

ACCESSINE & v v et ettt et e e 125

low-level 145, 295
programentry label. L L L 105
program termination, implementation-defined behavior . . 378
programming hints L L oL 181
projects

basic settings for i 51

settingup foralibrary 103
prototypes, enforcingol 227

ptrdiff_t (integertype). 255
PUBLIC (assembler directive) 225
publication date, of this guide. 2
--public_equ (compiler option) 225
public_equ (pragma directive) 385
putenv (library function), absent from DLIB 115
putw,instdioh....... L 313
QCCSH (environment variable) 191
--quad_align_labels (compiler option) 226
qualifiers
constand volatile. 258
implementation-defined behavior. 383
queue (STL headerfile) 311
-r (iarchive option), 370
raise (library function), configuring support for 116
TAISE.C oo v vt ettt e e e e e e e e 116
RAM
example of declaring region. 75
initializers copied fromROM 49
running code from L Ll 88
SAVING MEMOTY. « « ettt ettt et et ee e eeeens 182
--ram_reserve_ranges (isymexport option) 367
TANZE €ITOTS . . oo vt e e ettt e et et et e 90
--raw (ielfdump option). oL, 368
__read (library function). 113
CUSIOMUZING . . oottt 109
read formatter, selecting 99
reading guidelines. 27
reading, recommended 30
realloc (library function). 62

See also heap
recursive functions
avoiding oot 182

Index __o

storing dataonstack 61-62
--redirect (linkeroption) 246
reentrancy (DLIB). 308
reference information, typographic convention. 31
region expression (in linker configuration file) 319
region literal (in linker configuration file)............. 318
register keyword, implementation-defined behavior. 382
TegiSter parametersoevenenenenan.. 133-134
registered trademarks oo 2
registers

assigning to parametersc.oueu.n.. 134

callee-save, storedonstack 61

for functionreturns 135

in assembler-level routines. 131

preserved 133

scratch 133

TBR

getting the value of (__get_interrupt_table) 296

writing to (__set_interrupt_table) 297
reinterpret_cast (cast operator) 154
el (ELFsection) i, 338
ela(ELFsection)cviiiiinon... 338
--relaxed_fp (compileroption) 226
relocation errors, resolvingo .. 90
remark (diagnostic message). 195

classifying for compiler.............. 209

classifying forlinker 236

enablingincompiler L. 227

enablinginlinker................ 246
--remarks (compileroption) 227
--remarks (linker option). 246
remove (library function) 113

implementation-defined behavior. 388
--remove_section (iobjmanip option) 368
remquo, magnitude of oL oLl 386
rename (isymexport directive). 359
rename (library function) 113

implementation-defined behavior. 388
--rename_section (iobjmanip option) 369

409

410

--rename_symbol (iobjmanip option) 369

--replace (iarchive option). 370
__ReportAssert (library function). 117
required (pragma directive). 288
--require_prototypes (compiler option). 227
--reserve_ranges (isymexportoption) 370
reset vector table. See .intvec (ELF section)
return addresses 136
return values, from functions 135
Ritchie, Dennis M. 30
ROM to RAM, copyingc.covuininnnnenenen.. 88
__root (extended keyword) Lol 270
routines, time-critical 125, 145, 295
RTE (assembler instruction) 272
rtmodel (assembler directive) 124
rtmodel (pragma directive) 289
rtti support, missing from STL 154
runtime environment
DLIB 93
SELtiNg OPHioNSottt 54
runtime libraries i 95
choosing.t 53
introduction L oo 307
customizing without rebuilding 96
DLIB, overriding modulesin................. 94, 101
Naming CONVENtiON.o vv vt v et eennn. 96
runtime model attributes. L L oL 123
runtime model definitions. 289

runtime type information, missing from Embedded C++ . 154

S

-S (larchive option) o 372
-s (felfdumpoption) i 371
scanf (library function)
choosing formatter. 98
configuration symbols 111
implementation-defined behavior. 388
__scanf_args (pragma directive) 289

IAR C/C++ Development Guide
Compiling and Linking for SH

scheduling (compiler transformation)

disabling 220
SCratCh re@istersoeviiinin e ennnnen.. 133
--search (linkeroption), 246
search path to library files (--search). 246
search path to object files (--search) 246
--section (ielfdump option) 371
section names, declaring. 290
section (pragma directive). 290
SECHOMS . & o v ettt ettt e e 337

SUMMATY . o v ovvoe e ettt et e e e e ee e eaenen 337

INtroduction i 71
__section_begin (extended operator) 147
__section_end (extended operator) 147
__section_size (extended operator). 147
section-selectors (in linker configuration file). 329
section, allocationof. 74
segment (pragma directive). 290
--self_reloc (ielftool option) 371
semaphores

Cexample 67

CHtexample 68

OPETatiONS ON « .« v vt ettt et e e eeeene 270
set (STL headerfile)............................. 311
setjmp.h (library header file). 309
setlocale (library function) 115
settings, basic for project configuration 51
__set_interrupt_state (intrinsic function) 297
__set_interrupt_table (intrinsic function) 297
severity level, of diagnostic messages. 195

specifying ... 196
SFR

accessing special function registers 184

declaring extern special function registers 174

with bitfields, declaring 184
SH

memory layout. L ol 55

supported devices. il 38
sharedobject. i i 193, 242

short (data type), signed and unsigned 250
show (isymexport directive)c...o.... 358
.shstrtab (ELF section) 338
signal (library function)
configuring supportfor 116
implementation-defined behavior. 386
signals, implementation-defined behavior. 378
at SYSteM StArtup . ..o oo vt 378
signal.c 116
signal.h (library header file) 309
signed char (datatype) 250-251
changing tounsignedchar 205
signed int (data type).ooi i 250
signed long long (datatype) 250
signed long (datatype), 250
signed short (datatype).ovvieninan... 250
--silent (compiler option), 227
--silent (iarchive option) 372
--silent (ielftool option). 372
--silent (linker option)., 247
silent operation
specifyingincompiler 227
specifyinginlinker 247
--simple (ielftool option). 372
64-bits (floating-point format) 254
Size_t (INtEET tYP@) . oo v et ettt 255
skeleton code, creating for assembler language interface . 128
skeleton.s (assembler source output). 129
__sleep (intrinsic function) 297
SLEEP (assembler instruction) 297
slist (STL headerfile) 311
Small codemodel 64
Small datamodel 56
smallest, packing algorithm for initializers............ 324
source files, listall referred. 215
space characters, implementation-defined behavior 387
special function registers (SFR) 184
special functiontypesc. ... 65
OVEIVIEW ...ttt 39

Index __o

--srec (ielftool option). L., 372
--srec-len (ielftool option). 373
--srec-s3only (ielftool option) 373
sstream (library headerfile) 310
Stack . .. 60
advantages and problems using 61
cleaning after functionreturn. 135
CONLents Ofottt 61
internaldata. i 340
layout.ot 134
SAVING SPACE. « « v v v et e e e e 182
SIZ. et e e e 161
stack parameters oL, 133-134
stack pointert 61
stack pointer register, considerations. 133
stack (STL headerfile) 311
Standard C 143
standard error
redirecting in compiler., 223
redirectinginlinker 244
standardinput........... 109
standardoutput Lo 109
specifyingincompiler 223
specifyinginlinker 244
standard template library (STL)
inExtended EC++.................... 154, 156, 310
missing from Embedded C++ 154
startup system. See system startup
static clustering (compiler transformation) 181
static variables L o i il 55
taking the addressof 181
static_cast (Cast Operator)c.c.oueununen.. 154
std namespace, missing from EC++
and Extended EC++ i 157
stdarg.h (library header file) 309
stdbool.h (library header file) 250, 309
__STDC__ (predefined symbol). 304
STDC CX_LIMITED_RANGE (pragma directive) 290
STDC FENV_ACCESS (pragma directive) 291
STDC FP_CONTRACT (pragma directive) 291

411

412

stddef.h (library header file) 251, 309
Stderr. 113,223, 244
stdexcept (library header file) 310
Stdin ... 113
stdint.h (library header file). 309, 312
stdio.h (library headerfile) 309
stdio.h, additional C functionality................... 313
stdlib.h (library header file). 309
stdout ... 113,223, 244
implementation-defined behavior. 387
Steele, Guy L.. 30
steering file, input to isymexport. 357
STL. . 156
strcasecmp, instringh ... L L o oo 313
strdup, instring.h L L 313
streambuf (library header file). 310
streams, implementation-defined behavior 378
streams, supported in Embedded C++. 154
strerror (library function), implementation-defined
behavior 392
--strict (compiler option)., 228
string (library headerfile). 310
strings, supported in Embedded C++ 154
string.h (library headerfile) 309
string.h, additional C functionality 313
--strip (ielftool option) 373
--strip (iobjmanip option), 373
--strip (linker option), 247
strncasecmp, in string.h. Lo o oL, 313
strnlen, instring.h. L Lo 313
Stroustrup, Bjarne. o 30
strstream (library header file) 310
strtab (ELFsection)o 338
strtod (library function), configuring support for 117
structure types
alignment. 255-256
layoutof. 256
packed 256

IAR C/C++ Development Guide
Compiling and Linking for SH

structures
aligning 287
ANONYIMOUS. « ¢ vt ve e et e et e e eeeeaenen 146, 171
implementation-defined behavior. 383
packing and unpacking 171
placing in memory type 59
subnormal numbers. 253
__SUBVERSION__ (predefined symbol). 304
support, technical L. 196
symbol names, prefixed by extra underscore. 127
symbols
ANONYMOUS, CIEAtING . . . o\ v vt ettt e enennn 143
directing from one to another. 246
includinginoutput. 288
overview of predefined. 39
preprocessor, defining 206, 235
--symbols (iarchive option). 374
.symtab (ELF section)., 338
syntax
command lineoptions 199
extended keywords. 58,262-264
invoking compiler and linker 189
system function, implementation-defined behavior. . 379, 389
system locks interface............ 120
SYSIEM STATTUP « ¢ o v e et et e e e e e 104
CUSIOMIZING . o o vttt ettt e 107
initialization phase. L L 46
system terminatione ... 106
C-SPY interfaceto............... 107
system (library function), configuring support for 115
system_include (pragma directive) 385
--system_include_dir (compiler option) 228
-t (larchive option)c.o.iuiiiinninen .. 374
_ task (extended keyword) L Lol 271
TBR
getting the value of (__get interrupt_table)......... 296

writing to (__set_interrupt_table). 297
__tbr(extended keyword) 271
TBR jump table. See.tbr_table (ELF section)

.tbr_table (ELF section) 346
technical support, IAR Systems 196
template support

inExtended EC++........................ 154, 156

missing from Embedded C++ 153
Terminal I/O window

making available 101

supportturned off. L L 102
terminal I/O, debugger runtime interface for. 100
terminal output, speedingup. 101
termination of system. See system termination
termination status, implementation-defined behavior 389
terminology. 30
tgmath.h (library header file) 309
32-bits (floating-point format) 253
this (pointer)ttt 130
threaded environment 118
thread-local storage. 121
_ TIME__ (predefined symbol) 304
time zone (library function), implementation-defined
behavior 389
time (library function), configuring support for 117
time-critical routines. 125, 145, 295
HIMNE.C oL ettt e 117
time.h (library header file) 309
tips, PrOgramming.vunt e e eneneenens 181
TLShandling i 121
--toc (iarchive option), 374
toolsicon,inthisguide.......... 31
trademarks L 2
transformations, compiler. 176
translation, implementation-defined behavior. 377
__trap (extended keyword) 66, 272
trapfunctions i 66
trap vectors, specifying with pragma directive 292
TRAPA (assembler instruction) 66, 272

Index

typeattributes 261

specifying 292
type definitions, used for specifying memory storage. 59, 263
type qualifiers

constand volatile. 258

implementation-defined behavior. 383
typedefs

excluding from diagnostics 221

repeated 149
type_attribute (pragma directive) 59, 291
type-based alias analysis (compiler transformation) 180

disabling 221
type-safe memory management 153
typographic COnventionsveueuenen.n.. 31
uchar.h (library header file). 309
uintptr_t (INteZET tYPe) .« v v v v oo et 255
underflow errors, implementation-defined behavior 386
underscore, extra before assembler labels. 127
_ungetchar,instdioh o il 313
unions

ANONYIMOUS. « v vt vt et e et et eeeeeeeaen e 146, 171

implementation-defined behavior. 383
universal character names, implementation-defined
behavior o 384
unsigned char (datatype) 250-251

specifying ... 205
unsigned int (data type). 250
unsigned long long (datatype) 250
unsigned long (datatype)o ... 250
unsigned short (datatype). 250
--use_unix_directory_separators (compiler option). 228
utilities (ELF) o o 347
utility (STL headerfile) 311

—e

413

414

\'

-V (iarchive option). o i 374
variables
AULO . ottt e e e 60-61
defined inside a function 60
global, placement in memory. 55
hints for choosing oL 181
local. See auto variables
non-initialized oL 185
placing at absolute addresses 175
placing in named sections 175
static
placementinmemory 55
taking the addressof 181
vector (pragma directive) 65-66, 292
vector (STL headerfile) 311
__VER__ (predefined symbol).................. ... 304
--verbose (iarchive option) 374
--verbose (ielftool option) 374
version
compiler. 304
IAR Embedded Workbench 2
--vla (compileroption) 229
VOId, POINEETS TO .« vttt et e e e 148
volatile (keyword). L 183
volatile, declaring objects 258-259
#warning message (preprocessor extension) 305
WAITINES « « . ottt et e e e e 196
classifying in compiler. 210
classifyinginlinker 237
disablingincompiler 222
disablinginlinker 244
exitcodeincompiler........... 229
exitcodeinlinker 247
warnings icon, inthisguide 31

IAR C/C++ Development Guide
Compiling and Linking for SH

warnings (pragma directive) 385

--warnings_affect_exit_code (compiler option)193,229
--warnings_affect_exit_code (linker option) 247
--warnings_are_errors (compiler option) 229
--warnings_are_errors (linker option) 247
wchar_t (data type), adding support forinC........... 251
wchar.h (library header file) 310, 312
wectype.h (library header file) 310
__weak (extended keyword) L. 272
weak (pragma directive) 292
web sites, recommended. 30
white-space characters, implementation-defined behavior 377
__write (library function), 113

CUSIOMIZING . . oottt ettt e e 109
__write_array,instdioh........ o L 313
__write_buffered (DLIB library function). 101
-X (iarchive option) 364
XTEPOTLASSEIT.C. v v v v vt et e et et et e e e 117
zeros, packing algorithm for initializers 324

Symbols

_builtin_addc (intrinsic function) 297
_builtin_addv (intrinsic function) 297
_builtin_clipsb (intrinsic function) 297
_builtin_clipsw (intrinsic function). 297
_builtin_clipub (intrinsic function) 297
_builtin_clipuw (intrinsic function). 297
_builtin_clrt (intrinsic function) 297
_builtin_divOs (intrinsic function). 297
_builtin_divOu (intrinsic function) 297
_builtin_div1 (intrinsic function) 298
_builtin_dmuls_h (intrinsic function) 298

_builtin_dmuls_I (intrinsic function). 298
_builtin_dmulu_h (intrinsic function) 298
_builtin_dmulu_I (intrinsic function) 298
_builtin_end_cnvl (intrinsic function). 298
_builtin_gbr_and_byte (intrinsic function) 298
_builtin_gbr_or_byte (intrinsic function) 298
_builtin_gbr_read_byte (intrinsic function). 298
_builtin_gbr_read_long (intrinsic function) 298
_builtin_gbr_read_word (intrinsic function) 298
_builtin_gbr_tst_byte (intrinsic function) 298
_builtin_gbr_write_byte (intrinsic function) 298
_builtin_gbr_write_long (intrinsic function). 298
_builtin_gbr_write_word (intrinsic function) 298
_builtin_gbr_xor_byte (intrinsic function) 298
_builtin_get_cr (intrinsic function) 298
_builtin_get_gbr (intrinsic function)................. 298
_builtin_get_tbr (intrinsic function) 298
_builtin_get_vbr (intrinsic function) 298
_builtin_macl (intrinsic function) 299
_builtin_macll (intrinsic function) 299
_builtin_macw (intrinsic function) 299
_builtin_macwl (intrinsic function). 299
_builtin_movt (intrinsic function). 299
_builtin_negc (intrinsic function) 299
_builtin_nop (intrinsic function) 299
_builtin_ovf_addc (intrinsic function). 299
_builtin_prefetch (intrinsic function) 299
_builtin_rotcl (intrinsic function) 299
_builtin_rotcr (intrinsic function) 299
_builtin_rotl (intrinsic function) 299
_builtin_rotr (intrinsic function) 299
_builtin_sett (intrinsic function) 299
_builtin_set_cr (intrinsic function) 299
_builtin_set_gbr (intrinsic function) 299
_builtin_set_tbr (intrinsic function). 299
_builtin_set_vbr (intrinsic function) 299
_builtin_shar (intrinsic function). 299
_builtin_shll (intrinsic function) 299
_builtin_shlr (intrinsic function) 299

Index __o

_builtin_sleep (intrinsic function). 299
_builtin_subc (intrinsic function) 299
_builtin_subv (intrinsic function) 299
_builtin_swapb (intrinsic function) 300
_builtin_swapw (intrinsic function) 300
_builtin_tas (intrinsic function). 300
_builtin_unf_subc (intrinsic function). 300
_builtin_unf_subv (intrinsic function). 300
_builtin_xtrct (intrinsic function) 300
_Exit (library function) 107
_exit (library function) 106
__ALIGNOF__ (0perator)oueueuenen.. 146
__asm (language extension) 144
__BASE_FILE__ (predefined symbol)............... 302
__BUILD_NUMBER___ (predefined symbol) 302
__close (library function) 113
__CODE_MODEL__ (predefined symbol). 302
__codel6 (extended keyword) 265
__code20 (extended keyword) 266
__code28 (extended keyword) 266
__code32 (extended keyword) 267
__CORE__ (predefined symbol). 302
__cplusplus (predefined symbol) 302
_ DATA_MODEL__ (predefined symbol)............ 302
__datal6 (extended keyword). 267
__data20 (extended keyword). 267
__data28 (extended keyword). 268
__data32 (extended keyword). 268
_ DATE__ (predefined symbol).................... 302
__disable_interrupt (intrinsic function). 295
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 112
__DLIB_PERTHREAD (ELF section) 345
__DOUBLE__ (predefined symbol) 302
__embedded_cplusplus (predefined symbol) 303
__enable_interrupt (intrinsic function) 296
__exit (library function) 106
__fast_interrupt (extended keyword). 269
__FILE__ (predefined symbol)..................... 303
__FUNCTION__ (predefined symbol) 150, 303

415

416

__func__ (predefined symbol) 150, 303

_gets,instdioh. Lo 313
__get_interrupt_state (intrinsic function) 296
__get_interrupt_table (intrinsic function) 296
__TAR_DLIB_PERTHREAD_INIT_SIZE (macro) 122
__TAR_DLIB_PERTHREAD_SIZE (macro) 121
__TAR_DLIB_PERTHREAD_SYMBOL_OFFSET
(Symbolptr) oo e 122
__lar_maximum_atexit_calls 86
__iar_program_start (label). 105
__IAR_SYSTEMS_ICC__ (predefined symbol) 303
__ICCSH__ (predefined symbol) 303
__interrupt (extended keyword) 65, 269
using in pragma directives 292
__intrinsic (extended keyword). 269
__LINE__ (predefined symbol) 303
_dow_level dnit........ . . 105
initializationphase., 46
__low_level_init, customizing 107
__Iseek (library function) c...... 113
__monitor (extended keyword) 184,270
__noreturn (extended keyword) 270
__no_init (extended keyword) 185,270
__no_operation (intrinsic function). 296
__open (library function) 113
__prefetch (intrinsic function). 296
__ PRETTY_FUNCTION__ (predefined symbol). 303
__printf_args (pragma directive). 288
__read (library function). 113
CUSIOMUZING . . .ottt 109
__ReportAssert (library function). 117
__root (extended keyword) Lol 270
__scanf_args (pragma directive) 289
__section_begin (extended operator) 147
__section_end (extended operator) 147
__section_size (extended operator). 147
__set_interrupt_state (intrinsic function) 297
__set_interrupt_table (intrinsic function) 297
__sleep (intrinsic function) oL 297
__STDC_VERSION___ (predefined symbol) 304

IAR C/C++ Development Guide
Compiling and Linking for SH

__STDC__ (predefined symbol). 304
__SUBVERSION__ (predefined symbol). 304
__task (extended keyword) L L 271
__tbr(extended keyword) 271
__TIME__ (predefined symbol) 304
__trap (extended keyword) 66, 272
_ungetchar,instdioh o L 313
__VA_ARGS__ (preprocessor extension). 143
__VER__ (predefined symbol)..................... 304
__weak (extended keyword) L. 272
__write (library function), 113

CUSIOMIZING . . oottt ettt e e 109
__write_array,instdioh........ o L 313
__write_buffered (DLIB library function). 101
-D (compileroption). i 206
-d (iarchive option) 364
-e (compileroption) 213
-f (compileroption). i 215
-f (lobjmanip option). 365
-f(linkeroption) 239
-I (compileroption). 216
-1 (compileroption). i 216

for creating skeletoncode 129
-O (compileroption). 223
-0 (iarchive option)t 367
-o (ielfdump option) L. 367
-o(linkeroption).ot 245
-r (larchive option) i .. 370
-S (larchive option), 372
-s (lelfdumpoption) i 371
-t (larchive option)c.o.vuiiviinnen... 374
-V (iarchive option). i 374
-X (iarchive option)t 364
--all (felfdump option) 361
--bin (ielftool option) 361
--char_is_signed (compiler option). 205
--char_is_unsigned (compiler option) 205
--checksum (ielftool option) 362
--code (ielfdump option). 363

--code_model (compiler option) 205
--config (linkeroption) 233
--config_def (linker option). 233
--core (compileroption), 206
--cpp_init_routine (linker option) 234
--create (iarchive option). 363
--c89 (compileroption). 205
--data_model (compiler option) 207
--debug (compileroption) oL 208
--debug_lib linker option) 234
--define_symbol (linker option) 235
--delete (iarchive option).c.oo. .. 364
--dependencies (compiler option) 208
--dependencies (linker option) 235
--diagnostics_tables (compiler option) 210
--diagnostics_tables (linker option). 237
--diag_error (compiler option) 209
--diag_error (linker option). 236
--diag_remark (compiler option). 209
--diag_remark (linker option) 236
--diag_suppress (compiler option) 210
--diag_suppress (linker option) 237
--diag_warning (compiler option). 210
--diag_warning (linker option) 237
--discard_unused_publics (compiler option). 211
--dlib (compileroption).o oL 211
--dlib_config (compiler option). 212
--double (compiler option) 212
--ec++ (compileroption). Lol 213
--edit (isymexport option) 364
--eec++ (compileroption). L. 213
--enable_alternative_register_allocator (compiler option). 214
--enable_multibytes (compiler option) 214
-—entry (linkeroption) oL L. 238
--error_limit (compiler option) 214
--error_limit (linker option) 238
--export_builtin_config (linker option) 238
--extract (iarchive option) 364
--fill (ielftool option).t 365

Index __o

--force_output (linker option) 239
--guard_calls (compiler option). 215
--header_context (compiler option). 215
--ihex (ielftool option). 366
--image_input (linker option) 240
--keep (linker option) 240
--log (linkeroption)cviiiinian... 241
--log_file (linker option) 241
--mangled_names_in_messages (linker option) 241
--map (linker option). 242
--mfc (compiler option). 217
--misrac_verbose (compiler option) 203
--misrac_verbose (linker option). 232
--misrac1998 (compiler option) 203
--misrac1998 (linker option) 232
--misrac2004 (compiler option) 203
--misrac2004 (linker option) 232
--no_clustering (compiler option) 217
--no_code_motion (compiler option) 218
--no_cse (compiler option) 218
--no_fragments (compiler option). 218
--no_fragments (linkeroption) 242
--no_inline (compiler option) 219
--no_library_search (linker option). 243
--no_locals (linker option) 243
--no_path_in_file_macros (compiler option). 219
--no_range_reservations (linker option) 243
--no_remove (linkeroption) 244
--no_scheduling (compiler option) 220
--no_size_constraints (compiler option) 220
--no_strtab (ielfdump option) 366
--no_system_include (compiler option) 220
--no_tbaa (compileroption) 221
--no_typedefs_in_diagnostics (compiler option). 221
--no_unroll (compileroption) 222
--no_warnings (compiler option) 222
--no_warnings (linker option) 244
--no_wrap_diagnostics (compiler option) 222
--no_wrap_diagnostics (linker option) 244

417

418

--only_stdout (compiler option)
--only_stdout (linker option).
--output (compiler option).
--output (iarchive option)
--output (ielfdump option)
--output (linkeroption),
--place_holder (linker option)
--predef_macro (compiler option).
--preinclude (compiler option)
--preprocess (compiler option)
--quad_align_labels (compiler option)
--ram_reserve_ranges (isymexport option)
--raw (ielfdump] option),
--redirect (linkeroption)
--relaxed_fp (compiler option)
--remarks (compileroption)
--remarks (linker option).
--remove_section (iobjmanip option)
--rename_section (iobjmanip option)
--rename_symbol (iobjmanip option)
--replace (iarchive option).c......
--require_prototypes (compiler option).
--reserve_ranges (isymexportoption)
--search (linkeroption)
--section (ielfdump option)
--self_reloc (ielftooloption)
--silent (compiler option)
--silent (iarchive option)
--silent (ielftool option).
--silent (linker option).
--simple (ielftool option).
--srec (ielftooloption).
--srec-len (ielftool option).
--srec-s3only (ielftool option).
--strict (compiler option). L.,
--strip (ielftooloption)
--strip (iobjmanipoption),
--strip (linker option),
--symbols (iarchive option)..............

IAR C/C++ Development Guide
Compiling and Linking for SH

--system_include_dir (compiler option) 228
--toc (iarchive option) 374
--use_unix_directory_separators (compiler option). 228
--verbose (iarchive option) 374
--verbose (ielftool option). 374
--vla (compileroption) 229
--warnings_affect_exit_code (compiler option)193,229
--warnings_affect_exit_code (linker option) 247
--warnings_are_errors (compiler option) 229
--warnings_are_errors (linker option) 247
.codel6.text (ELF section) 339
.code20.text (ELF section) 339
.code28.text (ELF section) 339
.code32.text (ELF section) 339
.comment (ELF section) 338
.datal6.bss (ELFsection) 340
.datal6.data (ELF section) 340
.datal6.data_init (ELF section). 340
.datal6.noinit (ELF section) 341
.datal6.rodata (ELF section). 341
.data20.bss (ELF section) 341
.data20.data (ELF section) 341
.data20.data_init (ELF section). 342
.data20.noinit (ELF section) 342
.data20.rodata (ELF section). 342
.data28.bss (ELF section) 342
.data28.data (ELF section) 342
.data28.data_init (ELF section). 343
.data28.noinit (ELF section) 343
.data28.rodata (ELF section). 343
.data32.bss (ELFsection) 343
.data32.data (ELF section) 344
.data32.data_init (ELF section). 344
.data32.noinit (ELF section) 344
.data32.rodata (ELF section). 344
.debug (ELFsection).coiiiiinnon.. 338
Jdifunct (ELF section).coiiunon... 345
Jdar.debug (ELF section) L., 338
Jar.dynexit (ELF section), 345

dnttable (ELF section) 345
dntvec (ELF section).oiuu... 346
el (ELFsection) iiiiiian... 338
rela(ELFsection) iiiun... 338
.shstrtab (ELF section) 338
strtab (ELFsection)o 338
.symtab (ELF section)., 338
.tbr_table (ELF section) 346
@ (operator)

placing at absolute address. 174

placinginsectionscoiiinina... 175
#include files, specifying 191, 216
#warning message (preprocessor extension) 305

%Z replacement string,
implementation-defined behavior 390

Numerics

32-bits (floating-point format) 253
64-bit data types, avoiding 169
64-bits (floating-point format) 254

Index __o

419

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the build tools
	Part 2. Reference information

	Other documentation
	Further reading

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the build tools
	Introduction to the IAR build tools
	The IAR build tools—an overview
	IAR C/C++ Compiler
	IAR Assembler
	The IAR ILINK Linker
	Specific ELF tools
	External tools

	IAR language overview
	Device support
	Supported SH devices
	Preconfigured support files
	Header files for I/O
	Linker configuration files
	Device description files

	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	Mapping of internal and external memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems

	The build process—an overview
	The translation process
	The linking process
	After linking

	Application execution—an overview
	The initialization phase
	The execution phase
	The termination phase

	Building applications—an overview
	Basic project configuration
	Core
	Data model
	Code model
	Size of double floating-point type
	Optimization for speed and size
	Runtime environment
	Setting up for the runtime environment in the IDE
	Setting up for the runtime environment from the command line
	Setting library and runtime environment options

	Data storage
	Introduction
	Different ways to store data

	Data models
	Specifying a data model

	Memory types
	Data16
	Data20
	Data28
	Data32
	Using data memory attributes
	Syntax
	Type definitions

	Structures and memory types
	More examples

	C++ and memory types
	Auto variables—on the stack
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models and memory attributes for function storage
	Using function memory attributes

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Trap functions
	Monitor functions
	Example of implementing a semaphore in C
	Example of implementing a semaphore in C++

	C++ and special function types

	Linking using ILINK
	Linking—an overview
	Modules and sections
	The linking process
	Placing code and data—the linker configuration file
	A simple example of a configuration file

	Initialization at system startup
	The initialization process
	C++ dynamic initialization

	Linking your application
	Linking considerations
	Choosing a linker configuration file
	Defining your own memory areas
	Adding an additional region
	Merging different areas into one region
	Adding a region in a new memory
	Defining the unit size for a new memory

	Placing sections
	Placing a section at a specific address in memory
	Placing a section first or last in a region
	Declare and place your own sections

	Reserving space in RAM
	Keeping modules
	Keeping symbols and sections
	Application startup
	Setting up the stack
	Setting up the heap
	Setting up the atexit limit
	Changing the default initialization
	Choosing a packing algorithm
	Manual initialization
	Initializing code—copying ROM to RAM
	Running all code from RAM

	Interaction between ILINK and the application
	Standard library handling
	Producing other output formats than ELF/DWARF

	Hints for troubleshooting
	Relocation errors
	Possible solutions

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Setting up the runtime environment

	Using a prebuilt library
	Choosing a library
	Groups of library files
	Library filename syntax
	Library files for debug support functions

	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IDE
	Specifying scanf formatter from the command line

	Application debug support
	Including debug support
	The debug library functionality
	The C-SPY Terminal I/O window
	Speeding up terminal output

	Overriding library modules
	Overriding library modules using the IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s

	Library configurations
	Choosing a runtime configuration

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write
	Example of using _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	The getenv function
	The system function

	Signal and raise
	Time
	Strtod
	Assert
	Atexit
	Hardware support
	Managing a multithreaded environment
	Multithread support in the DLIB library
	Enabling multithread support
	System locks interface
	File streams locks interface
	DLIB lock usage
	TLS handling

	TLS in the linker configuration file

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Examples

	Calling functions
	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Inline assembler

	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Dedicated section operators

	Relaxations to Standard C

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	Function types
	Templates
	The standard template library
	STL and the IAR C-SPY® Debugger

	Variants of cast operators
	Mutable
	Namespace
	The STD namespace
	Using interrupts and EC++ destructors

	C++ language extensions

	Application-related considerations
	Output format considerations
	Stack considerations
	Stack size considerations

	Heap considerations
	Heap size and standard I/O

	Interaction between the tools and your application
	Checksum calculation
	Calculating a checksum
	Creating a place for the calculated checksum
	Running ielftool

	Adding a checksum function to your source code
	A function for checksum calculation
	Checksum calculation

	Things to remember
	C-SPY considerations

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in sections
	Examples of placing variables in named sections
	Examples of placing functions in named sections

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units

	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	ILINK invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	ILINK output
	Diagnostics
	Message format for the compiler
	Message format for the linker
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of options
	--c89
	Syntax
	Description
	See also

	--char_is_signed
	Syntax
	Description

	--char_is_unsigned
	Syntax
	Description

	--code_model
	Syntax
	Parameters
	Description
	See also

	--core
	Syntax
	Parameters
	Description

	-D
	Syntax
	Parameters
	Description

	--data_model
	Syntax
	Parameters
	Description
	See also

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description

	--diag_remark
	Syntax
	Parameters
	Description

	--diag_suppress
	Syntax
	Parameters
	Description

	--diag_warning
	Syntax
	Parameters
	Description

	--diagnostics_tables
	Syntax
	Parameters
	Description

	--discard_unused_publics
	Syntax
	Description
	See also

	--dlib
	Syntax
	Description
	See also

	--dlib_config
	Syntax
	Parameters
	Description

	--double
	Syntax
	Parameters
	Description
	See also

	-e
	Syntax
	Description
	See also

	--ec++
	Syntax
	Description

	--eec++
	Syntax
	Description
	See also

	--enable_alternative_register_allocator
	Syntax
	Description

	--enable_multibytes
	Syntax
	Description

	--error_limit
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Descriptions

	--guard_calls
	Syntax
	Description
	See also

	--header_context
	Syntax
	Description

	-I
	Syntax
	Parameters
	Description
	See also

	-l
	Syntax
	Parameters
	Description

	--mfc
	Syntax
	Description
	Example
	See also

	--no_clustering
	Syntax
	Description

	--no_code_motion
	Syntax
	Description

	--no_cse
	Syntax
	Description

	--no_fragments
	Syntax
	Description
	See also

	--no_inline
	Syntax
	Description

	--no_path_in_file_macros
	Syntax
	Description
	See also

	--no_scheduling
	Syntax
	Description

	--no_size_constraints
	Syntax
	Description
	See also

	--no_system_include
	Syntax
	Description
	See also

	--no_tbaa
	Syntax
	Description
	See also

	--no_typedefs_in_diagnostics
	Syntax
	Description
	Example

	--no_unroll
	Syntax
	Description

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	-O
	Syntax
	Parameters
	Description
	See also

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--predef_macros
	Syntax
	Parameters
	Description

	--preinclude
	Syntax
	Parameters
	Description

	--preprocess
	Syntax
	Parameters
	Description

	--public_equ
	Syntax
	Parameters
	Description

	--quad_align_labels
	Syntax
	Description

	--relaxed_fp
	Syntax
	Description
	Example

	--remarks
	Syntax
	Description
	See also

	--require_prototypes
	Syntax
	Description

	--silent
	Syntax
	Description

	--strict
	Syntax
	Description
	See also

	--system_include_dir
	Syntax
	Parameters
	Description
	See also

	--use_unix_directory_separators
	Syntax
	Description

	--vla
	Syntax
	Description
	See also

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Linker options
	Summary of linker options
	Descriptions of options
	--config
	Syntax
	Parameters
	Description
	See also

	--config_def
	Syntax
	Parameters
	Description
	See also

	--cpp_init_routine
	Syntax
	Parameters
	Description

	--debug_lib
	Syntax
	Description
	See also

	--define_symbol
	Syntax
	Parameters
	Description
	See also

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description

	--diag_remark
	Syntax
	Parameters
	Description

	--diag_suppress
	Syntax
	Parameters
	Description

	--diag_warning
	Syntax
	Parameters
	Description

	--diagnostics_tables
	Syntax
	Parameters
	Description

	--entry
	Syntax
	Parameters
	Description

	--error_limit
	Syntax
	Parameters
	Description

	--export_builtin_config
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Descriptions

	--force_output
	Syntax
	Description

	--GBR
	Syntax
	Parameters
	Description

	--image_input
	Syntax
	Parameters
	Description
	Example
	See also

	--keep
	Syntax
	Parameters
	Description

	--log
	Syntax
	Parameters
	Description
	See also

	--log_file
	Syntax
	Parameters
	Description
	See also

	--mangled_names_in_messages
	Syntax
	Descriptions

	--map
	Syntax
	Description

	--no_fragments
	Syntax
	Description
	See also

	--no_library_search
	Syntax
	Description

	--no_locals
	Syntax
	Description

	--no_range_reservations
	Syntax
	Description

	--no_remove
	Syntax
	Description
	See also

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--place_holder
	Syntax
	Parameters
	Description
	See also

	--redirect
	Syntax
	Parameters
	Description

	--remarks
	Syntax
	Description
	See also

	--search
	Syntax
	Parameters
	Description
	See also

	--silent
	Syntax
	Description

	--strip
	Syntax
	Description

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Data representation
	Alignment
	Alignment on the SH microprocessor

	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _code16
	Syntax
	Description
	Storage information
	Example
	See also

	_ _code20
	Syntax
	Description
	Storage information
	Example
	See also

	_ _code28
	Syntax
	Description
	Storage information
	Example
	See also

	_ _code32
	Syntax
	Description
	Storage information
	Example
	See also

	_ _data16
	Syntax
	Description
	Storage information
	Example
	See also

	_ _data20
	Syntax
	Description
	Storage information
	Example
	See also

	_ _data28
	Syntax
	Description
	Storage information
	Example
	See also

	_ _data32
	Syntax
	Description
	Storage information
	Example
	See also

	_ _fast_interrupt
	Syntax
	Description
	Example

	_ _interrupt
	Syntax
	Description
	Example
	See also

	_ _intrinsic
	Description

	_ _monitor
	Syntax
	Description
	Example
	See also

	_ _no_init
	Syntax
	Description
	Example
	See also

	_ _noreturn
	Syntax
	Description
	Example

	_ _root
	Syntax
	Description
	Example
	See also

	_ _task
	Syntax
	Description
	Example

	_ _tbr
	Syntax
	Description
	Storage information
	Example
	See also

	_ _trap
	Syntax
	Description
	Example
	See also

	_ _weak
	Syntax
	Description
	Example

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	basic_template_matching
	Syntax
	Description
	Example

	bitfields
	Syntax
	Parameters
	Description
	Example
	See also

	constseg
	Syntax
	Parameters
	Description
	Example

	data_alignment
	Syntax
	Parameters
	Description

	dataseg
	Syntax
	Parameters
	Description
	Example

	diag_default
	Syntax
	Parameters
	Description
	See also

	diag_error
	Syntax
	Parameters
	Description
	See also

	diag_remark
	Syntax
	Parameters
	Description
	See also

	diag_suppress
	Syntax
	Parameters
	Description
	See also

	diag_warning
	Syntax
	Parameters
	Description
	See also

	error
	Syntax
	Parameters
	Description
	Example

	include_alias
	Syntax
	Parameters
	Description
	Example
	See also

	inline
	Syntax
	Parameters
	Description
	See also

	language
	Syntax
	Parameters
	Description
	Example 1
	Example 2
	Example 3
	See also

	location
	Syntax
	Parameters
	Description
	Example
	See also

	message
	Syntax
	Parameters
	Description
	Example:

	monitor_level
	Syntax
	Parameters
	Description
	Example:

	object_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	optimize
	Syntax
	Parameters
	Description
	Example

	pack
	Syntax
	Parameters
	Description
	See also

	_ _printf_args
	Syntax
	Description
	Example

	required
	Syntax
	Parameters
	Description
	Example

	rtmodel
	Syntax
	Parameters
	Description
	Example
	See also

	_ _scanf_args
	Syntax
	Description
	Example

	section
	Syntax
	Parameters
	Description
	Example
	See also

	STDC CX_LIMITED_RANGE
	Syntax
	Parameters
	Description

	STDC FENV_ACCESS
	Syntax
	Parameters
	Description

	STDC FP_CONTRACT
	Syntax
	Parameters
	Description
	Example

	type_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	vector
	Syntax
	Parameters
	Description
	Example

	weak
	Syntax
	Parameters
	Description
	Example
	See also

	Intrinsic functions
	Descriptions of intrinsic functions
	IAR intrinsic functions
	_ _disable_interrupt
	Syntax
	Description

	_ _enable_interrupt
	Syntax
	Description

	_ _get_interrupt_state
	Syntax
	Description
	Example

	_ _get_interrupt_table
	Syntax
	Description

	_ _no_operation
	Syntax
	Description

	_ _prefetch
	Syntax
	Description

	_ _set_interrupt_state
	Syntax
	Descriptions

	_ _set_interrupt_table
	Syntax
	Description

	_ _sleep
	Syntax
	Description

	Renesas intrinsic functions

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	Description
	See also

	#warning message
	Syntax
	Description

	Library functions
	Library overview
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using Standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	fenv.h
	stdio.h
	string.h

	The linker configuration file
	Overview
	Defining memories and regions
	Define memory directive
	Syntax
	Parameters
	Description
	Example

	Define region directive
	Syntax
	Parameters
	Description
	Example

	Regions
	Region literal
	Syntax
	Parameters
	Description
	Example
	See also

	Region expression
	Syntax
	Description
	Example

	Empty region
	Syntax
	Description
	Example
	See also

	Section handling
	Define block directive
	Syntax
	Parameters
	Description
	Example
	See also

	Define overlay directive
	Syntax
	Parameters
	Description
	See also

	Initialize directive
	Syntax
	Parameters
	Description
	Example
	See also

	Do not initialize directive
	Syntax
	Description
	Example
	See also

	Keep directive
	Syntax
	Description
	Example

	Place at directive
	Syntax
	Parameters
	Description
	Example
	See also

	Place in directive
	Syntax
	Description
	Example
	See also

	Section selection
	Section-selectors
	Syntax
	Parameters
	Description
	Example
	See also

	Extended-selectors
	Syntax
	Parameters
	Description
	Example
	See also

	Using symbols, expressions, and numbers
	Define symbol directive
	Syntax
	Parameters
	Description
	Example
	See also

	Export directive
	Syntax
	Parameters
	Description
	Example

	Expressions
	Syntax
	Description

	Numbers
	Syntax
	Description
	Example

	Structural configuration
	If directive
	Syntax
	Parameters
	Description
	Example

	Include directive
	Syntax
	Parameters
	Description

	Section reference
	Summary of sections
	Descriptions of sections and blocks
	.code16.text
	Description
	Memory placement
	See also

	.code20.text
	Description
	Memory placement
	See also

	.code28.text
	Description
	Memory placement
	See also

	.code32.text
	Description
	Memory placement
	See also

	CSTACK
	Description
	Memory placement
	See also

	.data16.bss
	Description
	Memory placement
	See also

	.data16.data
	Description
	Memory placement
	See also

	.data16.data_init
	Description
	Memory placement
	See also

	.data16.noinit
	Description
	Memory placement
	See also

	.data16.rodata
	Description
	Memory placement
	See also

	.data20.bss
	Description
	Memory placement
	See also

	.data20.data
	Description
	Memory placement
	See also

	.data20.data_init
	Description
	Memory placement
	See also

	.data20.noinit
	Description
	Memory placement
	See also

	.data20.rodata
	Description
	Memory placement
	See also

	.data28.bss
	Description
	Memory placement
	See also

	.data28.data
	Description
	Memory placement
	See also

	.data28.data_init
	Description
	Memory placement
	See also

	.data28.noinit
	Description
	Memory placement
	See also

	.data28.rodata
	Description
	Memory placement
	See also

	.data32.bss
	Description
	Memory placement
	See also

	.data32.data
	Description
	Memory placement
	See also

	.data32.data_init
	Description
	Memory placement
	See also

	.data32.noinit
	Description
	Memory placement
	See also

	.data32.rodata
	Description
	Memory placement
	See also

	.difunct
	Description
	Memory placement

	_ _DLIB_PERTHREAD
	Description
	Memory placement
	See also

	HEAP
	Description
	Memory placement
	See also

	.iar.dynexit
	Description
	Memory placement
	See also

	.inttable
	Description

	.intvec
	Description
	Memory placement

	.tbr_table
	Description
	Memory placement

	IAR utilities
	The IAR Archive Tool—iarchive
	Invocation syntax
	Parameters
	Examples

	Summary of iarchive commands
	Summary of iarchive options
	Diagnostic messages
	La001: could not open file filename
	La002: illegal path pathname
	La006: too many parameters to cmd command
	La007: too few parameters to cmd command
	La008: lib is not a library file
	La009: lib has no symbol table
	La010: no library parameter given
	La011: file file already exists
	La013: file confusions, lib given as both library and object
	La014: module module not present in archive lib
	La015: internal error
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR ELF Tool—ielftool
	Invocation syntax
	Parameters
	Example

	Summary of ielftool options

	The IAR ELF Dumper for SH—ielfdumpsh
	Invocation syntax
	Parameters

	Summary of ielfdumpsh options

	The IAR ELF Object Tool—iobjmanip
	Invocation syntax
	Parameters
	Examples

	Summary of iobjmanip options
	Diagnostic messages
	Lm001: No operation given
	Lm002: Expected nr parameters but got nr
	Lm003: Invalid section/symbol renaming pattern pattern
	Lm004: Could not open file filename
	Lm005: ELF format error msg
	Lm006: Unsupported section type nr
	Lm007: Unknown section type nr
	Lm008: Symbol symbol has unsupported format
	Lm009: Group type nr not supported
	Lm010: Unsupported ELF feature in file: msg
	Lm011: Unsupported ELF file type
	Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)
	Lm013: Section name removed due to transitive dependency on name
	Lm014: File has no section with index nr
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR Absolute Symbol Exporter—isymexport
	Invocation syntax
	Parameters

	Summary of isymexport options
	Steering files
	Syntax
	Example

	Show directive
	Syntax
	Parameters
	Description
	Example

	Hide directive
	Syntax
	Parameters
	Description
	Example

	Rename directive
	Syntax
	Parameters
	Description
	Example

	Diagnostic messages
	Es001: could not open file filename
	Es002: illegal path pathname
	Es003: format error: message
	Es004: no input file
	Es005: no output file
	Es006: too many input files
	Es007: input file is not an ELF executable
	Es008: unknown directive: directive
	Es009: unexpected end of file
	Es010: unexpected end of line
	Es011: unexpected text after end of directive
	Es012: expected text
	Es013: pattern can contain at most one * or ?
	Es014: rename patterns have different wildcards
	Es014: ambiguous pattern match: symbol matches more than one rename pattern

	Descriptions of options
	--all
	Syntax
	Tool
	Description

	--bin
	Syntax
	Tool
	Description

	--checksum
	Syntax
	Parameters
	Tool
	Description

	--code
	Syntax
	Tool
	Description

	--create
	Syntax
	Parameters
	Tool
	Description

	--delete, -d
	Syntax
	Parameters
	Tool
	Description

	--edit
	Syntax
	Tool
	Description
	See also

	--extract, -x
	Syntax
	Parameters
	Tool
	Description

	-f
	Syntax
	Parameters
	Tool
	Description

	--fill
	Syntax
	Parameters
	Applicability
	Description

	--ihex
	Syntax
	Tool
	Description

	--no_strtab
	Syntax
	Tool
	Description

	--output, -o
	Syntax
	Parameters
	Tool
	Description

	--ram_reserve_ranges
	Syntax
	Parameters
	Tool
	Description
	See also

	--raw
	Syntax
	Tool
	Description

	--remove_section
	Syntax
	Parameters
	Tool
	Description

	--rename_section
	Syntax
	Parameters
	Tool
	Description

	--rename_symbol
	Syntax
	Parameters
	Tool
	Description

	--replace, -r
	Syntax
	Parameters
	Tool
	Description

	--reserve_ranges
	Syntax
	Parameters
	Tool
	Description
	See also

	--section, -s
	Syntax
	Parameters
	Tool
	Description
	Example

	--self_reloc
	Syntax
	Tool
	Description

	--silent
	Syntax
	Tool
	Description

	--simple
	Syntax
	Tool
	Description

	--srec
	Syntax
	Tool
	Description

	--srec-len
	Syntax
	Parameters
	Tool
	Description

	--srec-s3only
	Syntax
	Tool
	Description

	--strip
	Syntax
	Tool
	Description

	--symbols
	Syntax
	Parameters
	Tool
	Description

	--toc, -t
	Syntax
	Parameters
	Tool
	Description

	--verbose, -V
	Syntax
	Tool
	Description

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	Diagnostics (3.10, 5.1.1.3)
	White-space characters (5.1.1.2)

	J.3.2 Environment
	The character set (5.1.1.2)
	Main (5.1.2.1)
	The effect of program termination (5.1.2.1)
	Alternative ways to define main (5.1.2.2.1)
	The argv argument to main (5.1.2.2.1)
	Streams as interactive devices (5.1.2.3)
	Signals, their semantics, and the default handling (7.14)
	Signal values for computational exceptions (7.14.1.1)
	Signals at system startup (7.14.1.1)
	Environment names (7.20.4.5)
	The system function (7.20.4.6)

	J.3.3 Identifiers
	Multibyte characters in identifiers (6.4.2)
	Significant characters in identifiers (5.2.4.1, 6.1.2)

	J.3.4 Characters
	Number of bits in a byte (3.6)
	Execution character set member values (5.2.1)
	Alphabetic escape sequences (5.2.2)
	Characters outside of the basic executive character set (6.2.5)
	Plain char (6.2.5, 6.3.1.1)
	Source and execution character sets (6.4.4.4, 5.1.1.2)
	Integer character constants with more than one character (6.4.4.4)
	Wide character constants with more than one character (6.4.4.4)
	Locale used for wide character constants (6.4.4.4)
	Locale used for wide string literals (6.4.5)
	Source characters as executive characters (6.4.5)

	J.3.5 Integers
	Extended integer types (6.2.5)
	Range of integer values (6.2.6.2)
	The rank of extended integer types (6.3.1.1)
	Signals when converting to a signed integer type (6.3.1.3)
	Signed bitwise operations (6.5)

	J.3.6 Floating point
	Accuracy of floating-point operations (5.2.4.2.2)
	Rounding behaviors (5.2.4.2.2)
	Evaluation methods (5.2.4.2.2)
	Converting integer values to floating-point values (6.3.1.4)
	Converting floating-point values to floating-point values (6.3.1.5)
	Denoting the value of floating-point constants (6.4.4.2)
	Contraction of floating-point values (6.5)
	Default state of FENV_ACCESS (7.6.1)
	Additional floating-point mechanisms (7.6, 7.12)
	Default state of FP_CONTRACT (7.12.2)

	J.3.7 Arrays and pointers
	Conversion from/to pointers (6.3.2.3)
	ptrdiff_t (6.5.6)

	J.3.8 Hints
	Honoring the register keyword (6.7.1)
	Inlining functions (6.7.4)

	J.3.9 Structures, unions, enumerations, and bitfields
	Sign of 'plain' bitfields (6.7.2, 6.7.2.1)
	Possible types for bitfields (6.7.2.1)
	Bitfields straddling a storage-unit boundary (6.7.2.1)
	Allocation order of bitfields within a unit (6.7.2.1)
	Alignment of non-bitfield structure members (6.7.2.1)
	Integer type used for representing enumeration types (6.7.2.2)

	J.3.10 Qualifiers
	Access to volatile objects (6.7.3)

	J.3.11 Preprocessing directives
	Mapping of header names (6.4.7)
	Character constants in constant expressions (6.10.1)
	The value of a single-character constant (6.10.1)
	Including bracketed filenames (6.10.2)
	Including quoted filenames (6.10.2)
	Preprocessing tokens in #include directives (6.10.2)
	Nesting limits for #include directives (6.10.2)
	Universal character names (6.10.3.2)
	Recognized pragma directives (6.10.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.10.8)

	J.3.12 Library functions
	Additional library facilities (5.1.2.1)
	Diagnostic printed by the assert function (7.2.1.1)
	Representation of the floating-point status flags (7.6.2.2)
	Feraiseexcept raising floating-point exception (7.6.2.3)
	Strings passed to the setlocale function (7.11.1.1)
	Types defined for float_t and double_t (7.12)
	Domain errors (7.12.1)
	Return values on domain errors (7.12.1)
	Underflow errors (7.12.1)
	fmod return value (7.12.10.1)
	The magnitude of remquo (7.12.10.3)
	signal() (7.14.1.1)
	NULL macro (7.17)
	Terminating newline character (7.19.2)
	Space characters before a newline character (7.19.2)
	Null characters appended to data written to binary streams (7.19.2)
	File position in append mode (7.19.3)
	Truncation of files (7.19.3)
	File buffering (7.19.3)
	A zero-length file (7.19.3)
	Legal file names (7.19.3)
	Number of times a file can be opened (7.19.3)
	Multibyte characters in a file (7.19.3)
	remove() (7.19.4.1)
	rename() (7.19.4.2)
	Removal of open temporary files (7.19.4.3)
	Mode changing (7.19.5.4)
	Style for printing infinity or NaN (7.19.6.1, 7.24.2.1)
	%p in printf() (7.19.6.1, 7.24.2.1)
	Reading ranges in scanf (7.19.6.2, 7.24.2.1)
	%p in scanf (7.19.6.2, 7.24.2.2)
	File position errors (7.19.9.1, 7.19.9.3, 7.19.9.4)
	An n-char-sequence after nan (7.20.1.3, 7.24.4.1.1)
	errno value at underflow (7.20.1.3, 7.24.4.1.1)
	Zero-sized heap objects (7.20.3)
	Behavior of abort and exit (7.20.4.1, 7.20.4.4)
	Termination status (7.20.4.1, 7.20.4.3, 7.20.4.4)
	The system function return value (7.20.4.6)
	The time zone (7.23.1)
	Range and precision of time (7.23)
	clock() (7.23.2.1)
	%Z replacement string (7.23.3.5, 7.24.5.1)
	Math functions rounding mode (F.9)

	J.3.13 Architecture
	Values and expressions assigned to some macros (5.2.4.2, 7.18.2, 7.18.3)
	The number, order, and encoding of bytes (6.2.6.1)
	The value of the result of the sizeof operator (6.5.3.4)

	J.4 Locale
	Members of the source and execution character set (5.2.1)
	The meaning of the additional character set (5.2.1.2)
	Shift states for encoding multibyte characters (5.2.1.2)
	Direction of successive printing characters (5.2.2)
	The decimal point character (7.1.1)
	Printing characters (7.4, 7.25.2)
	Control characters (7.4, 7.25.2)
	Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.5.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10, 7.25.2.1.11)
	The native environment (7.1.1.1)
	Subject sequences for numeric conversion functions (7.20.1, 7.24.4.1)
	The collation of the execution character set (7.21.4.3, 7.24.4.4.2)
	Message returned by strerror (7.21.6.2)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

