IAR Embedded Workbench®

IAR C/C++ Compiler

Reference Guide

for the Renesas

V850 Microcontroller Family
-~

&
o
-

®IAR

CV850-9 SYSTEMS

2

IAR C/C++ Compiler
Reference Guide for V850

COPYRIGHT NOTICE
© 1998-2013 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of AR Systems. While the information contained
herein is assumed to be accurate, [AR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, I-jet, I-scope, IAR and the logotype of IAR Systems are trademarks
or registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. V850 is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Ninth edition: May 2013

Part number: CV850-9

This guide applies to version 4.x of IAR Embedded Workbench® for the Renesas V850
microcontroller family.

Internal reference: M13, Too06.5, csrct2010.1, V_110411, IJOA.

Brief contents

TaABIES ... 23
Preface ... e 25
Part |. Using the compiler ... 33
Getting StArtedooooooivvieeer e 35
Data STOrAZE ...t 43
FUNCLIONS ...t 53
Placing code and data ... 67
The DLIB runtime environment ... 81
Assembler language interface ... 117
USING C ottt 145
USING CH e 153
Efficient coding for embedded applications ... 163
Part 2. Reference information ... 183
External interface details ... 185
ComMPIler OPLIONS ... 191
Data repreSeNtation ... 227
Extended keyWords ... 239
Pragma dir€CtiVES ... 251
INtrinSic FUNCLIONScooooiiii e 271
The PreProCeSSOL ... 281

Library fUNCLIONS ... 289

4

IAR C/C++ Compiler
Reference Guide for V850

Implementation-defined behavior for Standard C 317
Implementation-defined behavior for C89 ... 333
INAEX oo 345

Contents

TaABIES ... 23
Preface ... e 25
Who should read this guide ..., 25
How to use this guide ... 25

What this guide contains

Part 1. Using the compiler

Part 2. Reference informationccccceeevieeieieiiienee e 26
Other documentation ..o 27
User and reference GUIdescocceeeeeerereeerininieeeteneesiesie e 27

The online help system

Further readingcccoevveviinininiininiicicecececcrces e
WED SIEES .ttt sttt
Document cONVENLIONSccocvciiciniinincicecreee e 29
Typographic CONVENTIONSceveruerueruirreriierereeiieieeetete st sie e seeseeevea 30
Naming CONVENTIONSc.eevereerieriententinienieeteeeeiteitestestestessesieseesaesseeseas 30
Part |. Using the compiler ... 33
Getting StArtedooooooivviee e 35
IAR language OVErVIEW ... 35
Supported V850 devices ... 36
Building applications—an overview ... 36
Compiling
LINKING oottt
Basic project configuration ... 37
COT ettt b e e bbbt a bbbt e bt e bt et et et et enbesee 38
Data model ..o 38
Code MOAE]ooviiiiiiiiiiieeeee e 38
Optimization for speed and SizZecccoceoeeireineneienicieneneneeeee 39

Runtime enVIronmentccceeevvieeieeeiieeniieeseeeereeeseeeeveeeeneessveeennns 39

Special support for embedded systems ... 40

Extended KEyWOrdScocoeivenininininiiiiiiiccicrctenecseseneeeeneen 41

Pragma dir€Ctivescc.eouevuerirerininieieeeeieeeeete et 41

Predefined SymMDOLScc.ccerirerininineneieeee ettt 41

Special function LYPeSc..coceververeririeieieieieierertesresresiesresre e ae 41

Accessing low-level featuresoccoeeveeeeveeiieiienienicieneneneneeenee 41

Data STOrAZE ...t 43
Introduction

Different ways to store data

Data models ... 44
Specifying a data mModelccocuririeiiininineneeeeee e 44

MEMOFY tYPES ..o 45
Near
Brel (Dase-relative)c.ococuvieeieeeiieeiee ettt 46
Brel23 (base-relative23)coovieeiieeiieeieecie et 47
HUZE e 47
Saddr (Short addreSSing)cocevevereereereereeieieieiese et eeene 47
Using data memory attributesceceeceeveereenienienienienienenieneneneenens 47

Structures and memory types ...

MOTE EXAMPIES ...eneniinieniiniirierte sttt ettt st

CH++ and Memory types ...
Auto variables—on the stack ..., 50
THE SEACK .eeviivieeiieiie ettt st e et e e sae e eeeaeeae e e enseenees 51
Dynamic memory on the heap ... 52
Potential problemscccceevererininenieninienininecece e 52
FUNCLIONS ... 53
Function-related extensions ..., 53
Code MOdEIS ..o 53
The normal code modelc.occeveriiiiiiiiiininineneeeeee 54
The large code Modelcocooeriririniiinieeeeeeee e 54
The position-independent code modelcccecveieieiienenenenenennns 54

IAR C/C++ Compiler
Reference Guide for V850

Contents _¢

Primitives for interrupts, concurrency, and OS-related

PrOSFaMIMIUNG ..ottt eaeen
Interrupt functions
Trap fUNCHONS ...coviiiiiiiiiieeeeecece et
Callt fUNCHONSocoiiiiiiiiiiiiiii s 58
Syscall fUNCLONS ...c.evverviriiriiieiieiet ettt 58
MONItor fUNCHONSeuveviieiieiiieiieeeree ettt 59
C++ and special function typescoceeceeveeveeiereiericnienenieneneneenens 62
Inlining functions ... 63
C versus CH SEMANLICSeeverveuirieeirieieieneeiineeeeeeere e saens 63
Features controlling function inliningc.ccoceevevenvenencnvcncncncenens 64
Position-independent code ... 64
The distance MOVEdccceeviruireeireieieneeccee e 65
Calling functions outside the applicationcccceeevvereencnenrinnennne 65
Placing code and data ... 67
Segments and MEMOKY ... 67
What is @ SEZMENL?oeiiiriiriiriiieeieeeieet e 67
Placing segments in memory ...
Customizing the linker configuration file ...
Data SEZMENLSocooiiii s
Static MEMOTY SEZMENLS ..eoveurereieriientertererierereereereesteaeneeneesrennens
The Stack ..o 74
The REAP ..ot 75
Located dataccccooveiiiiiiiiiic 76
User-defined SEZMENLScccceereririniieieieiiieieieietenreseseseeneeeneen 77
Code SEZMENLS ... 77
SEArtuP COAL ...oviiiiiiiiiiinienieriert ettt s 77
Normal COdecooiiiiiiiiiiiiici 77
Interrupt vectors and fUNCtioNSccceeceeeeveeieieienieieneseseneieenean 77

Trap vectors

Callt fUNCiONSocoiiiiiiiiiiiiiici s 78
Syscall fUNCHONS ..c..eovieviriiiiiieieie ettt 78
C++ dynamic initialization ... 78

8

IAR C/C++ Compiler
Reference Guide for V850

Verifying the linked result of code and data placement 79

Segment too long errors and range errorsc.ceceeceeeereenuenvenuenuennens 79

Linker map fileccoooiiiiiiniiiceeeee s 79

The DLIB runtime environment ... 81
Introduction to the runtime environment 81
Runtime environment functionalityccocceceeevenenencnicnencneenens 81

Setting up the runtime enViroNMEeNtcccecvevvevvererrerenenenenennenne 82

Using a prebuilt library

ChooSIng @ lIDIArycccoveveririniinininicecececteteectcece e

Customizing a prebuilt library without rebuildingc..c.ccocceeneeneee 86
Choosing formatters for printf and scanf 87

Choosing a printf fOrmatterc.ccocevevierienenenienienenienenenencreeneen 87

Choosing a scanf formatter ...

Application debug support

Including C-SPY debugging SUPPOItccceceevereienienienenenenenneeneen 89
The debug library functionalityc..cccceververiirinieiierienenenenicniennene 90
The C-SPY Terminal I/O Windowc.ccevevenenienieneneneneneneenens 91
Low-level functions in the debug libraryccccceveveencncncnencnnens

Adapting the library for target hardware ...

Library low-level interfaceocoeeeeeeeieneriiieieieieneseseseseeeeee
Overriding library modules ..o 93
Building and using a customized library ... 94

Setting up a library projectccceeceveeeeereeireeneneneneeseeeseeeee 94

Modifying the library functionalityccccocevververenneneennneninnenee 95

Using a customized librarycccocecvecieviinineneninnencncneeeeeeneee 95
System startup and termination ... 95

SYSIEIM STATTUP .evenvenrenrirerierieeiteiteiteitetesre st st sttt ere st et oot sennesnens 96

System termiNatioNcecceceevervririerieneneneneneneee oot eeeseeeesnennens 98
Customizing system initialization ... 99

__low_level_init

Modifying the file cStartup.s85ccocveveveviiiirieieiiiencrereecenee 99
Library configurations ... 100

Choosing a runtime configurationccceeeveverenenenenreniereneene 100

Contents _¢

Standard streams for input and output ... 101
Implementing low-level character input and output 101

Configuration symbols for printf and scanf 103
Customizing formatting capabilitiescoceeverererenenierienieneneene 104

File input and output ...

Locale ...
Locale support in prebuilt libraries ...
Customizing the locale SUPPOTLc.oecveveierienienienienienenenenenenene
Changing locales at rUNtMEcccoeueeuieieienienieieieiee e

Environment interaction ..o

Checking module consistency ...
Runtime model attributesccoceevirieieiieneneneneneneseeeeeeeeene
Using runtime model attributesccccoceeererveniernineeeeneeneenennens

Predefined runtime attributesc.cccoooviniiiiiiniiiiicces
Assembler language interface ..., 117

Mixing C and assembler

Intrinsic fUNCHONSccoccevieiirieiriiiecceeee e
Mixing C and assembler modulescccoceviviiiiiiininicnien. 118
Inline assembler ... 119
Calling assembler routines from C ... 121
Creating skeleton code

Compiling the COdecc.coiviririinieieicicicceeccee e
Calling assembler routines from C++ ... 123

Calling convention ...
Function declarationscccceoiiiiiiiniiininiiiiccce
Using C linkage in C++ source code
Preserved versus SCratch regiStersc.eceverererenenenienienienseneene

FUnCtion @NtrancCecccceeceeeeriiieeiieeeieieeiieeeeeeteee e e eeveeeaeeeaeeeas

FUNCHION X1t .ooviiiiiiiie ettt e

Restrictions for special function types

EXAMPIES ...ooviiiiiiiiieieccc e
FUnction dir€CtiVESccuevveriruirieieiieiieiieiteeee e
Calling funNCtions ...
Assembler instructions used for calling functionsc.cccceeeeeeueee 131
Memory access methods ... 134
Near memory access Methodsccceeeeeeienienienienienenenenenenenene 136
Base-relative access method ..o 137
Base-relative23 access Methodccccceeievienienienienenenenenencnene 138
Huge access Methodccoeevieirininieiiieeeecee e 138
Short addressing access Methodcccceeevveviiniiniinininininineeene. 139

No bit access

Call frame information ... 139

CFL AIrECHVES ...cvviviviiiriiieiierteteteitet ettt sttt ere e s saeeaeene 140

Creating assembler source with CFI supportcccceceeervenienincene 140

USING € oottt 145
C language OVErVIEW ... 145
EXtENSiONS OVEFVIEW ..o 146
Enabling language eXtensionscecceceeveeveerreienrenieneneneneneneens 147

IAR C language eXtensionsccocoovriieniniensece s 147
Extensions for embedded systems programmingc..ceccecererueene 148

Relaxations to Standard Ccccccevveiiiiiiinininencncnencneneneneene 150

USING CH s 153
OVEIVIEW ..ot 153
Embedded CH ..ottt 153

Extended Embedded CH+c.oocieiriiiiiiiiiiiiiieiciciencneseneene 154

Enabling support for CH++ ... 155

IAR C/C++ Compiler
Reference Guide for V850

Contents _¢

EC++ feature descriptions ... 155
Using IAR attributes with Classesccccooiviviiiiiiiiiniiis 155
FUNCHON EYPES ...eveviieiretiieiieiceee ettt 156
Using static class objects in interruptscocceevevveeiveeirenreeneeennes 157
Using New handlersccccoooiiiiiiiiniiicee
TEMPIAES ..ot
Debug support in C-SPY

EEC++ feature description ... 158
TEMPIALES ...ttt e st 158
Variants Of Cast OPETALOLSc.eeeeuieuieuieieiierienieriesienientesieseseseeieene 158
MUtable ..o 158
NAMESPACE ..evevienienieieieteete ettt ettt ettt ettt bbb saesbesaesaesaeene 158
The STD NAMESPACEcoververeirrieiieiieiieiieiietteteie ettt siesiesieene 158

C++ language eXtenSsioNs ... 159

Efficient coding for embedded applications ... 163

Selecting data types ...
Using efficient data tyPescceceeveeeeieieiienenenesienenieee e
Floating-point tYPESc.eoveevirrieiereniieieiieiieteteiererere e sae e seeseeene
Alignment of elements in a structure ...

Anonymous structs and UNIONSceeeeereereerierierienienieneseneseneene

Controlling data and function placement in memory 167
Data placement at an absolute 10cationc.cccceevevenenerverccnenene 168
Data and function placement in SEZMENtSccceeveererererereeuennene. 169

Controlling compiler optimizations ..o, 170
Scope for performed OptimMiZationsc.ceccecveveveverienenenenenenne 171
Multi-file compilation UNItSc.cceceeveieierenenienienenienese e 171
Optimization IEVELSc..cccceveriririnieiiieieeictccsreeeeece e 172
SPEEA VEISUS SIZE ..eveuviuririerierieriiniiniceiteteteteteter et 173
Fine-tuning enabled transformationsc.ccceecevevenenenieniennenene 173

Register locking and register constantsccccccoceeeee. 176
Register 10CKING ...c.cocveiriiiiiiiininiencniiececececeteect e 176
REZISLEr CONSLANLS ...uveuveniiiieeieiieiieieeiieiteet ettt 176
Compatibility ISSUES ..c..coveevievieririeieieieieieeetetererere e 177

Facilitating good code generationcccocooorvicnnnnn,
Writing optimization-friendly source codec..c.ccocveeercerccnennns
Saving stack space and RAM memoryccccevevenenenenennennene.
Extending the code SPanoceeveeuieieieienienieieneiee e
Function Prototypesc..cceeeverererinieieieteieierererese e seseesaeene

Integer types and bit NEZALIONcoeeuveuiiiirienieieieieie e

Protecting simultaneously accessed variables

Accessing special function registersc.ccoeveverienenenerveriereneene 181
Non-initialized variablesccccocevieieieienienenienienee e 181
Part 2. Reference information ... 183
External interface details ... 185
INVOCAtioN SYNtAX ..o 185
Compiler iInVOCation SYNEAXccceeeeveerierieriereenienieienrenreneneseneneeene 185
Passing OPHONSc.cooueieiiniiniiniiiieiiieecect e 185
Environment variablescccoceviririeiiienieieeeeesesene e 186
Include file search procedure ... 186
Compiler output
Error return codes
DiIagnoStiCSo.ooiiiiic s
Message fOrmatc.coeevivvieiririeieieieeet et
SEVETItY LIEVEIS .ueoiiiiiiieiieeeee e

Setting the severity level

Internal eITOrccocoviiiiiiiiiiiii e
ComPIler OPLIONS ... 191

OPLioNS SYNEAX ..o 191
TypPes Of OPLIONScueiiuiiieieiiiiciiceceet e 191
Rules for specifying parameterscccceceverererenenenienienveneneene 191

Summary of compiler options ...

Descriptions of compiler options
--a@@ressive_ININING ...c.ccoveeveririririiieieeceicccere st

--aggressive_UNrollingcoccooveveririnininininineeeeeeeeee e

IAR C/C++ Compiler
Reference Guide for V850

Contents _¢

--allow_misaligned_data_access ...

==Char_iS_SIZNEd ...cooeruiiiiiiiiiiieiee e
-—char_iS_unsSignedccoceecerverininiiieriereeeeeeee e

--Code_MOAE]oooiiiiiiiiiiecee e e

“=0IAZ_EITOT ..eviiiiiiiiinieeteet ettt ettt
==d1aZ_TEMATK ..oeeiiiiiiienieneee et
==01AZ_SUPPIESS .eeuverveiiierierierieriteitriteste et e ettt sbe bbb b s
-=d1ag_WAIMING .oovveiiiiienienere ettt
--diagnoStCS_tabIESco.evveririiiiriiiieteeee e
--disable_Sld_SUPPIeSSIONccecereeierierienieniinienieniesreeieeieeieeieeneenes
--discard_unused_publiCsc.ccocererieniiniinieniiiiiinineeeeeeeeeeeene

--dlib_config ...

-—enable_MUItIDYLESccccoveriririniiiiicieiceccceeeeeeee e

==@ITOT_IIMIL ..eiiiiiieiiiiiiee ettt et ere e eree e aeeeebeeenaaeenns

--library_moduleocoooiiiiiiiiii e
“LOCK_TEES ettt
--lock_regs_compatibilityccccocvieviiniiniininiiiiininee
--macro_positions_in_diagnoStiCSccoeerueruirueruererenenienenieeneenes 212
ST s 212

14

IAR C/C++ Compiler
Reference Guide for V850

--migration_preprocessor_eXteNSiONScccceverververerenereneneeneenes 212

~~MOAUIE_NAMEeviiiiiieiiieeiiieie e eeeeeiee et eeeeerreesreeeve e esaeennes

=NO_CIUSEEIING .eeuveiiiiieeieeeee ettt
=-N0_COAE_IMNOLION ..uvvviiiiiiiiieeiiiiee ettt e eeaeee e et e e e e eaee e e s eaaaeessnnns

=-N0_CTOSS_CAll ..oioiiiiiiiiiiiicieece e

--no_data_model_rt_attribute ...
“NO_ININE oottt e
--no_path_in_file_macrosc..cecevuerienienenenininieneseeeeeeceeeeiene
=-NO0_SCHEAULING ..ottt
=-NO_SIZ€_CONSITAINES .vveeueerneereierieetieneeetenieesteeneeeteeeestesnseseeesneenaes
--N0_StatiC_dESIUCHIONvvvveiiiieiieeeeieiee et ee e e saaae e s e
--NO_SYSteM_iNCludecccevveririiriiiiiiiiiieeccceee e
e (LT 10 V. LSRR
--no_typedefs_in_diagnostics ..
=NO_UNTOIL oo
“SNO_WAITINEZS wovvenienietiienierienenierienieereestestetenessessessessesressessessessesnes

=-NO_WIAP_dIa@NOSLICS ...evverierieiiriinieeiteeeeeie ettt sttt ene s

“mOIMIL_LYPES wonvenrinieieiiienierieeie sttt ettt st eresae s ere e
==ONLY_SEAOUL <.eniiiieieieieeiere ettt
SmOULPUL, =0 ottt
——predef _MACTOS ..c.coviuiiuiiiiiiicieieicteecete ettt e
--preinclude
SmPIEPIOCESS ...enveveveniriirenieree ettt s et es et ne
“PUDLIC_EQU .ottt
STT@Z_COMSE euiiriieieeetettntnteteteie sttt et beb et esebe st se sttt eeebebenennne
—TelaXEd_fP weevveriere e

SsT@MATKS .oiiiiieiiieciteee ettt ettt e e e et e e etaeetbe e ae e eebaeenaea e

--system_include_dircocoovereiiiiiiiii e

—=USE_CH+_INIINE ooviiiiiiiiiieiiecie e e

Contents _¢

--warnings_affect_exit_Codeceoereririnenininiineneeeeeee 226
“=WAININZS_ATE_CITOTS .e..erverueruerutruirrtertentereesiesensesessessessessessessessesnes 226
Data repreSeNtation ... 227
ALIZNMENT ..o 227
Alignment on the V850 microcontrollerc..cceceeencrvcnvcnencene 227
Basic data types
Integer types
Floating-point tYPESc.eovevvirrieuierieiieiieiieiieteteiererere e sae s sieeieene 231
POINtEr LYPES ..o 232
FUnction POINLETSc..covevueriiriinininiieieieiteeeteiererere e e 232

Data pointers ...

CASHNE c.eeviiieiteitert ettt ettt ettt et eb ettt et saesbesbesbe b ene
Structure types
ALGNMENT ..ottt st
General 1aYOULccoeueiiiiiricieeeeei e 234
Packed StrUCIUIE tYPESccvevvivvieuieiieiieiieiieiicreierererere e 234
Type qualifiers
Declaring objects VOlatilecccoceeirieiieiienenineneneneseeeeeeiene 235
Declaring objects volatile and constcccoevverenenenenenncnnenunnens 237
Declaring objects CONStceevevierienienieninienenenenreieecreseeseeneaens 237
Data types in CH+ .. 237
Extended keyWords ... 239
General syntax rules for extended keywords 239
TYPE QAUITDULESeonviviniiniiiiitieiieiteteiiecret ettt 239
ODbJECt AtIIDULES ..oveeiieeieeieeieeiie ettt 241
Summary of extended keywords ... 242
Descriptions of extended keywords ..o 243
DIEL et 243
L BIEI23 e 243
CAllL i 244
FIAL ceeeteeeiet ettt ettt 244

16

IAR C/C++ Compiler
Reference Guide for V850

ADEETTUPL ettt ettt ettt ettt ettt et ev e en et 245
B 1115 01 113 (RSP RE RO RRTN 246

B 1010 13 110 (USSR 246

Summary of pragma directives ..o 251
Descriptions of pragma directives ... 253
DILFIEIAS ..

COMBLSEE vevniurrieiiriereriaetereneetetssese et es et st ese st snesesee s ene st s eneneneas
data_alignment ...
QALASEE .ottt ettt ettt ettt s bbbt
diag default ..o
QLA EITOT ..eoviiiiiiiieieietitt ettt s s s st
dIag_TeMArKcceiviiiiiiiiiece e
IAZ_ SUPPIESS ..eveimiiniiniiniiiintinteeiteteette ettt ettt r e e s saesaeene

diag WAIDINE ...coveveiiiiiiiiiiiienteeetcer ettt st

INCIUAE_ALHAS ..oeovviiieiiieiecciecee ettt et
INLINE ©.eviiiiiiiie ettt e e e e b e e eaeeeatbeesaeeeeaseeesbeeeaeeans
JANGUAZE ..ottt s st
location
INESSAZE -euveueerentereteseesertesetesertentesestebessestabestesestesetenesaentebesteneseneenens

NO_EPILOZUE ..ottt st

ODJECT_AUTIDULE ...eveinviniiniiiieeieiieieeeiee ettt

Contents _¢

optimize

PACK ettt e e s et
__PTINEE_ATES ittt 263
TEQUITEA ..eeviiiiiieititetee ettt et ettt sbe b 264
TEMOAE] oottt 264
__SCANT_AIES weiiiiiiieieee e 265
segment
STDC CX_LIMITED_RANGEccccooiiiiriieieeeeeeeeeeee 266
STDC FENV_ACCESSootitiiiietetetentee sttt 267
STDC FP_CONTRACT ..ottt 267
LYPE_ALIIDULE .oveiiiiiiiiiiiieiieieeeeeeec et 268
UNTOIL oottt s s s s 268
VECTOL 1eenitiiteieeteenteeteetteetee st eabeenteeabe et e sabesatesbeesaeebeeteenesanesseenaeenne 269
INtriNSIC fUNCLIONSooo e 271
Summary of intrinsic functions ...
Descriptions of intrinsic functions ...
__aDSOIULE_O_PIC eveeeieieiiieienientese ettt ettt ettt s
__€OdE_dISLANCE ...cververreriiriiiiiiiictcrenteste ettt

__compare_and_exchange_for_interlock ...
__diSable_INteITUPEoceevveieiiienienieneeiirtet ettt
__eNable_INTETTUPL ..ceevveiiiiiiriinieniercriirert ettt
__fpu_sqrt_doubleccccoeviiriiiiiii e
__pu_Sqrt_float ...co.eeuieiiiiiie e

__NO_OPETALION .eeuvenrinreieientenieeteereeieeiteitestestestessessesaessenseeseeneeneennes
__PIC_tO_ADSOIULE ..eoueeuieniiniiiiiinieniercritetet ettt
__saturated_addooooeiiiiie e
__saturated_sub
__search_ones_leftc..cocoeviiiniiiiiniiniiicicccee e

__search_ones_1ightccccocviriiiiiiiiiiiiceeseere e

__Search_zeros_leftcccceeviiiiiiiiiiiicie e

18

IAR C/C++ Compiler
Reference Guide for V850

__search_zeros_right ...

__SEt_INLETTUPL_SLALE ..ouveuvenreriierieriercriirieit ettt eveere e
__SEL_PIOCESSOI_TEZISIET ..cuveuvenrerierierieriieiieitestenteneesiesaeseensesvesveeaeenean 279
__SYNChIoNiZe_eXCEPLiONScceveruerieriiriiriieiienteneenie e sienieeveeveeeeaees 280
__SYNChIONIZe_MEMOTY ...cvevviviiriirierieriiniieiicitentene e eveere e eaees 280
__synchronize_pipelingccoceeerveririnicienienienenenenieeeeeeeeaen 280
__upper_mul64
TRE PreProCeSSOr ... 281
Overview of the preprocessorcooeovvirrniecenennenns 281
Description of predefined preprocessor symboils 282
__BASE _FILE__ oottt 282
__BUILD_NUMBER_ _cooiiiiiiiiieitiecicitieereerenenereneseassenneenns 282

__CODE_MODEL__ ..

__FUNCTION__ .ot
__JAR_SYSTEMS _ICC__ ..ccioiiiiiiiiiiiiiccccce 284
_ICCVE50__ e 284

Contents _¢

C_VER ettt 286
Descriptions of miscellaneous preprocessor extensions286
NDEBUG ..ottt s e s 286
HWAINING MESSAZE .eevevenrenienreierierieriesieriteie et este st eseestesbesbesbeereeaeeaees 287
Library fUNCHIONS ... 289
Library overview ... 289
Header files ..o 289
Library object filescccoeriririiriinirieieieee e 289
Alternative more accurate library functionsc.cccecevvcrvcrcncene 290
REENrancy ..o 290
The longjmp fUNCLION ...c..ocveveirieieiriiicieteeee e 291
IAR DLIB Library ... 291
C header files
CH+ header fIlesoceveevieieiiiiireneresectet e 292
Library functions as intrinsic functionsccceceeveeeriervcrverencene 295
Added C functionalitycccecvevverierieneeie et 295
Symbols used internally by the libraryccocoeeineinienniiccnnnees 296
Segment reference ... 299
Summary of SEgMENtS ...

Descriptions of segments
BREL_BASE ..ottt
BREL_CBASE ...ttt

BREL23_C ..ottt
BREL23_T .o
BREL23_ID ..ottt
BREL23_N .ottt
BREL23_Z ..o
CHECKSUM ..ottt

20

IAR C/C++ Compiler
Reference Guide for V850

CSTART

DIFUNCT
GLOBAL_AC ..ottt 307
GLOBAL_AN ..o 307

SADDR_BASE ..o 312
SADDRT_I ..ottt 312
SADDRT_ID ..oooiiiiiiiiiiiiiiiiicicticce s 313
SADDRT_N ..o 313
SADDRT_Z ..ottt 313
SADDRS_I
SADDRS_ID
SADDRSE_N ..ottt
SADDRS_Z ...
SYSCALLCODE ...
SYSCALLVECoiiiiiiiiiiieieeeiet et
TRAPVEC ..o

Contents _¢

Implementation-defined behavior for Standard C 317
Descriptions of implementation-defined behavior 317

J.3.1 Translation ..o 317

J.3.2 ENVIFONMENEvuiiniiniiniineinieeieiieieeieettee ettt 318

J.3.3 Identifiers
J.3.4 CharacCtersc.eeccveeecuiieiieeeiiieeieeeeeeeteeeeeeeetreesiee e eeaeeseaeeeaee e
J3US TNEEZELS ettt st

J.3.6 Floating POINEc.ceveeereiriiniinieniieiieiceitee ettt
J.3.7 Arrays and POINLELScceeveeuieurereieienienienienienrenre s seseseenaeene
J3UB HINLS ottt
J.3.9 Structures, unions, enumerations, and bitfields ...
J.3.10 QUABIFIETS .ovieveiiiiiiiciieciee e
J.3.11 Preprocessing dir€Ctivescoeeeeiereerienienienienienenenenenieene
J.3.12 Library funCtionscccceceeeeueeueeieieneenienienienieniesiesesesenieene
J.3.13 Architectureccocooiviiiiiiiiiiiiiccc e
JAALOCAIE .ot

Implementation-defined behavior for C89 ... 333

Descriptions of implementation-defined behavior
Translationcccoeverinininieieeeee et
ENvIronmentccccoevievininininininieieeeteeetetererere e e
TAENHTIETS ..ottt
CRATACTETSeveiiiiiiieictitcete ettt s s st
Integers
FLoAting POINEcootiiiiieiiiieeeetieieeieeiietteitet ettt
ATTays and POINLELS ...ccvevirvierierieieiieiieitereetentenresresresrere s e saeseesaeene
REGISTETS ...eeveiiiiiiiiiieieticct ettt et
Structures, unions, enumerations, and bitfieldsccccoeuveriiennnns
QUALIFIETS ©.eiuivieiiieciieeee et ettt ebeeeaaeeeaneeees
DECIaratorsc.cceiviirieieiiiietieieeeetee ettt
STALETNENLSoveiiieieieierierie ettt ettt st sb e bbb e
Preprocessing dir€CtiVescoeeceeieieieieienienienienrencnene e
TAR DLIB Library functionscc.ccecceeveesueriesieeneeneeeneseeneeseenne

21

22

IAR C/C++ Compiler
Reference Guide for V850

Tables

1: Typographic conventions used in this gUIdeccccecevverereeiniiininiieiceieneee 30
2: Naming conventions used in this gUIAEcc.ccceeevieviiniininiiniininiiniiicicicnene 30
3: Data model CharacCteriStiCseouevireiriirinuiereieniee ettt 45
4: Memory types and their corresponding memory attributesc.ccecevevveruennenne. 48
5: Code models

6: Preserved registers in interrupt funCtionsceceveverenierenenieeneenieieeeeeneenens 56
7: XLINK SeZment MEMOTY LYPES ..cceeveereereieieiererieniesienierteeseeseeeeeessesensensessensens 68
8: Memory layout of a target system (eXample)ccccoveeeeeeverririninirereenenenenenne 69
9: Memory types with corresponding segment SroUpPScccceeveueerereruerueerueeerennne 72
10: Segment name suffixes

11: Prebuilt Hbraries ..o

12: CusStomizZable IeIMScccccvruiriiiiriiirieiee ettt
13: Formatters for Printfccccooovieieiiniieieeeeeesene ettt 87
14: Formatters for scanf ..o 88
15: Levels of debugging support in runtime librariesc..cccoceceeevninecenecieennne 89
16: Functions with special meanings when linked with debug library 92
17: Library cOnfigUIationscccevuevirieienienienienienienenenre et ereenteseesaesaeaennens 100
18: Descriptions of printf configuration SymbolSccccecuevieruerienenenenenenenenne 104
19: Descriptions of scanf configuration symbolsccceceevevineinennicreccneennnes 104
20: Low-level I/O files ..ot 105
21: Example of runtime model attribULescccecererereneneneneneeeeieeeeeeeeenee 113
22: Predefined runtime model attributescccocoeeireviniciniennineence e 114
23: Registers used for passing parameterscoccocceveevererereeeeeereereeneeenersennenne 127
24: Assembler instructions for acCESSING MEMOTYc.eeereruiruieieierieeeieieieie e 134
25: Call frame information resources defined in a names blockccccceueueeee. 140
26: Language eXtENSIONScccecieieieieierienienieniieieieete et et tenese s sre e saesseeseeneens

27: Compiler optimization levels

28: Compiler environment variablescooceoerereririininirieietesese e 186
29: Error return COARSc.oouiiiiiiiiiiiiiiiiiicieie s 188
30: Compiler OpPtionS SUMIMATYccceerueurereriererrerenieneereeereseeesseseeseseesesesesnennesenns 193
311 INEEZET EYPES eeeueeueentenienierienie sttt ettt ettt ettt sbe bbbt ebe et et et et et ebenee e 228

23

24

IAR C/C++ Compiler
Reference Guide for V850

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

Floating-point types

Extended keywords SUMMATYc.ccccoouerieiiniiniininieiniercreresreneestesresnenresneene 242
Pragma directives SUMMATYcccoceeieieieirinieiententeieeeienie e sieeneene 251
Intrinsic fUNCIONS SUMMATLYc.eoviriiriiriirtieiietieiiettee ettt eieereene 271
Traditional Standard C header files—DLIBcccccccoiiiininiiiii 291
CH+ header fIleS ...oo.evverireiiiieiteteteeeee e s e
Standard template library header files ...

New Standard C header files—DLIBcccccccoiiiiiiniiiiiiiice
SEZMENE SUMIMATY ...evevinitieiietieteteieietetestestesaeseesiesbeese et et ebebebeabessesaesaesues
Message returned by strerror()—IAR DLIB libraryc.ccccoceeevveinninincnenne 332
Message returned by strerror()—IAR DLIB libraryccccccocecviinninincncene 343

Preface

Welcome to the IAR C/C++ Compiler Reference Guide for V850. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the compiler to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
the V850 microcontroller and need detailed reference information on how to use the
compiler. You should have working knowledge of:

o The architecture and instruction set of the V850 microcontroller. Refer to the
documentation from Renesas for information about the V850 microcontroller

o The C or C++ programming language

e Application development for embedded systems

e The operating system of your host computer.

How to use this guide

When you start using the IAR C/C++ Compiler for V850, you should read Part 1. Using
the compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using the AR Systems build tools, we recommend that you first study
the IDE Project Management and Building Guide. This guide contains a product
overview, conceptual and user information about the IDE and the IAR C-SPY®
Debugger, and corresponding reference information.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

25

What this guide contains

26

IAR C/C++ Compiler
Reference Guide for V850

PART I. USING THE COMPILER

Getting started gives the information you need to get started using the compiler for
efficiently developing your application.

Data storage describes how to store data in memory, focusing on the different data
models and data memory type attributes.

Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

Placing code and data describes the concept of segments, introduces the linker
configuration file, and describes how code and data are placed in memory.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file 1/0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C gives an overview of the two supported variants of the C language and an
overview of the compiler extensions, such as extensions to Standard C.

Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the
different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

Extended keywords gives reference information about each of the V850-specific
keywords that are extensions to the standard C/C++ language.

Pragma directives gives reference information about the pragma directives.

Intrinsic functions gives reference information about functions to use for accessing
V850-specific low-level features.

Preface __4

e The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

e Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

e Segment reference gives reference information about the compiler’s use of
segments.

o Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

o Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
For information about:

e System requirements and information about how to install and register the AR
Systems products, refer to the booklet Quick Reference (available in the product
box) and the Installation and Licensing Guide.

e Getting started using IAR Embedded Workbench and the tools it provides, see the
guide Getting Started with IAR Embedded Workbench®.

e Using the IDE for project management and building, see the I/DE Project
Management and Building Guide.

e Using the IAR C-SPY® Debugger, see the C-SPY® Debugging Guide for V850.

e Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, see the IAR Linker and Library Tools Reference Guide.

e Programming for the IAR Assembler for V850, see the JAR Assembler Reference
Guide for V850.

e Using the IAR DLIB Library, see the DLIB Library Reference information,
available in the online help system.

27

Other documentation

28

IAR C/C++ Compiler
Reference Guide for V850

e Porting application code and projects created with a previous version of the IAR
Embedded Workbench for V850, see the /AR Embedded Workbench® Migration
Guide.

e Developing safety-critical applications using the MISRA C guidelines, see the JAR
Embedded Workbench® MISRA C:2004 Reference Guide or the IAR Embedded
Workbench® MISRA C:1998 Reference Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Information about debugging using the IAR C-SPY® Debugger
Information about using the editor
Reference information about the menus, windows, and dialog boxes in the IDE

Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
Fl.

FURTHER READING

These books might be of interest to you when using the IAR Systems development tools:

e Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

e Harbison, Samuel P. and Guy L. Steele (contributor). C: 4 Reference Manual.
Prentice Hall.

e Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley.

e Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall.

e Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

e Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.
e Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]

® Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs. Addison-Wesley.

o Meyers, Scott. More Effective C++. Addison-Wesley.
o Meyers, Scott. Effective STL. Addison-Wesley.

Preface __4

e Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

e Stroustrup, Bjarne. Programming Principles and Practice Using C++.
Addison-Wesley.

e Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

WEB SITES

Recommended web sites:

o The Renesas web site, www.renesas.com, that contains information and news about
the V850 microcontrollers.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

e Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example v850\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems \Embedded Workbench 6.n\v850\doc.

29

Document conventions

30

IAR C/C++ Compiler
Reference Guide for V850

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for
computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.
parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.
[option] An optional part of a command.

Table 1: Typographic conventions used in this guide

[a|b]c]
{a|b]c}
bold

italic

An optional part of a command with alternatives.
A mandatory part of a command with alternatives.

Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

* A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary

number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE

interface.
Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name

Generic term

IAR Embedded Workbench® for V850 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for V850 the IDE
IAR C-SPY® Debugger for V850 C-SPY, the debugger

IAR C-SPY® Simulator

the simulator

IAR C/C++ Compiler™ for V850 the compiler

Table 2: Naming conventions used in this guide

Preface __4

Brand name Generic term

IAR Assembler™ for V850 the assembler
IAR XLINK Linker™ XLINK, the linker
IAR XAR Library Builder™ the library builder
IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide (Continued)

31

Document conventions

IAR C/C++ Compiler
32 Reference Guide for V850

Part |. Using the compiler

This part of the IAR C/C++ Compiler Reference Guide for V850 includes these
chapters:

o Getting started

e Data storage

e Functions

e Placing code and data

e The DLIB runtime environment
e Assembler language interface

e Using C

e Using C++

e Efficient coding for embedded applications.

: |h|Li‘|i|H|H

ARARATEY

34

Getting started

This chapter gives the information you need to get started using the compiler
for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the V850 microcontroller. In the
following chapters, these techniques are studied in more detail.

IAR language overview

There are two high-level programming languages you can use with the IAR C/C++
Compiler for V850

o C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

o Standard C—also known as C99. Hereafter, this standard is referred to as
Standard C in this guide.

o (C89—also known as C94, C90, C89, and ANSI C. This standard is required
when MISRA C is enabled.

o C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. Any of these standards can be used:

o Embedded C++ (EC++)—a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

o IAR Extended Embedded C++ (EEC++)—EC++ with additional features such

as full template support, multiple inheritance, namespace support, the new cast
operators, as well as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard.

35

Supported V850 devices

36

For more information about C, see the chapter Using C.

For more information about Embedded C++ and Extended Embedded C++, see the
chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapter Implementation-defined behavior for Standard C.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler Reference Guide for V850.

Supported V850 devices

The IAR C/C++ Compiler for V850 supports all devices based on the standard Renesas
V850 microcontroller cores: V850, V850E, V850ES, V850E2, VE50E2M, and
V850E2S.

Building applications—an overview

IAR C/C++ Compiler
Reference Guide for V850

A typical application is built from several source files and libraries. The source files can
be written in C, C++, or assembler language, and can be compiled into object files by
the compiler or the assembler.

A library is a collection of object files that are added at link time only if they are needed.
A typical example of a library is the compiler library containing the runtime
environment and the C/C++ standard library. Libraries can also be built using the IAR
XAR Library Builder, the IAR XLIB Librarian, or be provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker configuration file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IDE, see the IDE Project
Management and Building Guide.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r85 using the default settings:

iccv850 myfile.c

You must also specify some critical options, see Basic project configuration, page 37.

Getting started __o

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

e One or more object files and possibly certain libraries

o The standard library containing the runtime environment and the standard language
functions

e A program start label

e A linker configuration file that describes the placement of code and data into the
memory of the target system

e Information about the output format.
On the command line, the following line can be used for starting XLINK:

xlink myfile.r85 myfile2.r85 -s __program_start -f 1nk85.xcl
dl85nn0.r85 -o aout.a85 -r

In this example, myfile.r85 and myfile2.r85 are object files, 1nk85.xc1l is the
linker configuration file, and d185nn0.x85 is the runtime library. The option -s
specifies the label where the application starts. The option -o specifies the name of the
output file, and the option -r is used for specifying the output format UBROF, which
can be used for debugging in C-SPY®.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel hex or Motorola
S-records. The option -F can be used for specifying the output format. (The default
output format is Intel-extended.)

Basic project configuration

This section gives an overview of the basic settings for the project setup that are needed
to make the compiler and linker generate the best code for the V850 device you are
using. You can specify the options either from the command line interface or in the IDE.

You need to make settings for:

Core
Data model
Code model

°
°
°
e Optimization settings

37

Basic project configuration

38

IAR C/C++ Compiler
Reference Guide for V850

o Runtime environment.

In addition to these settings, many other options and settings can fine-tune the result
even further. For information about how to set options and for a list of all available
options, see the chapter Compiler options and the IDE Project Management and
Building Guide, respectively.

CORE

To make the compiler generate optimum code, you should configure it for the V850
microcontroller you are using.

The --cpu=core option is used for declaring the specific CPU core that is used.
For a list of supported cores, see Supported V850 devices, page 36.

In the IDE, choose Project>Options and choose an appropriate device from the Device
drop-down list. The core option will then be automatically set. Note that device-specific
configuration files for the linker and the debugger will also be automatically selected.

DATA MODEL

One of the characteristics of the V850 microcontroller is a trade-oft in how memory is
accessed, between the range from cheap access to small memory areas, up to more
expensive access methods that can access any location.

In the compiler, you can set a default memory access method by selecting a data model.
These data models are supported:

o The 7iny data model uses near memory for storing data

o The Small data model uses brel memory for storing data

o The Medium data model uses brel23 memory for storing data

o The Large data model uses huge memory for storing data.

All the data models are available with or without support for short addressing. For more

information about data models, see the chapter Data storage. The chapter also covers
how to fine-tune the access method for individual variables.

CODE MODEL

The compiler supports code models that you can set on file- or function-level to control
which function calls are generated by default, which determines the size of the linked
application. These code models are available:

® The Normal code model has an upper limit of 2 Mbytes

o The Large code model can access the entire 32-bit address space

Getting started __o

o The Position-Independent code model has an upper limit of 2 Gbytes, and generates
code that can be placed and executed anywhere in memory.

For more information about the code models, see the chapter Functions. The chapter
also covers how to override the default code model for individual functions.

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, static clustering,
and precision reduction. It also performs loop optimizations, such as unrolling and
induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You might also need to override certain library modules with your own
customized versions.

The runtime library provided is the IAR DLIB Library, which supports Standard C and
C++. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, etc.

The runtime library contains the functions defined by the C and the C++ standards, and
include files that define the library interface (the system header files).

The runtime library you choose can be one of the prebuilt libraries, or a library that you
customized and built yourself. The IDE provides a library project template that you can
use for building your own library version. This gives you full control of the runtime
environment. If your project only contains assembler source code, you do not need to
choose a runtime library.

For more information about the runtime environment, see the chapter 7he DLIB runtime
environment.

39

Special support for embedded systems

40

Setting up for the runtime environment in the IDE

The library is automatically chosen according to the settings you make in
Project>Options>General Options, on the pages Target, Library Configuration,
Library Options. A correct include path is automatically set up for the system header
files and for the device-specific include files.

Note that for the DLIB library there are different configurations— Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, etc. See Library configurations, page 100, for more information.

Setting up for the runtime environment from the command line

On the linker command line, you must specify which runtime library object file to be
used. The linker command line can for example look like this:

dl85nnl.r85

A library configuration file that matches the library object file is automatically used. To
explicitly specify a library configuration, use the --dlib_config option.

In addition to these options you might want to specify any application-specific linker
options or the include path to application-specific header files by using the -I option,
for example:

-I MyApplication\inc

For information about the prebuilt library object files, see Using a prebuilt library, page
83 (DLIB). Make sure to use the object file that matches your other project options.

Setting library and runtime environment options
You can set certain options to reduce the library and runtime environment size:

o The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 87 (DLIB).

e The size of the stack and the heap, see The stack, page 74, and The heap, page 75,
respectively.

Special support for embedded systems

IAR C/C++ Compiler
Reference Guide for V850

This section briefly describes the extensions provided by the compiler to support
specific features of the V850 microcontroller.

Getting started __o

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling the memory type for
individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 206 for additional
information.

For more information about the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are very useful when you want to make sure that the source code is
portable.

For more information about the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation, and the code and data models.

For more information about the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the V850 microcontroller family are supported by the
compiler’s special function types: interrupt, monitor, callt, syscall, task, and trap. You
can write a complete application without having to write any of these functions in
assembler language.

For more information, see Primitives for interrupts, concurrency, and OS-related
programming, page 55.
ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 117.

41

Special support for embedded systems

IAR C/C++ Compiler
42 Reference Guide for V850

Data storage

This chapter gives a brief introduction to the memory layout of the V850
microcontroller and the fundamental ways data can be stored in memory: on
the stack, in static (global) memory, or in heap memory. For efficient memory
usage, the compiler provides a set of data models and data memory attributes,
allowing you to fine-tune the access methods, resulting in smaller code size.
The concepts of data models and memory types are described in relation to
pointers, structures, Embedded C++ class objects, and non-initialized
memory. Finally, detailed information about data storage on the stack and the
heap is provided.

Introduction

The V850 microcontroller has one continuous 4 Gbyte memory space. Different types
of physical memory can be placed in the memory range. A typical application will have
both read-only memory (ROM) and read/write memory (RAM). In addition, some parts
of the memory range contain processor control registers and peripheral units.

The compiler can access memory in different ways. The access methods range from
generic but expensive methods that can access the full memory space, to cheap methods
that can access limited memory areas. For more information about this, see Memory

types, page 45.

DIFFERENT WAYS TO STORE DATA
In a typical application, data can be stored in memory in three different ways:

e Auto variables

All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see Auto variables—on the stack, page 50.

o Global variables, module-static variables, and local variables declared static

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 44 and
Memory types, page 45.

43

Data models

44

e Dynamically allocated data.

An application can allocate data on the seap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 52.

Data models

IAR C/C++ Compiler
Reference Guide for V850

Use data models to specify in which part of memory the compiler should place static
and global variables by default. This means that the data model controls:

o The default memory type
o The default placement of static and global variables, and constant literals

e Dynamically allocated data, for example data allocated with malloc, or, in C++,
the operator new

The data model only specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 47.

Note: Your choice of data model does not affect the placement of code.

SPECIFYING A DATA MODEL

Four data models are implemented: Tiny, Small, Medium, and Large. These data models
can also be used with short addressing. Then they are referred to as Tiny with saddr,
Small with saddr, Medium with saddr, and Large with saddr. These models are
controlled by the --data_model option. Each model has a default memory type. If you
do not specify a data model option, the compiler will use the Small data model.

Note: The tiny data model cannot be used together with the position-independent code
model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute, see
Using data memory attributes, page 47.

Data storage ___4

This table summarizes the different data models:

Default memory

Data model name . Placement of data
attribute
Tiny __near Low 32 Kbytes or high 32 Kbytes.
Tiny with saddr __near As in the tiny data model.
Small (default) __brel 64 Kbytes RAM and 64 Kbytes ROM, anywhere
in memory.
Small with saddr __brel As in the small data model.
Medium __brel23 8 Mbytes in RAM and 8 Mbytes ROM. Only

available for the V850E2M core and above.

Medium with saddr __brel23 As in the medium data model. Only available for

the V850E2M core and above.

Large _huge The entire 4 Gbyte of memory.

Large with saddr __huge As in the huge data model.

Table 3: Data model characteristics

Note: An application module compiled using a data model with support for short
addressing (saddr) can be linked with modules using the corresponding data model
without saddr support if no saddr variables are actually used.

See the IDE Project Management and Building Guide for information about setting
options in the IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, -m, page 200.

Memory types

This section describes the concept of memory types used for accessing data by the
compiler. For each memory type, the capabilities and limitations are discussed.

The compiler uses different memory types to access data that is placed in different areas
of the memory. There are different methods for reaching memory areas, and they have
different costs when it comes to code space, execution speed, and register usage. The
access methods range from generic but expensive methods that can access the full
memory space, to cheap methods that can access limited memory areas. Each memory
type corresponds to one memory access method. If you map different memories—or
part of memories—to memory types, the compiler can generate code that can access
data efficiently.

For example, the memory accessed using near addressing is called near memory.

45

Memory types

46

IAR C/C++ Compiler
Reference Guide for V850

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables—different memory types.
This makes it possible to create an application that can contain a large amount of data,
and at the same time make sure that variables that are used often are placed in memory
that can be efficiently accessed.

For more information about memory access methods, see Memory access methods, page
134.

NEAR

The near memory consists of the low and high 32 Kbytes of memory. In hexadecimal
notation, this is the addresses 0x00000000—-0x00007FFF and
0xXFFFF8000—0xFFFFFFFF.

This combination of memory ranges might at first sight seem odd. The explanation,
however, is that when an address expression becomes negative, the calculation wraps
around. Because the address space on the V850 microcontroller is 32 bits, the address
below 0 can be seen as 0xFFFFFFFF. Hence, an alternative way to see the memory range
in the memory accessible is simply +32 Kbytes around address 0.

Accessing near memory is very efficient, typically only one machine instruction is
needed.

BREL (BASE-RELATIVE)

Using base-relative addressing, a 64-Kbyte RAM area and a 64-Kbyte ROM area can be
accessed. These brel memory areas can be placed individually at any location in
memory.

The name base-relative comes from the use of processor registers as base pointers to the
memory areas. The RAM area is accessed using the register R4, also named GP (global
pointer) via the label BREL_BASE. The ROM area is accessed using the register R25 via
the label ?BREL_CBASE.

Access to this type of memory is almost as efficient as accessing near memory.

Because different access methods are used for brel RAM and brel ROM, respectively, a
variable declaration must specify whether a RAM or ROM access should be used. In C,
this is possible for all variables.

Limitation on const declared objects in C++

In standard C++, a constant variable without constructors can either be placed in ROM
if it is initialized with a constant, or in RAM if an expression that must be executed at
runtime is used. To solve this ambiguity, the compiler does not allow constant variables
without constructors in RAM, only in ROM.

Data storage ___4

BREL23 (BASE-RELATIVE23)

Using the same base pointers as brel memory, the brel23 memory can access an §-Mbyte
RAM area and an 8-Mbyte ROM area. Brel23 is only available for the V850E2M core
and above.

HUGE

The V850 microcontroller has an address space of 4 Gbytes—huge memory. Using this
memory type, the data objects can be placed anywhere in memory. Also, unlike the other
memory types, there is no limitation on the size of the objects that can be placed in this
memory type.

The drawback of the huge memory type is that the code generated to access the memory
is larger and also slower than that of any of the other memory types. In addition, the code
consumes more processor registers, possibly forcing local variables to be stored on the
stack rather than being allocated in registers.

SADDR (SHORT ADDRESSING)

Short addressing can be used for storing variables in a relatively small memory area, 256
bytes, which can be accessed using highly efficient special instructions.

There is a limitation; objects that could be accessed using byte access may only occupy
128 of these bytes. This, of course, includes the character types but also structure types
that contain character types.

To use saddr memory, it must be enabled; see --data_model, -m, page 200.

Note: If the saddr memory type is not enabled, the compiler can use the EP register and
the special instructions for other purposes. For this reason, this feature should only be
used when a small number of global or static variables will be accessed often (if speed
is an issue) or exist in many locations (if you need to save code space).

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects, which means that you can place data objects in other memory areas than the
default memory. This also means that you can fine-tune the access method for each
individual data object, which results in smaller code size.

47

Memory types

48

IAR C/C++ Compiler
Reference Guide for V850

This table summarizes the available memory types and their corresponding keywords:

Default in
Memory type Keyword Address range

data model
Near __near 432 Kbytes around 0x0 Tiny
Base-relative __brel 64 Kbytes anywhere in RAM and 64 Kbytes ~ Small

anywhere in ROM

Base-relative23 __brel23 8 Mbytes in RAM and 8 Mbytes in ROM. Only Medium
available for the V850E2M core and above.

Huge __huge Full memory Large

Short addressing __saddr EP to EP + 256 bytes —

Table 4: Memory types and their corresponding memory attributes

In this table, P and EP are the Global Pointer and the Element Pointer which are aliases
for the processor registers R4 and R30, respectively. For more information, see Memory
access methods, page 134.

The keywords are only available if language extensions are enabled in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 206 for
additional information.

For more information about each keyword, see Descriptions of extended keywords, page
243.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are type attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 239.

The following declarations place the variables i and j in near memory. The variables k
and 1 will also be placed in near memory. The position of the keyword does not have
any effect in this case:

__near int i, 3j;
int __near k, 1;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

Data storage ___4

The #pragma type_attribute directive can also be used for specifying the memory
attributes. The advantage of using pragma directives for specifying keywords is that it
offers you a method to make sure that the source code is portable. Refer to the chapter
Pragma directives for details about how to use the extended keywords together with
pragma directives.

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

/* Defines via a typedef */
typedef char __near Byte;
typedef Byte *BytePtr;

Byte aByte;

BytePtr aBytePointer;

/* Defines directly */

__near char aByte;

/* No memory attribute necessary for pointers */
char __near *aBytePointer;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in near memory.

struct MyStruct
{
int mAlpha;
int mBeta;
}i

__near struct MyStruct gamma;

This declaration is incorrect:

struct MyStruct
{
int mAlpha;
__near int mBeta; /* Incorrect declaration */

Y

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer

49

C++ and memory types

to an integer in brel memory is declared. The function returns a pointer to an integer in
huge memory. It makes no difference whether the memory attribute is placed before or
after the data type.

int MyA; A variable defined in default memory .
int __brel MyB; A variable in brel memory.

__huge int MyC; A variable in huge memory.

int * MyD; A pointer stored in default memory. The

pointer points to an integer in default memory.

int __brel * MyE; A pointer stored in default memory. The
pointer points to an integer in brel memory.

int __brel * __huge MyF; A pointer stored in huge memory pointing to
an integer stored in brel memory.

int __huge * MyFunction(A declaration of a function that takes a
int __brel *); parameter which is a pointer to an integer
stored in brel memory. The function returns a
pointer to an integer stored in huge memory.

C++ and memory types

Instances of C++ classes are placed into a memory (just like all other objects) either
implicitly, or explicitly using memory type attributes or other IAR language extensions.
Non-static member variables, like structure fields, are part of the larger object and
cannot be placed individually into specified memories.

In non-static member functions, the non-static member variables of a C++ object can be
referenced via the this pointer, explicitly or implicitly. The this pointer is of the
default data pointer type unless class memory is used, see Using IAR attributes with
Classes, page 155.

Static member variables can be placed individually into a data memory in the same way
as free variables.

For more information about C++ classes, see Using IAR attributes with Classes, page
155.

Auto variables—on the stack

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers;

IAR C/C++ Compiler
50 Reference Guide for V850

Data storage ___4

the rest are placed on the stack. From a semantic point of view, this is equivalent. The
main differences are that accessing registers is faster, and that less memory is required
compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions
The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.
Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

51

Dynamic memory on the heap

52

int *MyFunction ()

{
int x;
/* Do something here. */
return &x; /* Incorrect */

}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions are used.

Dynamic memory on the heap

IAR C/C++ Compiler
Reference Guide for V850

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

POTENTIAL PROBLEMS

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Functions

This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions

In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:

Control the storage of functions in memory

Use primitives for interrupts, concurrency, and OS-related programming
Inline functions

Facilitate function optimization

Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 163. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

Code models

Use code models to specify in which part of memory the compiler should place
functions by default. Technically, the code models control the following:

e The possible memory range for storing the function
o The maximum module size

e The maximum application size.

Your project can only use one code model at a time, and the same model must be used
by all user modules and all library modules.

Note: Your choice of code model does not affect the placement of data.

53

Code models

54

IAR C/C++ Compiler
Reference Guide for V850

These code models are available:

Code model name Description
Normal Allows for up to 2 Mbytes of code memory
Large No code memory limitation

Position-independent Allows for up to 2 Mbytes of relocatable code memory

Table 5: Code models

If you do not specify a code model, the compiler will use the Normal code model as
default.

See the IDE Project Management and Building Guide for information about specifying
a code model in the IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 199.

THE NORMAL CODE MODEL
The normal code model is the default code model. When this model is used, the natural
assembler language instruction for performing function calls are used.

THE LARGE CODE MODEL

The large code model is designed to be used by applications that contain function calls
that must reach more than 2 Mbytes. This could either be because the application itself
is large, or because code is located in different parts of the memory at a greater distance
than 2 Mbytes.

In this code model, a function call is more expensive than in the normal and
position-independent code models.
THE POSITION-INDEPENDENT CODE MODEL

The position-independent code model is designed to be used in situations where the
actual memory location of the code to be executed is not known at link time.

In this code model, plain function calls are not more expensive than in the normal code
model. However, function calls via function pointers are much more expensive.

For more information about how to handle this type of code, see Position-independent
code, page 64.

Functions ___4

Primitives for interrupts, concurrency, and OS-related programming

The IAR C/C++ Compiler for V850 provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

The extended keywords __interrupt callt

and __monitor

syscall task, __trap,

 —— s —— —

The pragma directive #pragma vector

The intrinsic functions __enable_interrupt
__get_interrupt_state, and __set_interrupt_state.

disable_interrupt,

 —

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the microcontroller immediately stops
executing the code it runs, and starts executing an interrupt routine instead. It is
important that the environment of the interrupted function is restored after the interrupt
is handled (this includes the values of processor registers and the processor status
register). This makes it possible to continue the execution of the original code after the
code that handled the interrupt was executed.

The V850 microcontroller supports many interrupt sources. For each interrupt source,
an interrupt routine can be written. Each interrupt routine is associated with a vector
number, which is specified in the V850 microcontroller documentation from the chip
manufacturer. If you want to handle several different interrupts using the same interrupt
routine, you can specify several interrupt vectors.

Interrupt vectors and the interrupt vector table

For the V850 microcontroller, the interrupt vector is the offset into the interrupt vector
table.

If a vector is specified in the definition of an interrupt function, the processor interrupt
vector table is populated. It is also possible to define an interrupt function without a
vector. This is useful if an application is capable of populating or changing the interrupt
vector table at runtime.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.

55

Primitives for interrupts, concurrency, and OS-related programming

56

IAR C/C++ Compiler
Reference Guide for V850

Defining an interrupt function—an example

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector = 0x40
__interrupt void MyInterruptRoutine (void)

{
/* Do something */

}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

System registers in interrupt functions

The processor has a collection of system registers and the type of interrupt controls
which of them that are used. When an interrupt occurs, the program counter (PC) and
processor status (PSw) are stored in specific system registers.

When generating code for interrupt functions, the compiler can add code to preserve
some or all system registers. The interrupt vector controls whether and which registers
are preserved, as shown:

Preserved registers for the V850E

Interrupt vector Preserved registers for the V850 core core and above
0x00 None None
0x10-0x30 FExxx FExxx
0x40-0x50 EIxxx EIxxx

0x60 EIxxx DBxXXX
0x70- EIxxx EIxxx

Table 6: Preserved registers in interrupt functions

An interrupt function specified without an interrupt vector will preserve all appropriate
system registers.

On the V850E2M core and above, if BSEL (the bank select register) must be changed to
access the appropriate registers, it too is preserved by the interrupt routine.

If the FPU is used on V850E2M or above, and the routine might change the
floating-point status register, either directly or via a function call, the register is
preserved by the interrupt routine.

Note that if the __f1at function attribute is used, no system registers are preserved. In
case you need to preserve and restore more interrupt registers, you can use the
__get_processor_register and __set_processor_register intrinsic

Functions ___4

functions. For more information, see __flat, page 244, get processor_register, page
276, and __set processor_register, page 279.

Example

#include <intrinsics.h>

#pragma vector=0x40
__interrupt void my_interrupt (void)
{
unsigned long saved_FEPC =
__get_processor_register (Reg_CPU_FEPC) ;
unsigned long saved_FEPSW =
__get_processor_register (Reg_CPU_FEPSW) ;

/* ... do something ... */

__set_processor_register (Reg_CPU_FEPC, saved_FEPC) ;
__set_processor_register (Reg_CPU_FEPSW, saved_FEPSW) ;

TRAP FUNCTIONS

A trap is a kind of exception that can be activated when a specific event occurs or is
called, by using the processor instruction TRAP. In many respects, a trap function
behaves as a normal function; it can accept parameters, and return a value.

The typical use for trap functions is for the client interface of an operating system. If this
interface is implemented using trap functions, the operating system part of an
application can be updated independently of the rest of the system.

Each trap function is typically associated with a vector. The header file iodevice.h,
which corresponds to the selected device, contains predefined names for the existing
exception vectors.

The __trap keyword and the #pragma vector directive can be used to define trap
functions. For example, this piece of code defines a function doubling its argument:

/* No trap vector needed */
_ flat _ _trap int Twice(int x)
{

return x + X;

}

When a trap function is defined with a vector, the processor interrupt vector table is
populated. It is also possible to define a trap function without a vector. This is useful if
an application is capable of populating or changing the interrupt vector table at runtime.

57

Primitives for interrupts, concurrency, and OS-related programming

58

IAR C/C++ Compiler
Reference Guide for V850

See the chip manufacturer’s V850 microcontroller documentation for more information
about the interrupt vector table.

When a trap function is used, the compiler ensures that the application also will include
the appropriate trap-handling code. See the chapter Assembler language interface for
more information.

When trap functions are being called using the processor instruction TRAP, the return
address will point to the instruction itself. To return to the instruction after the TRAP
instruction, the return address will by default be adjusted within the trap function.

CALLT FUNCTIONS

On the V850E microcontroller cores, the CALLT instruction can be used to call a fixed
set of functions. The number of functions is limited to 64.

This type of function is intended to be used in roughly the same situations as trap
functions. The CALLT instruction only exists for the V850E microcontroller cores and
above.

The advantage over TRAP functions is that a system can contain 64 callt functions,
whereas only 32 trap functions can be defined. It is also more efficient to call a callt
function.

Each callt function must be associated with a vector ranging from 0 to 63. The __callt
keyword and the #pragma vector directive can be used to define callt functions. For
example, the following piece of code defines a function doubling its argument:

#pragma vector=15
__flat __callt int twice(int x)
{

return x + X;

SYSCALL FUNCTIONS

On the V850E2M microcontroller core, the SYSCALL instruction can be used to call a
fixed set of functions. The number of functions is limited to 256.

This type of function is intended to be used in roughly the same situations as trap
functions. The SYSCALL instruction only exists for the VES0E2M microcontroller core
and above.

The advantage over TRAP functions is that a system can contain 256 syscall functions,
whereas only 32 trap functions can be defined. It is also more efficient to call a syscall
function.

This instruction is dedicated to calling the system service of an operating system.

Functions ___4

Each syscall function must be associated with a vector ranging from O to 255. The
__syscall keyword and the #pragma vector directive can be used to define syscall
functions. For example, the following piece of code defines a function doubling its
argument:

#pragma vector=15
_ _flat syscall int twice(int x)

{

return x + X;

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For more
information, see __monitor, page 246.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for
example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.

59

Primitives for interrupts, concurrency, and OS-related programming

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
* Returns 1 on success and 0 on failure.
*/

__monitor int TryGetLock (void)
{
if (sTheLock == 0)
{
/* Success, nobody has the lock. */

sTheLock = 1;
return 1;
}

else

{

/* Failure, someone else has the lock. */

return 0;

/* Function to unlock the lock.
* It i1s only callable by one that has the lock.
*/

__monitor void ReleaseLock(void)

{
sTheLock = 0;

/* Function to take the lock. It will wait until it gets it. */

void GetLock (void)

{
while (!TryGetLock())
{

/* Normally, a sleep instruction is used here. */

IAR C/C++ Compiler
60 Reference Guide for V850

Functions ___4

/* An example of using the semaphore. */

void MyProgram(void)
{
GetLock () ;

/* Do something here. */

ReleaseLock () ;

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

// Class for controlling critical blocks.
class Mutex
{
public:
Mutex ()
{
// Get hold of current interrupt state.
mState = __get_interrupt_state();

// Disable all interrupts.
__disable_interrupt () ;

~Mutex ()

{
// Restore the interrupt state.
__set_interrupt_state (mState) ;

private:
__istate_t mState;
}i

61

Primitives for interrupts, concurrency, and OS-related programming

62

IAR C/C++ Compiler
Reference Guide for V850

class Tick

{

public:
// Function to read the tick count safely.
static long GetTick()

{
long t;

// Enter a critical block.
{

Mutex m; // Interrupts are disabled while m is in scope.

// Get the tick count safely,
t = smTickCount;

}
// and return it.
return t;

private:
static volatile long smTickCount;
}i

volatile long Tick::smTickCount = 0;
extern void DoStuff () ;

void MyMain ()
{
static long nextStop = 100;

if (Tick::GetTick() >= nextStop)

nextStop += 100;
DoStuff () ;

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, two
restrictions apply:

e Interrupt member functions must be static. When a non-static member function is
called, it must be applied to an object. When an interrupt occurs and the interrupt
function is called, there is no object available to apply the member function to.

Functions ___4

e Callt and trap member functions cannot be declared virtual. The reason for this is
that callt and trap functions cannot be called via function pointers.

Inlining functions

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but might increase the code size. The resulting code might become more
difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.

static int sX;

inline void F(void)

{
//static int sY; // Cannot refer to statics.
//sX; // Cannot refer to statics.

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

63

Position-independent code

64

FEATURES CONTROLLING FUNCTION INLINING
There are several mechanisms for controlling function inlining:

o The inline keyword advises the compiler that the function defined immediately
after the directive should be inlined.

If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.

The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in
one of the compilation units, by designating the inline definition as being external in
that compilation unit.

® #pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 258.

® --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

® --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

® --aggressive_inlining makes the compiler inline more functions, see
--aggressive_inlining, page 197.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the --mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 171.

For more information about the function inlining optimization, see Function inlining,
page 174.

Position-independent code

IAR C/C++ Compiler
Reference Guide for V850

Position-independent code is designed to be used when the physical address of the
application is not known at link time. A typical example of this is an application loaded
into an embedded system by an operating system at runtime.

When building an application using the position-independent code model, the linker will
treat it as a normal, absolute-located application. However, the code generated by the
compiler does not assume that it will be placed and executed at any location in memory.

Functions ___4

THE DISTANCE MOVED

If the application needs to know where it is executing, it can use the intrinsic function
__code_distance to get the difference between the absolute location it was linked for
and the location where it executes. See _code_distance, page 273.

CALLING FUNCTIONS OUTSIDE THE APPLICATION

An embedded application might in some situations call functions that are located outside
the application itself. This could for example be calls to the operating system or some
kind of on-chip ROM-monitor. A call of this kind can be performed using one of the
special function types trap or callt, assuming that the trap and callt vectors have been
properly initialized by the operating system. Another method would be to call a function
via function pointers, if the location of the function is known.

In the position-independent code model, a function pointer is assumed to contain the
address that the linker assigned the function. When the function call is performed, the
distance the code has been moved is compensated for.

To assign a function pointer the value of a physical address, the function pointer must
first be converted to a position-independent function pointer. You can do this using the
intrinsic function __absolute_to_pic.

Example
Here a function located at the physical address 0x10000 is called:

#include <intrinsics.h>
typedef void (fp_t) (void);

void call_the_operating_system(void)

{
fp_t * pointer = (fp_t *)__absolute_to_pic(0x10000) ;
(*pointer) () ;

}

Likewise, it is possible to convert the pointer of a function in the position-independent
code to a pointer to a physical address using the __pic_to_absolute intrinsic
function. This could be useful if a function pointer should be passed outside the
application to, for instance, an operating system.

65

Position-independent code

IAR C/C++ Compiler
66 Reference Guide for V850

Placing code and data

This chapter describes how the linker handles memory and introduces the
concept of segments. It also describes how they correspond to the memory
and function types, and how they interact with the runtime environment. The
methods for placing segments in memory, which means customizing a linker
configuration file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory

In an embedded system, there might be many different types of physical memory. Also,
it is often critical where parts of your code and data are located in the physical memory.
For this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a container for pieces of data or code that should be mapped to a location
in physical memory. Each segment consists of one or more segment parts. Normally,
each function or variable with static storage duration is placed in a separate segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those segment parts that are referred to. A segment can be placed either in RAM or in
ROM. Segments that are placed in RAM generally do not have any content, they only
occupy space.

Note: Here, ROM memory means all types of read-only memory including flash
memory.

The compiler has several predefined segments for different purposes. Each segment is
identified by a name that typically describes the contents of the segment, and has a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can also define your own segments.

At compile time, the compiler assigns code and data to the various segments. The I[AR
XLINK Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker configuration file. Ready-made linker
configuration files are provided, but, if necessary, they can be modified according to the
requirements of your target system and application. It is important to remember that,

67

Placing segments in memory

68

from the linker's point of view, all segments are equal; they are simply named parts of
memory.

Segment memory type

Each segment always has an associated segment memory type. In some cases, an
individual segment has the same name as the segment memory type it belongs to, for
example CODE. Make sure not to confuse the segment name with the segment memory
type in those cases.

By default, the compiler uses these XLINK segment memory types:

Segment memory type Description

CODE For executable code
CONST For data placed in ROM
DATA For data placed in RAM

Table 7: XLINK segment memory types

XLINK supports several other segment memory types than the ones described above.
However, they exist to support other types of microcontrollers.

For more information about individual segments, see the chapter Segment reference.

Placing segments in memory

IAR C/C++ Compiler
Reference Guide for V850

The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker configuration file that contains command line options which specify the
locations where the segments can be placed, thereby assuring that your application fits
on the target chip. To use the same source code with different devices, just rebuild the
code with the appropriate linker configuration file.

In particular, the linker configuration file specifies:

o The placement of segments in memory

o The maximum stack size

e The maximum heap size.

This section describes the most common linker commands and how to customize the

linker configuration file to suit the memory layout of your target system. For showing
the methods, fictitious examples are used.

CUSTOMIZING THE LINKER CONFIGURATION FILE

The config directory contains ready-made linker configuration files for all supported
devices (filename extension xc1). The files contain the information required by the

Placing code and data __¢

linker, and are ready to be used. The only change you will normally have to make to the
supplied linker configuration file is to customize it so it fits the target system memory
map. If, for example, your application uses additional external RAM, you must add
details about the external RAM memory area.

As an example, we can assume that the target system has this memory layout:

Range Type
0x00000-0x1FFFF ROM
0x20000—-0x3FFFF RAM
0xFFFF8000-0XFFFFEFFF RAM

Table 8: Memory layout of a target system (example)

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
configuration file is to verify that your application code and data do not cross the
memory range boundaries, which would lead to application failure.

Do not modify the original file. We recommend that you make a copy in the working
directory, and modify and use the copy instead.

The contents of the linker configuration file

Among other things, the linker configuration file contains three different types of
XLINK command line options:
o The CPU used:

-cv850

This specifies your target microcontroller.

Note that the parameter should be v850 for all members of the V850 microcontroller
family.

e Definitions of constants used in the file. These are defined using the XLINK option
-D.

o The placement directives (the largest part of the linker configuration file). Segments
can be placed using the -z and - P options. The former will place the segment parts
in the order they are found, while the latter will try to rearrange them to make better
use of the memory. The - P option is useful when the memory where the segment
should be placed is not continuous.

In the linker configuration file, numbers are generally specified in hexadecimal format.
However, neither the prefix 0x nor the suffix h is necessarily used.

Note: The supplied linker configuration file includes comments explaining the contents.

See the AR Linker and Library Tools Reference Guide for more information.

69

Placing segments in memory

70

IAR C/C++ Compiler
Reference Guide for V850

Using the -Z command for sequential placement

Use the -Z command when you must keep a segment in one consecutive chunk, when
you must preserve the order of segment parts in a segment, or, more unlikely, when you
must put segments in a specific order.

The following illustrates how to use the -z command to place the segment MY SEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0x1000-0x1FFF.

-Z (CONST) MYSEGMENTA , MYSEGMENTB=1000-1FFF

To place two segments of different types consecutively in the same memory area, do not
specify a range for the second segment. In the following example, the MY SEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z (CONST)MYSEGMENTA=1000-1FFF
-Z (CODE) MYCODE

Two memory ranges can partially overlap. This allows segments with different
placement requirements to share parts of the memory space; for example:

-Z (CONST)MYSMALLSEGMENT=1000-10FF
-Z (CONST)MYLARGESEGMENT=1000-1FFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the AR XLINK Linker will alert you if your segments do
not fit in the available memory.

Using the -P command for packed placement

The -p command differs from -z in that it does not necessarily place the segments (or
segment parts) sequentially. With -p it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLINK -p option can be used for making
efficient use of the memory area. This command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P (DATA)MYDATA=20000-21FFF, FFFFO000-FFFF1FFF

If your application has an additional RAM area in the memory range
0x3F000-0x3F7FF, you can simply add that to the original definition:

-P (DATA)MYDATA=20000-21FFF, 0x3F000-0x3F7FF, FFFFOO00-FFFF1FFF

The linker can then place some parts of the MYDATA segment in the first range, and some
parts in the second range. If you had used the -z command instead, the linker would
have to place all segment parts in the same range.

Placing code and data __¢

Note: Copy initialization segments—BASENAME_T and BASENAME ID—and dynamic
initialization segments must be placed using -z.

Data segments

This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To get a clear understanding about how the data segments work, you must be familiar
with the different memory types and the different data models available in the compiler.
For information about these details, see the chapter Data storage.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, see

the chapter Data storage. Variables declared static can be divided into these categories:

Variables that are initialized to a non-zero value
Variables that are initialized to zero

e Variables that are located by use of the @ operator or the #pragma location
directive

® Variables that are declared as const and therefore can be stored in ROM
e Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

For the static memory segments it is important to be familiar with:

The segment naming

How the memory types correspond to segment groups and the segments that are part
of the segment groups

Restrictions for segments holding initialized data

The placement and size limitation of the segments of each group of static memory
segments.

Segment naming

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, BREL_z. There is a segment group for each memory type, where
each segment in the group holds different categories of declared data. The names of the
segment groups are derived from the memory type and the corresponding keyword, for

71

Data segments

72

IAR C/C++ Compiler
Reference Guide for V850

example BREL and __brel. The following table summarizes the memory types and the
corresponding segment groups:

Memory type Segment group Memory range

Near NEAR 0x00000000-0x00007FFF
0xFFFF8000-0xFFFFFFFF

Base-relative BREL Anywhere

Base-relative23 BREL23 Anywhere

Huge HUGE Anywhere

Short addressing with a 128-byte offset SADDR7 Anywhere

Short addressing with a 256-byte offset SADDRS8 Anywhere

Table 9: Memory types with corresponding segment groups

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more information about segment
memory types, see Segment memory type, page 68.

This table summarizes the different suffixes, which XLINK segment memory type they
are, and which category of declared data they denote:

Categories of declared data Suffix Segment memory type
Start placeholder* BASE varies

Non-initialized data N DATA

Zero-initialized data Z DATA

Non-zero initialized data I DATA

Initializers for the above ID CONST

Constantst c CONST

Non-initialized absolute addressed data AN DATA

Constant absolute addressed data AC CONST

Table 10: Segment name suffixes
* There are only three start placeholders: BREL_BASE, BREL_CBASE, and SADDR_BASE.

1 Constants placed in saddr memory will be stored in RAM, that is in segments with the
suffix z or I.

For information about all supported segments, see Summary of segments, page 299.

Placing code and data __¢

Examples

These examples demonstrate how declared data is assigned to specific segments:

__near int j; The near variables that are to be initialized to zero
__near int i = 0; when the system starts are placed in the segment
NEAR_Z.

__no_init __near int j; The near non-initialized variables are placed in the
segment NEAR_N.

__near int j = 4; The near non-zero initialized variables are placed in
the segment NEAR_T in RAM, and the corresponding
initializer data in the segment NEAR_ID in ROM.

Initialized data

When an application is started, the system startup code initializes static and global
variables in these steps:

It clears the memory of the variables that should be initialized to zero.

It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix ID is
copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

o The other segment is divided in exactly the same way

e It is legal to read and write the memory that represents the gaps in the sequence.
For example, if the segments are assigned these ranges, the copy might fail:
BREL_TI 0x1000-0x10FF and 0x1200-0x12FF

BREL_ID 0x4000-0x41FF

However, in the following example, the linker will place the content of the segments in
identical order, which means that the copy will work appropriately:

BREL_T 0x1000-0x10FF and 0x1200-0x12FF

BREL_ID 0x4000-0x40FF and 0x4200-0x42FF

The 1D segment can, for all segment groups, be placed anywhere in memory, because it
is not accessed using the corresponding access method. Note that the gap between the
ranges will also be copied.

73

Data segments

74

IAR C/C++ Compiler
Reference Guide for V850

Finally, global C++ objects are constructed, if any.

Data segments for static memory in the default linker configuration
file

The default linker configuration file contains these directives to place the static data
segments:

/* First, the segments to be placed in ROM are defined. */

-Z (CONST)NEAR_C=0000-7FFF

-Z (CONST) SADDR7_1ID, SADDR8_ID,NEAR_ID,BREL_ID,HUGE_ID,
HUGE_C=0000-1FFFF

-Z (CONST) BREL_CBASE, BREL_C, BREL23_C

/* Then, the RAM data segments are placed in memory. */

-Z (DATA) BREL_BASE, BREL_TI,BREL_Z,BREL_N,BREL23_I,BREL23_Z,
BREL23_N=20000-2FFFF

-Z (DATA) SADDR_BASE=3FF00

-Z (DATA) SADDR7_1I,SADDR7_Z,SADDR7_N=3FF00-3FF7F

-Z (DATA) SADDR8_TI, SADDR8_Z, SADDR8_N=3FF00-3FFFF

-Z (DATA)HUGE_I,HUGE_Z, HUGE_N=20000-3FFFF

-Z (DATA)NEAR_Z,NEAR_I,NEAR_N=FFFF8000-FFFFEFFF

Note that the SADDR7 and SADDR8 segment groups share parts of the same memory area.
This allows SADDR8 segments to be placed in memory not used by the SADDR7 segment

group.
THE STACK

The stack is used by functions to store variables and other information that is used
locally by functions, see the chapter Data storage. It is a continuous block of memory
pointed to by the processor stack pointer register SP.

The data segment used for holding the stack is called cSTACK. The system startup code
initializes the stack pointer to point to the end of the stack segment.

Allocating a memory area for the stack is done differently using the command line
interface as compared to when using the IDE.

Stack size allocation in the IDE

Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required stack size in the Stack size text box.

Stack size allocation from the command line

The size of the CSTACK segment is defined in the linker configuration file.

Placing code and data __¢

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK_SIZE=size

Note: Normally, this line is prefixed with the comment character / /. To make the
directive take effect, remove the comment character.

Specify an appropriate size for your application. Note that the size is written
hexadecimally, but not necessarily with the 0x notation.
Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-Z (DATA) CSTACK+_CSTACK_SIZE=FFFF8000-FFFFEFFF

Note: This range does not specify the size of the stack; it specifies the range of the
available memory

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM is wasted. If the given stack size is
too small, two things can happen, depending on where in memory you located your
stack. Both alternatives are likely to result in application failure. Either program
variables will be overwritten, leading to undefined behavior, or the stack will fall outside
of the memory area, leading to an abnormal termination of your application.

THE HEAP

The heap contains dynamic data allocated by the C function malloc (or one of its
relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

e The linker segment used for the heap

e The steps involved for allocating the heap size, which differs depending on which
build interface you are using

e The steps involved for placing the heap segments in memory.

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

75

Data segments

76

IAR C/C++ Compiler
Reference Guide for V850

Heap size allocation in the IDE
Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required heap size in the Heap size text box.

Heap size allocation from the command line
The size of the heap segment is defined in the linker configuration file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_HEAP_SIZE=size

Normally, this line is prefixed with the comment character // because the IDE controls
the heap size allocation. To make the directive take effect, remove the comment
character.

Specify the appropriate size for your application. If you use a heap, you must allocate at
least 50 bytes for it. Note that the size is written hexadecimally, but not necessarily with
the 0x notation.

Placement of heap segment

The actual heap segment is allocated in the memory area available for the heap:

-Z (DATA) HEAP+_HEAP_SIZE=FFFF8000-FFFFEFFF

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

Heap size and standard 1/O

If your DLIB runtime environment is configured to use FILE descriptors, as in the Full
configuration, input and output buffers for file handling will be allocated. In that case,
be aware that the size of the input and output buffers is set to 512 bytes in the stdio
library header file. If the heap is too small, I/O will not be buffered, which is
considerably slower than when I/O is buffered. If you execute the application using the
simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an V850 microcontroller.
If you use the standard I/O library, you should set the heap size to a value which
accommodates the needs of the standard I/O buffer.

LOCATED DATA

A variable that is explicitly placed at an address, for example by using the #pragma
location directive or the @ operator, is placed in a segment called GLOBAL_aN. The

Placing code and data __¢

individual segment part of the segment knows its location in the memory space, and it
does not have to be specified in the linker configuration file.

USER-DEFINED SEGMENTS

If you create your own segments by using for example the #pragma location directive
or the @ operator, these segments must also be defined in the linker configuration file
using the -z or -P segment control directives.

Code segments

This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For information about all segments, see Summary of segments,
page 299.

Pay attention to the limitation of the placement of the different segments. One limitation
that is often mentioned is that code should be callable using the normal call or branch
assembler instructions. These are limited to calls where the destination is located no
more than 2 Mbytes from the calling function.

STARTUP CODE

The segment CSTART contains code used during system startup (cstartup) and system
termination (). The system startup code should be placed within 2 Mbytes from the
location where the chip starts executing code after a reset. For the V850 microcontroller,
this is at the address 0x0. The segments must also be placed into one continuous
memory space, which means that the -p segment directive cannot be used.

In the default linker configuration file, this line states that this segment can be placed
anywhere in the 0x0-0x1FFFF range:

-Z (CODE) CSTART=00000-1FFFF

NORMAL CODE

Code for normal functions is placed in the CODE segment. Again, this is a simple
operation in the linker command file:

-Z (CODE) CODE=0000-1FFF

INTERRUPT VECTORS AND FUNCTIONS

The interrupt vector table contains pointers to interrupt routines, including the reset
routine. The table is placed in the segment INTVEC. You must place this segment at the
address 0x0. The linker directive would then look like this:

-Z (CONST) INTVEC=0

77

C++ dynamic initialization

Interrupt functions are placed in the ICODE segment. This segment must be located so
that it can be called using normal instructions (with a 2 Mbyte range) from the INTVEC
segment. The linker directive will look like this:

-Z (CODE) ICODE=0000-1FFFF

TRAP VECTORS

The trap vector table is located in its own segment, TRAPVEC. The TRAPVEC segment can
be placed using the linker command directive:

-Z (CONST) TRAPVEC=0000-1FFFF

CALLT FUNCTIONS
Callt functions are placed in the CLTCODE segment.

When a callt function is defined and has a vector, an entry in the callt vector table is
generated. The table is placed in the CLTVEC segment.

The cLTCODE segment must be located within 64 Kbytes of the CLTVEC segment. In the
following linker command directive example, the CLTCODE segment will be placed
immediately after the CLTVEC segment.

-Z (CONST)CLTVEC=0000-1FFFF
-Z (CODE) CLTCODE

Note: Callt functions are available for the V850E core and above.

SYSCALL FUNCTIONS
Syscall functions are placed in the SYSCALLCODE segment.

When a syscall function is defined and has a vector, an entry in the syscall vector table
is generated. The table is placed in the SYSCALLVEC segment.

In the following linker command directive example, the SYSCALLCODE segment will be
placed immediately after the SYSCALLVEC segment.

-Z (CONST) SYSCALLVEC=0000-1FFFF
-Z (CODE) SYSCALLCODE

Note: Syscall functions are only available for the V850E2M core and above.

C++ dynamic initialization

IAR C/C++ Compiler
78 Reference Guide for V850

In C++, all global objects are created before the main function is called. The creation of
objects can involve the execution of a constructor.

Placing code and data __¢

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector are called when the system is initialized.

For example:
-Z (CONST) DIFUNCT=0000-1FFFF

DIFUNCT must be placed using -z. For additional information, see DIFUNCT, page 307.

Verifying the linked result of code and data placement

The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code or data that is placed in relocatable segments will have its absolute addresses

resolved at link time. Note that it is not known until link time whether all segments will
fit in the reserved memory ranges. If the contents of a segment do not fit in the address
range defined in the linker configuration file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
error.

For more information about these types of errors, see the [AR Linker and Library Tools
Reference Guide.

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:
e A segment map which lists all segments in dump order

o A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

o A module summary which lists the contribution (in bytes) from each module

e A symbol list which contains every entry (global symbol) in every module.

Use the option Generate linker listing in the IDE, or the option -x on the command
line, and one of their suboptions to generate a linker listing.

79

Verifying the linked result of code and data placement

Normally, XLINK will not generate an output file if any errors, such as range errors,
occur during the linking process. Use the option Always generate output in the IDE,
or the option -B on the command line, to generate an output file even if a non-fatal error
was encountered.

For more information about the listing options and the linker listing, see the [AR Linker
and Library Tools Reference Guide, and the IDE Project Management and Building
Guide.

IAR C/C++ Compiler
80 Reference Guide for V850

The DLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can optimize it for your application.

Introduction to the runtime environment

The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports Standard C and C++, including the standard template
library. The runtime environment consists of the runtime library, which contains the
functions defined by the C and the C++ standards, and include files that define the
library interface (the system header files).

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files, and you can find them in the product subdirectories
v850\1ib and v850\src\1lib, respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:
e Support for hardware features:

e Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

e Peripheral unit registers and interrupt definitions in include files
o Target-specific arithmetic support modules like floating-point coprocessors.

e Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

o A floating-point environment (fenv) that contains floating-point arithmetics support,
see fenv.h, page 295.

e Special compiler support, for instance functions for switch handling or integer
arithmetics.

81

Introduction to the runtime environment

For more information about the library, see the chapter Library functions.

SETTING UP THE RUNTIME ENVIRONMENT

The IAR DLIB runtime environment can be used as is together with the debugger.
However, to run the application on hardware, you must adapt the runtime environment.
Also, to configure the most code-efficient runtime environment, you must determine
your application and hardware requirements. The more functionality you need, the
larger your code will become.

This is an overview of the steps involved in configuring the most efficient runtime
environment for your target hardware:

o Choose which runtime library object file to use

The IDE will automatically choose a runtime library based on your project settings.
If you build from the command line, you must specify the object file explicitly. See
Using a prebuilt library, page 83.

o Choose which predefined runtime library configuration to use—Normal or Full

You can configure the level of support for certain library functionality, for example,
locale, file descriptors, and multibyte characters. If you do not specify anything, a
default library configuration file that matches the library object file is automatically
used. To specify a library configuration explicitly, use the --d1ib_config compiler
option. See Library configurations, page 100.

o Optimize the size of the runtime library

You can specify the formatters used by the functions print£, scanf, and their
variants, see Choosing formatters for printf and scanf, page 87. You can also specify
the size and placement of the stack and the heap, see The stack, page 74, and The
heap, page 75, respectively.

e Include debug support for runtime and I/O debugging

The library offers support for mechanisms like redirecting standard input and output
to the C-SPY Terminal I/O window and accessing files on the host computer, see
Application debug support, page 89.

o Adapt the library for target hardware

The library uses a set of low-level functions for handling accesses to your target
system. To make these accesses work, you must implement your own version of these
functions. For example, to make print £ write to an LCD display on your board, you
must implement a target-adapted version of the low-level function __write, so that
it can write characters to the display. To customize such functions, you need a good
understanding of the library low-level interface, see Adapting the library for target
hardware, page 92.

IAR C/C++ Compiler
82 Reference Guide for V850

The DLIB runtime environment __¢

Override library modules

If you have customized the library functionality, you need to make sure your versions
of the library modules are used instead of the default modules. This can be done
without rebuilding the entire library, see Overriding library modules, page 93.

Customize system initialization

It is likely that you need to customize the source code for system initialization, for
example, your application might need to initialize memory-mapped special function
registers, or omit the default initialization of data segments. You do this by
customizing the routine __low_level_init, which is executed before the data
segments are initialized. See System startup and termination, page 95 and
Customizing system initialization, page 99.

Configure your own library configuration files

In addition to the prebuilt library configurations, you can make your own library
configuration, but that requires that you rebuild the library. This gives you full
control of the runtime environment. See Building and using a customized library,
page 94.

Check module consistency

You can use runtime model attributes to ensure that modules are built using
compatible settings, see Checking module consistency, page 112.

Using a prebuilt library

The prebuilt runtime libraries are configured for different combinations of these
features:

Processor variant
Library configuration—Normal or Full
Code model

Floating-point unit.

Note that all prebuilt runtime libraries are built using the Small data model. However,
they can be used by an application built using any data model.

CHOOSING A LIBRARY

The IDE will include the correct library object file and library configuration file based
on the options you select. See the IDE Project Management and Building Guide for
more information.

83

Using a prebuilt library

If you build your application from the command line, make the following settings:

e Specify which library object file to use on the XLINK command line, for instance:
dl85nnl.r85

e If you do not specify a library configuration, the default will be used. However, you
can specify the library configuration explicitly for the compiler:

--dlib_config C:\...\d1l85nfl.h

Note: All modules in the library have a name that starts with the character » (question
mark).

You can find the library object files and the library configuration files in the subdirectory
v850\1ib\.

These prebuilt runtime libraries are available:

Library Code model Library CPY ey
configuration variant

dl85nn0.r85 Normal Normal 0
dl851n0.r85 Large Normal 0
dl85pn0.r85 Position-independent Normal 0
dl85nf0.r85 Normal Full 0
dl1851£0.r85 Large Full 0
dl85pf0.r85 Position-independent Full 0
dl85nnl.r85 Normal Normal |
dlg5nnlfpu.r85s Normal Normal | Single
dlg51lnl.r85 Large Normal |
dlg5lnlfpu.r85 Large Normal | Single
dl85pnl.r85 Position-independent Normal |
dl85pnlfpu.r85s Position-independent Normal | Single
dl85nfl.r85 Normal Full |
dlgsnflfpu.r85s Normal Full | Single
dl851fl1.r85 Large Full |
d1851flfpu.r85 Large Full | Single
dl85pfl.r85 Position-independent Full |
dl85pflfpu.r85s Position-independent Full | Single
dl85nn3.r85 Normal Normal 3

Table 11: Prebuilt libraries

IAR C/C++ Compiler
84 Reference Guide for V850

The DLIB runtime environment __¢

Library Code model Library cPu FPU
configuration variant
dl85nn3fpu32.r85 Normal Normal 3 Single
dlg5nn3fpu64d.r85 Normal Normal 3 Double
dl851n3.r85 Large Normal 3
dl851n3fpu32.r85 Large Normal 3 Single
d1851n3fpu6d.r85 Large Normal 3 Double
dl85pn3.r85 Position-independent Normal 3
dl85pn3fpu32.r85 Position-independent Normal 3 Single
dl85pn3fpubd.r85 Position-independent Normal 3 Double
dl85nf3.r85 Normal Full 3
dl85nf3fpu32.r85 Normal Full 3 Single
dlgsnf3fpu6d.r85 Normal Full 3 Double
dl851£f3.r85 Large Full 3
dl851f3fpu32.r85 Large Full 3 Single
d1851f3fpu6d.r85 Large Full 3 Double
d185pf3.r85 Position-independent Full 3
dl85pf3fpu32.r85 Position-independent Full 3 Single
dl85pf3fpubd.r85 Position-independent Full 3 Double

Table 11: Prebuilt libraries (Continued)

85

Using a prebuilt library

86

IAR C/C++ Compiler
Reference Guide for V850

Library filename syntax

The names of the libraries are constructed from these elements:

{library}

{cpu}

{code_model}

{1ib_config}

{cpu_variant}

{ fpu}

is d1 for the IAR DLIB runtime environment.
is 85.

is one of n, 1, or p for the Normal, Large or
Position-independent code model, respectively.

is one of n or £ for normal and full, respectively.

is either 0 for the V850, 1 for the V850E and V850E2, or 3
for the V850E2M core.

For processor cores with only a single-precision FPU,

{ £fpu} is £pu. For processor cores that support both
single-precision and double-precision FPUs, { fpu} is
fpu32 for the single precision, or £pu64 for the double
precision, respectively.

Note: The library configuration file has the same base name as the library.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, you can
customize parts of a library without rebuilding it.

These items can be customized:

Items that can be customized

Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 87

Startup and termination code
Low-level input and output

File input and output

System startup and termination, page 95
Standard streams for input and output, page 101

File input and output, page 105

Low-level environment functions Environment interaction, page 108

Low-level signal functions
Low-level time functions

Some library math functions

Signal and raise, page 109
Time, page 109
Math functions, page 110

Size of heaps, stacks, and segments Placing code and data, page 67

Table 12: Customizable items

For information about how to override library modules, see Overriding library modules,

page 93.

The DLIB runtime environment __¢

Choosing formatters for printf and scanf

The linker automatically chooses an appropriate formatter for print£- and
scanf-related function based on information from the compiler. If that information is
missing or insufficient, for example if print £ is used through a function pointer, if the
object file is old, etc, then the automatic choice is the Full formatter. In this case you
might want to choose a formatter manually.

To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, you can optimize these functions even further, see
Configuration symbols for printf and scanf, page 103.
CHOOSING A PRINTF FORMATTER

The print £ function uses a formatter called _pPrint£. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
Standard C/EC++ library.

This table summarizes the capabilities of the different formatters:

Formatting capabilities Tiny Smalll Large/ Full
SmallNoMb LargeNoMb FullNoMb

Basic specifiers ¢, d, 1, 0,p, s,u, X, x,and $ Yes Yes Yes Yes
Multibyte support No Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No No Yes
Floating-point specifiers e, E, £, F, g, and G No No Yes Yes
Conversion specifier n No No Yes Yes
Format flag +, -, #, 0, and space No Yes Yes Yes
Length modifiers h, 1, L, s, t,and Z No Yes Yes Yes
Field width and precision, including * No Yes Yes Yes
long long support No No Yes Yes

Table 13: Formatters for printf

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 103.

87

Choosing formatters for printf and scanf

Manually specifying the print formatter in the IDE

To specify a formatter manually, choose Project>Options and select the General
Options category. Select the appropriate option on the Library options page.

@ Manually specifying the printf formatter from the command line

To specify a formatter manually, add one of these lines in the linker configuration file
you are using:

-e_PrintfFull=_Printf
-e_PrintfFullNoMb=_Printf
-e_PrintfLarge=_Printf
-e_PrintfLargeNoMb=_Printf
_e_PrintfSmall=_Printf
-e_PrintfSmallNoMb=_Printf
-e_PrintfTiny=_Printf
-e_PrintfTinyNoMb=_Printf

CHOOSING A SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scant. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the Standard C/C++ library.

This table summarizes the capabilities of the different formatters:

Small/ Large/ Full/

Formatting capabilities
SmallNoMB LargeNoMb FullNoMb

Basic specifiers ¢, 4, i, 0, p, s, u, X, x, and % Yes Yes Yes
Multibyte support Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No Yes
Floating-point specifiers e, E, £, F, g, and G No No Yes
Conversion specifier n No No Yes
Scan set [and] No Yes Yes
Assignment suppressing * No Yes Yes
long long support No No Yes

Table 14: Formatters for scanf

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 103.

IAR C/C++ Compiler
88 Reference Guide for V850

The DLIB runtime environment __¢

Manually specifying the scanf formatter in the IDE

To specify a formatter manually, choose Project>Options and select the General
Options category. Select the appropriate option on the Library options page.

[Manually specifying the scanf formatter from the command line

To specify a formatter manually, add one of these lines in the linker configuration file
you are using:

-e_ScanfFull=_Scanf
-e_ScanfFullNoMb=_Scanf
-e_ScanflLarge=_Scanf
-e_ScanflLargeNoMb=_Scanf
_e_ScanfSmall=_Scanf
_e_ScanfSmallNoMb=_Scanf

Application debug support

In addition to the tools that generate debug information, there is a debug version of the
library low-level interface (typically, I/O handling and basic runtime support). Using the
debug library, your application can perform things like opening a file on the host
computer and redirecting stdout to the debugger Terminal I/O window.

INCLUDING C-SPY DEBUGGING SUPPORT

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

This table describes the different levels of debugging support:

Linker
Debugging Linker option in
command line Description
support the IDE)
option
Basic debugging Debug -Fubrof Debug support for C-SPY without
information for any runtime support
C-SPY
Runtime With runtime -r The same as -Fubrof, but also
debugging* control includes debugger support for
modules handling program abort, exit, and

assertions.

Table 15: Levels of debugging support in runtime libraries

89

Application debug support

90

IAR C/C++ Compiler
Reference Guide for V850

Linker
Debugging Linker option in
command line Description
support the IDE .
option
1/0O debugging* With 1/O -rt The same as -r, but also includes
emulation debugger support for /O handling,
modules which means that stdin and

stdout are redirected to the
C-SPY Terminal I/O window, and
that it is possible to access files on
the host computer during debugging.

Table 15: Levels of debugging support in runtime libraries (Continued)

* If you build your application project with this level of debugging support, certain
functions in the library are replaced by functions that communicate with C-SPY. For
more information, see The debug library functionality, page 90.

In the IDE, choose Project>Options>Linker. On the Qutput page, select the
appropriate Format option.

On the command line, use any of the linker options -r or -rt.

THE DEBUG LIBRARY FUNCTIONALITY

The debug library is used for communication between the application being debugged
and the debugger itself. The debugger provides runtime services to the application via
the low-level DLIB interface; services that allow capabilities like file and terminal I/O
to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are
implemented. Or, if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.
Another use is producing debug printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you linked it with the XLINK option for C-SPY debugging
support. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example, open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

The DLIB runtime environment __¢

THE C-SPY TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with support
for I/0O debugging. This means that when the functions __read or __write are called
to perform I/O operations on the streams stdin, stdout, or stderr, data will be sent
to or read from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

For more information about the Terminal I/O window, see the C-SPY® Debugging
Guide for V850.

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_bufferedis
included in the DLIB library. This module buffers the output and sends it to the debugger
one line at a time, speeding up the output. Note that this function uses about 80 bytes of
RAM memory.

To use this feature you can either choose Project>Options>Linker>Output and select
the option Buffered terminal output in the IDE, or add this to the linker command line:

-e__write_buffered=__write

91

Adapting the library for target hardware

LOW-LEVEL FUNCTIONS IN THE DEBUG LIBRARY
The debug library contains implementations of the following low-level functions:

Function in DLIB

) Response by C-SPY
low-level interface

abort Notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit Notifies that the end of the application was reached *

__lseek Searches in the associated host file on the host computer

__open Opens a file on the host computer

__read Directs stdin, stdout, and stderr to the Terminal I/O window. All

other files will read the associated host file
remove Writes a message to the Debug Log window and returns -1
rename Writes a message to the Debug Log window and returns -1

Table 16.: Functions with special meanings when linked with debug library
_ReportAssert Handles failed asserts *

system Writes a message to the Debug Log window and returns -1
time Returns the time on the host computer
__write Directs stdin, stdout, and stderr to the Terminal I/O window. All

other files will write to the associated host file

* The linker option With I/O emulation modules is not required for these functions.

Note: You should not use the low-level interface functions prefixed with _or__ directly
in your application. Instead you should use the high-level functions that use these

Adapting the library for target hardware
The library uses a set of low-level functions for handling accesses to your target system.
To make these accesses work, you must implement your own version of these functions.
These low-level functions are referred to as the library low-level interface.

When you have implemented your low-level interface, you must add your version of
these functions to your project. For information about this, see Overriding library
modules, page 93.

IAR C/C++ Compiler
92 Reference Guide for V850

The DLIB runtime environment __¢

LIBRARY LOW-LEVEL INTERFACE

The library uses a set of low-level functions to communicate with the target system. For
example, printf and all other standard output functions use the low-level function
__write to send the actual characters to an output device. Most of the low-level
functions, like __write, have no implementation. Instead, you must implement them
yourself to match your hardware.

However, the library contains a debug version of the library low-level interface, where
the low-level functions are implemented so that they interact with the host computer via
the debugger, instead of with the target hardware. If you use the debug library, your
application can perform tasks like writing to the Terminal I/O window, accessing files
on the host computer, getting the time from the host computer, etc. For more
information, see The debug library functionality, page 90.

Note that your application should not use the low-level functions directly. Instead you
should use the corresponding standard library function. For example, to write to
stdout, you should use standard library functions like print£ or puts, instead of

__write.

The library files that you can override with your own versions are located in the
v850\src\1ib directory.

The low-level interface is further described in these sections:
Standard streams for input and output, page 101

File input and output, page 105

Signal and raise, page 109

Time, page 109

Assert, page 112.

Overriding library modules

To use a library low-level interface that you have implemented, add it to your
application. See Adapting the library for target hardware, page 92. Or, you might want
to override a default library routine with your customized version. In both cases, follow
this procedure:

| Use a template source file—a library source file or another template—and copy it to
your project directory.

2 Modify the file.

3 Add the customized file to your project, like any other source file.

93

Building and using a customized library

94

Note: The code model, include paths, and the library configuration file must be the same
for the library module as for the rest of your code. The include path should also include
the library source directory.

Some library files must be built using the same data model as the runtime library (the
prebuilt libraries use the Small data model). In that case, also use the command line
option __no_data_model_rt_attribute, see --no_data_model rt attribute, page
215. The IDE does not provide a method for building an application containing modules
using different data models.

Note: If you have implemented a library low-level interface and added it to a project that
you have built with debug support, your low-level functions will be used and not the
C-SPY debug support modules. For example, if you replace the debug support module
__write with your own version, the C-SPY Terminal I/O window will not be
supported.

The library files that you can override with your own versions are located in the
v850\src\1lib directory.

Building and using a customized library

IAR C/C++ Compiler
Reference Guide for V850

Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary.

You must build your own library when you want to define your own library
configuration with support for locale, file descriptors, multibyte characters, etc.

In those cases, you must:
e Set up a library project

o Make the required library modifications

e Build your customized library

e Finally, make sure your application project will use the customized library.

Note: To build IAR Embedded Workbench projects from the command line, use the
IAR Command Line Build Utility (iarbuild.exe). However, no make or batch files
for building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IDE Project Management and Building Guide.

SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template uses the Full library
configuration, see Table 17, Library configurations.

The DLIB runtime environment __¢

In the IDE, modify the generic options in the created library project to suit your
application, see Basic project configuration, page 37.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined and documented in the file DLib_Defaults.h.
This read-only file describes the configuration possibilities. Each library also has its
own library configuration header file, which sets up that specific library’s configuration.
For more information, see Table 12, Customizable items.

The library configuration file is used for tailoring a build of the runtime library, and for
tailoring the system header files.
Modifying the library configuration file

In your library project, open the library configuration file and customize it by setting the
values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY
After you build your library, you must make sure to use it in your application project.
In the IDE you must do these steps:

I Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.
In the Library file text box, locate your library file.

4 In the Configuration file text box, locate your library configuration file.

System startup and termination

This section describes the runtime environment actions performed during startup and
termination of your application.

95

System startup and termination

96

IAR C/C++ Compiler
Reference Guide for V850

The code for handling startup and termination is located in the source files
cstartup.s85, cexit.s85,and low_level_init.c located in the v850\src\1lib
directory.

For information about how to customize the system startup code, see Customizing
system initialization, page 99.
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static

[initialization flag)

|

Initialization

o When the CPU is reset it will jump to the program entry label __program_start
in the system startup code.

The stack pointer (SP) is initialized

The brel RAM pointer (GP), and the brel ROM base pointer (R25), are initialized to
point to the base-relative memory areas. In fact, they point to a location 32 Kbytes
from the beginning, as described in the chapter Assembler language interface

e If register constants are used, the registers R18 and R19 are set to 255 and 65535,
respectively

If short addressing is enabled, the corresponding base register—EP—is initialized

The function __low_level_ init is called if you defined it, giving the application
a chance to perform early initializations.

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization

T User code

Return from

main

exit()

The DLIB runtime environment __¢

e Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_ init returns zero. For more
information, see Initialized data, page 73

o When the position-independent code model is used, the distance the code was
moved is calculated and stored in the variable ?CODE_DISTANCE

The callt system registers are initialized, if needed.

The syscall system registers are initialized, if used.

The CcTBP special system register is initialized to the beginning of the callt vector

table, if callt functions are used in the application

e Static C++ objects are constructed

o The main function is called, which starts the application.

97

System startup and termination

SYSTEM TERMINATION

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

An application can terminate normally in two different ways:

e Return from the main function
e Call the exit function.
Because the C standard states that the two methods should be equivalent, the system

startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exi t function is written in C. It calls a small assembler function _exit that
will perform these operations:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit

e Close all open files

e Call __exit

e When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.

The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to do anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit (int) function.

IAR C/C++ Compiler
98 Reference Guide for V850

The DLIB runtime environment __¢

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/0 emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
Application debug support, page 89.

Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cstartup before the data segments are initialized. Modifying the
file cstartup. s85 directly should be avoided.

The code for handling system startup is located in the source files cstartup.s85 and
low_level_init.c, located in the v850\src\1ib directory.

Note: Normally, you do not need to customize either of the files cstartup.s85 or
cexit.s85.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 94.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s85, you do not have to rebuild the library.
__LOW_LEVEL_INIT

A skeleton low-level initialization file is supplied with the product:
low_level_init.c. Note that static initialized variables cannot be used within the
file, because variable initialization has not been performed at this point.

The value returned by __low_level init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.

Note: The file intrinsics.h must be included by low_level_init.c to assure
correct behavior of the __low_level_ init routine.

MODIFYING THE FILE CSTARTUP.S85

As noted earlier, you should not modify the file cstartup. s85 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify

99

Library configurations

100

the file cstartup.s85, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 93.

Note that you must make sure that the linker uses the start label used in your version of
cstartup.s85. For information about how to change the start label used by the linker,
read about the -s option in the IAR Linker and Library Tools Reference Guide.

Library configurations

IAR C/C++ Compiler
Reference Guide for V850

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The
configuration file is used for tailoring a build of a runtime library, and tailoring the
system header files used when compiling your application. The less functionality you
need in the runtime environment, the smaller it becomes.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h. This read-only file
describes the configuration possibilities.

These predefined library configurations are available:

Library configuration Description

Normal DLIB (default) No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hexadecimal floating-point
numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hexadecimal floating-point
numbers in strtod.

Table 17: Library configurations

CHOOSING A RUNTIME CONFIGURATION
To choose a runtime configuration, use one of these methods:

e Default prebuilt configuration—if you do not specify a library configuration
explicitly you will get the default configuration. A configuration file that matches
the runtime library object file will automatically be used.

e Prebuilt configuration of your choice—to specify a runtime configuration explicitly,
use the --dlib_config compiler option. See --dlib_config, page 205.

The DLIB runtime environment __¢

e Your own configuration—you can define your own configurations, which means
that you must modify the configuration file. Note that the library configuration file
describes how a library was built and thus cannot be changed unless you rebuild the
library. For more information, see Building and using a customized library, page 94.

The prebuilt libraries are based on the default configurations, see Table 17, Library
configurations.

Standard streams for input and output

Standard text input and output streams are defined in stdio.h. If any of these streams
are used by your application, for example by the functions printf and scanf, you must
customize the low-level functionality to suit your hardware.

There are low-level 1/0 functions, which are the fundamental functions through which
C and C++ performs all character-based I/0. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides. For more information about implementing low-level functions,
see Adapting the library for target hardware, page 92.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __readand __write, respectively. You can find template source code for
these functions in the v850\src\1ib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 94. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations for
the C-SPY runtime interface are needed, see Application debug support, page 89.

101

Standard streams for input and output

Example of using __write

The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address OxFFFFF308:

#include <stddef.h>
__no_init volatile unsigned char 1cdIO @ FFFFF308;

size_t __ _write(int handle,
const unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for the command to flush all handles */
if (handle == -1)
{

return 0;

/* Check for stdout and stderr

(only necessary if FILE descriptors are enabled.) */
if (handle != 1 && handle != 2)
{

return -1;

for (/* Empty */; bufSize > 0; --bufSize)
{

1cdIO = *buf;

++buf;

++nChars;

return nChars;

}

Note: When DLIB calls __write, DLIB assumes the following interface: a call to
__write where buf has the value NULL is a command to flush the stream. When the
handle is -1, all streams should be flushed.

IAR C/C++ Compiler
102 Reference Guide for V850

The DLIB runtime environment __¢

Example of using __read

The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0xFFFF8000:

#include <stddef.h>
__no_init _ _near volatile unsigned char kbIO @ OxXFFFF8000;

size_t _ read(int handle,
unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for stdin

(only necessary if FILE descriptors are enabled) */
if (handle != 0)
{

return -1;

for (/*Empty*/; bufSize > 0; --bufSize)
{
unsigned char ¢ = kbIO;

if (c == 0)
break;
*buf++ = c;

++nChars;

return nChars;

}

For information about the @ operator, see Controlling data and function placement in
memory, page 167.

Configuration symbols for printf and scanf

When you set up your application project, you typically need to consider what print£
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 87.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you must rebuild the runtime library.

103

Configuration symbols for printf and scanf

IAR C/C++ Compiler
104 Reference Guide for V850

The default behavior of the print £ and scanf formatters are defined by configuration

symbols in the file DLib_Defaults.h.

These configuration symbols determine what capabilities the function print£ should

have:

Printf configuration symbols

Includes support for

_DLIB_PRINTF_MULTIBYTE
_DLIB_PRINTF_LONG_LONG
_DLIB_PRINTF_SPECIFIER_FLOAT
_DLIB_PRINTF_SPECIFIER_A
_DLIB_PRINTF_SPECIFIER_N
_DLIB_PRINTF_QUALIFIERS

_DLIB_PRINTF_FLAGS

_DLIB_PRINTF_WIDTH_AND_PRECISION

_DLIB_PRINTF_CHAR_BY_CHAR

Multibyte characters

Long long (11 qualifier)
Floating-point numbers
Hexadecimal floating-point numbers
Output count (%1n)

Qualifiers h, 1, L, v, t,and z

Flags -, +, #,and 0

Width and precision

Output char by char or buffered

Table 18: Descriptions of printf configuration symbols

When you build a library, these configurations determine what capabilities the function

scanf should have:

Scanf configuration symbols

Includes support for

_DLIB_SCANF_MULTIBYTE
_DLIB_SCANF_LONG_LONG
_DLIB_SCANF_SPECIFIER_FLOAT
_DLIB_SCANF_SPECIFIER_N
_DLIB_SCANF_QUALIFIERS
_DLIB_SCANF_SCANSET

_DLIB_SCANF_WIDTH

Multibyte characters

Long long (11 qualifier)
Floating-point numbers
Output count (%1n)

Qualifiers h, 3, 1, t, z,and L
Scanset ([*])

Width

_DLIB_SCANF_ASSIGNMENT_ SUPPRESSING Assignment suppressing ([*1)

Table 19: Descriptions of scanf configuration symbols

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you must;

I Setup alibrary project, see Building and using a customized library, page 94.

2 Define the configuration symbols according to your application requirements.

The DLIB runtime environment __¢

File input and output

The library contains a large number of powerful functions for file I/O operations, such
as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of
low-level functions, each designed to accomplish one particular task; for example,
__open opens a file, and __write outputs characters. Before your application can use
the library functions for file I/O operations, you must implement the corresponding
low-level function to suit your target hardware. For more information, see Adapting the
library for target hardware, page 92.

Note that file I/O capability in the library is only supported by libraries with the full
library configuration, see Library configurations, page 100. In other words, file I/O is
supported when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If
not enabled, functions taking a FILE * argument cannot be used.

Template code for these 1/O files is included in the product:

1/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.
__open open.c Opens a file.

__read read.c Reads a character buffer.
__write write.c Writes a character buffer.
remove remove.c Removes a file.

rename rename.c Renames a file.

Table 20: Low-level 1/0 files

The low-level functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The 1/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your application with I/O debug support, C-SPY variants of the
low-level I/O functions are linked for interaction with C-SPY. For more information, see
Application debug support, page 89.

Locale

Localeis a part of the C language that allows language- and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

105

Locale

106

IAR C/C++ Compiler
Reference Guide for V850

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

e With locale interface, which makes it possible to switch between different locales
during runtime

e Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES
The level of locale support in the prebuilt libraries depends on the library configuration.

o All prebuilt libraries support the C locale only

o All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding at runtime.

e Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you must rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between these locales:
e The Standard C locale

o The POSIX locale

o A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1

#define _LOCALE_USE_C /* C locale */

#define _LOCALE_USE_EN_US /* American English */
#define _LOCALE_USE_EN_GB /* British English */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

The DLIB runtime environment __¢

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 94.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to O (zero). This means that a hardwired locale
is used—by default the Standard C locale—but you can choose one of the supported
locale configuration symbols. The set1locale function is not available and can
therefore not be used for changing locales at runtime.

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the Standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern Lc_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang REGION
or
lang REGION.encoding

The 1ang part specifies the language code, and the REGTON part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The l1ang REGION part matches the _LOCALE USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

107

Environment interaction

108

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction

IAR C/C++ Compiler
Reference Guide for V850

According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

THE GETENV FUNCTION

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\OKey2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
v850\src\1libdirectory. For information about overriding default library modules, see
Overriding library modules, page 93.

THE SYSTEM FUNCTION

If you need to use the system function, you must implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 94.

The DLIB runtime environment __¢

Note: If you link your application with support for I/O debugging, the functions getenv
and system are replaced by C-SPY variants. For more information, see Application
debug support, page 89.

Signal and raise

Default implementations of the functions signal and raise are available. If these
functions do not provide the functionality that you need, you can implement your own
versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the v850\src\1ib directory. For information about
overriding default library modules, see Overriding library modules, page 93.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 94.

Tomake the _time32, _time64, and date functions work, you must implement the
functions clock, _time32, _time64,and __getzone. Whetheryouuse __time32
or __time64 depends on which interface you use for time_t, see time.h, page 296.

To implement these functions does not require that you rebuild the library. You can find
source templates in the files clock.c, time.c, time64.c, and getzone.c in the
v850\src\1libdirectory. For information about overriding default library modules, see
Overriding library modules, page 93.

If you decide to rebuild the library, you can find source templates in the library project
template. For more information, see Building and using a customized library, page 94.

The default implementation of __getzone specifies UTC (Coordinated Universal
Time) as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time are replaced by C-SPY variants that return the host clock and time
respectively. For more information, see Application debug support, page 89.

109

Strtod

Strtod

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make strtod accept hexadecimal
floating-point strings, you must:

Enable the configuration symbol _DLIB_STRTOD_HEX_FLOAT in the library
configuration file.

Rebuild the library, see Building and using a customized library, page 94.

1o

Math functions

IAR C/C++ Compiler
Reference Guide for V850

Some library math functions are also available size-optimized versions, and in more
accurate versions.

SMALLER VERSIONS

The functions cos, exp, log, 1ogl0, pow, sin, tan, and __iar_Sin (a help function
for sin and cos) exist in additional, smaller versions in the library. They are about 20%
smaller and about 20% faster than the default versions. The functions handle INF and
NaN values. The drawbacks are that they almost always lose some precision and they
do not have the same input range as the default versions.

The names of the functions are constructed like:
__dar xxx_small<f|1l>

where £ is used for f1oat variants, 1 is used for long double variants, and no suffix
is used for double variants.

To use these functions, the default function names must be redirected to these names
when linking, using the following options:

-e__ilar_sin_small=sin
-e__ilar_cos_small=cos
-e__iar_tan_small=tan
-e__iar_log_small=log
-e__iar_logl0O_small=1ogl0
-e__lar_exp_small=exp
-e__iar_pow_small=pow
-e__iar_Sin_small=__iar_Sin

The DLIB runtime environment __¢

-e__iar_sin_smallf=sinf
-e__ilar_cos_smallf=cosf
-e__iar_tan_smallf=tanf
-e__iar_log_smallf=logf
-e__iar_loglO_smallf=1oglOf
-e__iar_exp_smallf=expf
-e__iar_pow_smallf=powf
-e__iar_Sin_smallf=__iar_Sinf

-e__iar_sin_smalll=sinl
-e__ilar_cos_smalll=cosl
-e__iar_tan_smalll=tanl
-e__iar_log_smalll=logl
-e__iar_loglO_smalll=1logl0l
-e__iar_exp_smalll=expl
-e__iar_pow_smalll=powl
-e__iar_Sin_smalll=__ iar_Sinl

Note that if cos or sin is redirected, __iar_Sin must be redirected as well.

MORE ACCURATE VERSIONS

The functions cos, pow, sin, and tan, and the help functions __iar_sSin and
__iar_Pow exist in versions in the library that are more exact and can handle larger
argument ranges. The drawback is that they are larger and slower than the default
versions.

The names of the functions are constructed like:
__lar_ xxx_accurate<f|1l>

where f is used for f1oat variants, 1 is used for long double variants, and no suffix
is used for double variants.

To use these functions, the default function names must be redirected to these names
when linking, using the following options:

-e__ilar_sin_accurate=sin
-e__lar_cos_accurate=cos
-e__ilar_tan_accurate=tan
-e__lar_pow_accurate=pow
-e__iar_Sin_accurate=__iar_Sin
-e__ilar_Pow_accurate=__iar_Pow

Assert

112

-e__iar_sin_accuratef=sinf
-e__ilar_cos_accuratef=cosf
-e__ilar_tan_accuratef=tanf
-e__iar_pow_accuratef=powf
-e__ilar_Sin_accuratef=__iar_Sinf
-e__ilar_Pow_accuratef=__iar_Powf

-e__ilar_sin_accuratel=sinl
-e__ilar_cos_accuratel=cosl
-e__ilar_tan_accuratel=tanl
-e__iar_pow_accuratel=powl
-e__ilar_Sin_accuratel=__iar_Sinl
-e__ilar_Pow_accuratel=__iar_Powl

Note that if cos or sin is redirected, __iar_Sin must be redirected as well. The same

applies to pow and __iar_Pow.

Assert

If you linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.
You can find template code in the v850\src\1ib directory. For more information, see
Building and using a customized library, page 94. To turn off assertions, you must define
the symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs. See NDEBUG, page 286.

Checking module consistency

IAR C/C++ Compiler
Reference Guide for V850

This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR Systems to ensure that modules that are linked into an
application are compatible, in other words, are built using compatible settings. The tools
use a set of predefined runtime model attributes. You can use these predefined attributes
or define your own to ensure that incompatible modules are not used together.

For example, in the compiler, it is possible to lock two or more registers. If you write a
module that assumes that these registers are locked, it is possible to check that the
module is not used in an application that must be able to write to all registers.

The DLIB runtime environment __¢

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that

property.
Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

filed red spicy
fileb red lean

Table 21: Example of runtime model attributes

In this case, £ilel cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, file4 and file5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or £ileb5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specity a value, for example model and
mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "model"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

rtmodel "uart", "model"

113

Checking module consistency

114

IAR C/C++ Compiler
Reference Guide for V850

Note that key names that start with two underscores are reserved by the compiler. For
more information about the syntax, see rtmodel, page 264 and the [AR Assembler
Reference Guide for V850, respectively.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
compiler. These can be included in assembler code or in mixed C/C++ and assembler
code.

Runtime model

. Value Description
attribute
__code_model normal, Corresponds to the --code_model option used
large, orpic for the project.
__cpu v850 or Corresponds to the core used for the project, either
v850e V850 or a higher core. This key can be used to avoid
linking code designed for one processor core with an
application designed for another one.
__fpu_double v850e2 This key is defined when double precision FPU is
enabled.
__fpu_single v850el, This key is defined when the FPU is enabled. Its value
v850e2, or corresponds to the FPU variant used.

undefined

__memory_model tiny,small, Corresponds to the --data_model option used

medium, for the project.
or large

__reg_ep frame, saddr, This key has the value frame in data models without
or undefined short addressing. If a saddr variable is used in data

models with short addressing, this key has the value

saddr. If no saddr variables are used in a data model
with short addressing the value is undefined, making

it possible to link such a module with modules both

with and without short addressing.

Table 22: Predefined runtime model attributes

Runtime model

attribute

Value

The DLIB runtime environment __¢

Description

_reg_lock2

__reg_lock6

__reg_lockl0

__reg_r25

__rt_version

free, const,
locked, or *

free, locked,

or *

free, locked,

or *

brel_const

This key has the value free when the registers R18
and R19 are not locked. If they are locked, and you
are using the —-reg_const option, the value is
const. If they are locked, and you are using the
option --lock_regs_compatibility, the
value is *, making it possible to link such a module
with modules with no registers locked. If they are
locked, and you are not using any of these options,
the value is Locked.

This key has the value free when the registers R17
and R20-R22 are not locked. If they are locked, and
you are using the option
--lock_regs_compatibility, the value is *,
making it possible to link such a module with modules
with fewer registers locked. If they are locked, and
you are not using this option, the value is 1ocked.

This key has the value free when the registers
R15-R16 and R23—-R24 are not locked. If they are
locked, and you are using the option
--lock_regs_compatibility, the value is *,
making it possible to link such a module with modules
with fewer registers locked. If they are locked, and
you are not using this option, the value is 1ocked.

This key is provided for future compatibility. It has no
current use.

This runtime key is always present in all modules
generated by the compiler. If a major change in the
runtime characteristics occurs, the value of this key
changes.

Table 22: Predefined runtime model attributes (Continued)

The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, see the chapter Assembler
directives in the IAR Assembler Reference Guide for V850.

Note: In addition to these attributes, compatibility is also checked against the AEABI
runtime attributes. These attributes deal mainly with what device to use, etc, and they
are not user-configurable.

115

Checking module consistency

116

IAR C/C++ Compiler
Reference Guide for V850

Example

The following assembler source code provides a function that increases the register R6
to count the number of times it was called. The routine assumes that the application does
not use R6 for anything else, that is, the register is locked for usage. To ensure this, a
runtime module attribute, __reg_r6, is defined with a value counter. This definition
will ensure that this specific module can only be linked with either other modules
containing the same definition, or with modules that do not set this attribute. Note that
the compiler sets this attribute to free, unless the register is locked.

module myCounter

public myCounter

rseg CODE: CODE (2)

code

rtmodel "__reg_r6", "counter"
myCounter: add 1,r6

jmp [1p]

end

If this module is used in an application that contains modules where the register R6 is
not locked, the linker issues an error:

Error[ell7]: Incompatible runtime models. Module myCounter
specifies that '__reg r6' must be 'counter', but module partl
has the value 'free'

Assembler language
interface

When you develop an application for an embedded system, there might be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the V850 microcontroller
that require precise timing and special instruction sequences.

This chapter describes the available methods for this and some C alternatives,
with their advantages and disadvantages. It also describes how to write
functions in assembler language that work together with an application written
in C or C++.

Finally, the chapter covers how functions are called in the different code
models, the different memory access methods corresponding to the
supported memory types, and how you can implement support for call frame
information in your assembler routines for use in the C-SPY® Call Stack
window.

Mixing C and assembler

The IAR C/C++ Compiler for V850 provides several ways to access low-level
resources:

o Modules written entirely in assembler

e Intrinsic functions (the C alternative)

e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be very useful in, for example, time-critical
routines.

17

Mixing C and assembler

118

IAR C/C++ Compiler
Reference Guide for V850

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For more information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. This gives several benefits compared to using inline assembler:

o The function call mechanism is well-defined

o The code will be easy to read

e The optimizer can work with the C or C++ functions.

This causes some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. However, the
compiler will also assume that all scratch registers are destroyed by an inline assembler

instruction. In many cases, the overhead of the extra instructions is compensated for by
the work of the optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:
How should the assembler code be written so that it can be called from C?

Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?

Why does not the debugger display the call stack when assembler code is being
debugged?

Assembler language interface __4

The first question is discussed in the section Calling assembler routines from C, page
121. The following two are covered in the section Calling convention, page 124.

For information about how data in memory is accessed, see Memory access methods,
page 134.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 139.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 121, and Calling assembler routines from
C++, page 123, respectively.

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function.

The asm extended keyword and its alias __asm both insert assembler instructions.
However, when you compile C source code, the asm keyword is not available when the
option --strict is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using these keywords.
The syntax is:
asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm("label:nop\n"
"br label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

19

Mixing C and assembler

120

IAR C/C++ Compiler
Reference Guide for V850

The following example demonstrates the use of the asm keyword. This example also
shows the risks of using inline assembler.

extern _ near volatile char UART1_SR;
#pragma required=UART1_SR

static __near char sFlag;

void Foo(void)
{
while (!sFlag)
{
asm("LD.B UART1_SR[r0],rl1\n"
"ST.B rl,sFlag[x0]");

}

In this example, the assignment of £1ag is not noticed by the compiler, which means the
surrounding code cannot be expected to rely on the inline assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion might have on the
surrounding code are not taken into consideration. If, for example, registers or memory
locations are altered, they might have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and
might also become a maintenance problem if you upgrade the compiler in the future.
There are also several limitations to using inline assembler:

o The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

e In general, assembler directives will cause errors or have no meaning. Data
definition directives will however work as expected

e Alignment cannot be controlled; this means, for example, that Dc32 directives
might be misaligned

e Auto variables cannot be accessed.

Inline assembler is therefore often best avoided. If no suitable intrinsic function is
available, we recommend that you use modules written in assembler language instead
of inline assembler, because the function call to an assembler routine normally causes
less performance reduction.

Assembler language interface __4

Calling assembler routines from C
An assembler routine that will be called from C must:

e Conform to the calling convention
Have a PUBLIC entry-point label

Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);
or

extern int foo(int i, int 3j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the

variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func (int argl, char arg2)
{

int locInt = argl;

gInt = argl;

gChar = arg2;

return locInt;

int main()

{
int locInt = glInt;
gInt = Func(locInt, gChar);
return 0;

}

Note: In this example we use a low optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required

121

Calling assembler routines from C

122

IAR C/C++ Compiler
Reference Guide for V850

references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use these options to compile the skeleton code:
iccv850 skeleton.c -1A .

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s85. Also remember to specify the code model and data model you are using,
a low level of optimization, and -e for enabling language extensions.

The result is the assembler source output file skeleton.s85.

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file.

In the IDE, choose Project>Options>C/C++ Compiler>List and deselect the
suboption Include call frame information.

On the command line, use the option -1B instead of -1A. Note that CFI information must
be included in the source code to make the C-SPY Call Stack window work.

The output file
The output file contains the following important information:

The calling convention
The return values

The global variables
The function parameters

How to create space on the stack (auto variables)

Call frame information (CFI).

The cF1 directives describe the call frame information needed by the Call Stack window
in the debugger. For more information, see Call frame information, page 139.

Assembler language interface __4

Calling assembler routines from C++

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
int MyRoutine (int) ;

}

In C++, data structures that only use C features are known as PODs (“plain old data
structures”), they use the same memory layout as in C. However, we do not recommend
that you access non-PODs from assembler routines.

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"

{
void DoIt (MyClass *ptr, int arg);

class MyClass
{
public:
inline void DolIt (int arg)
{
::DoIt(this, arg):;
}
}i

Note: Support for C++ names from assembler code is extremely limited. This means
that:

o Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

123

Calling convention

124

e It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention

IAR C/C++ Compiler
Reference Guide for V850

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

Function declarations

C and C++ linkage

Preserved versus scratch registers

Function entrance

Function exit

Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction (int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.
USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++4, it is easiest if you make the C++ function have C linkage.

Assembler language interface __4

This is an example of a declaration of a function with C linkage:

extern "C"

{
int F(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef _ cplusplus
extern "C"

{
#endif

int F(int);

#ifdef __ cplusplus

}

#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general V850 CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

Any of the registers R1 and R5-R9, and any other register that is used as a parameter
register, can be used as a scratch register by the function.

Special function types have no scratch registers, except the parameter registers.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers R10 through to R30, except the registers that are used as parameter
registers, are preserved registers.

For information about system registers in interrupt functions, see System registers in
interrupt functions, page 56.

125

Calling convention

126

IAR C/C++ Compiler
Reference Guide for V850

Special registers
For some registers, you must consider certain prerequisites:

e RO will act as a normal processor register with the exception that the value of the
register is always zero

e Some registers might possibly be unavailable due to register locking. For more
information, see --lock_regs, page 211.

e The stack pointer register must at all times point to the topmost element on the
stack. In the eventuality of an interrupt, everything on the other side of the point the
stack pointer points to, can be destroyed.

e The brel base pointer registers Gp and R25 (pointing to data areas that are addressed
with indexed addressing modes) must never be changed.

e The link register holds the return address at the entrance of the function.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to use registers as much as possible. Only a limited
number of registers can be used for passing parameters; when no more registers are
available, the remaining parameters are passed on the stack. The parameters are also
passed on the stack in these cases:

e Structure types: struct, union, and class objects
e Unnamed parameters to variable length (variadic) functions; in other words,

functions declared as foo (parami, ...),for example printf.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

e If the function returns a structure, the memory location where the structure will be
stored is passed as an extra parameter. Notice that it is always treated as the first
parameter.

e If the function is a non-static C++ member function, then the this pointer is passed
as the first parameter (but placed after the return structure pointer, if there is one).
The reason why the member function must be non-static is that static member
methods do not have a this pointer.

Assembler language interface __4

Register parameters

Scalar parameters—integers and pointers—require one register. The same is true for
float values. On the other hand, double and long long values require two registers.

The registers available for passing parameters are R1 and R5—R19.

Parameters Passed in registers
8-, 16-, or 32-bit values R1, R5-R19
64-bit values (R5:R1), (R7:R6), (R9:R8), (R11:R10),

(R13:R12), (R15:R14), (R17:R16), (R19:R18)

Table 23: Registers used for passing parameters
Note that:

1 The register R9 is not available for the V850 core, because it is used as a scratch
register. When the Large code model is used, R9 is unavailable for all cores.

2 R15-R19 are possibly not available because of register locking.

The assignment of registers to parameters is a straightforward process. The first
parameter is assigned to the first available register, the second parameter to the second
available register etc. Should there be no more available registers, the parameter is
passed on the stack.

If a double parameter is passed in registers, it can only be passed using a register pair
listed in the table. If, for example, R1 has been assigned to a scalar parameter, the next
available register pair is R7 : R6. The register R5 will be allocated by the next scalar
parameter, if any.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack that is
divisible by 4, etc.

127

Calling convention

IAR C/C++ Compiler
128 Reference Guide for V850

This figure illustrates how parameters are stored on the stack:

High :
address The caller’s stack frame
A Parameter n
Parameter 2
Parameter 1
Return address <—— Stack pointer
Low Free stack memory
address

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Registers used for returning values

Scalar and £1oat values are returned using register R1. double and long long values
use the register pair R5:R1.

If a structure is returned, the caller of the function is responsible for allocating memory
for the return value. A pointer to the memory is passed as a “hidden” first parameter that
is always allocated to register R1. The called function must return the value of the
location in register R1.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored in the return address register LP.

Assembler language interface __4

Typically, a function returns by using the JMPp instruction, for example:
Jmp [LP]

If a function is to call another function, the original return address must be stored
somewhere. This is normally done on the stack. This example shows how it can be done
for the cores V850E and above:

name call

rseg CODE:CODE (2)
extern _func

code

prepare {1p},0
jarl _func, 1p

; Do something here.

dispose 0,{1p}, [1p]

This is the equivalent example for the V850 core:

add -4,sp
st.w 1p,0[sp]
jarl _func, 1p

; Do something here.

1d.w O0lspl.1lp
add 4,sp

jmp [1p]

end

For the V850 core, the return address is restored directly from the stack with the LD
instruction. For the V850E core and above, the DISPOSE instruction is used.

RESTRICTIONS FOR SPECIAL FUNCTION TYPES

These restrictions apply to the special function types __callt, __interrupt,

s ——

__syscall,and __trap:

e The return address is not stored in the register Lp but in dedicated system registers.

e The special function types have no scratch registers except for the parameter
registers.

129

Calling convention

130

IAR C/C++ Compiler
Reference Guide for V850

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example |
Assume this function declaration:
int add_one(int) ;

This function takes one parameter in the register R1, and the return value is passed back
to its caller in the register R1.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

name return

rseg CODE : CODE (2)
code

add 1,rl

jmp [1p]

end

Example 2
This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{

short a;
short b;
short c;
short d;
short e;

Y

int MyFunction (struct MyStruct x, int y);

The calling function must reserve 12 bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register R1.

Assembler language interface __4

Example 3
The function below will return a structure of type struct MyStruct.

struct MyStruct

{
int ma;
}i

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in R1. The caller assumes that these
registers remain untouched. The parameter x is passed in R5.

Assume that the function instead was declared to return a pointer to the structure:
struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R1, and the return value is returned in R1.

FUNCTION DIRECTIVES

Note: This type of directive is primarily intended to support static overlay, a feature
which is useful in some smaller microcontrollers. The IAR C/C++ Compiler for V850
does not use static overlay, because it has no use for it.

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the compiler to pass information about functions and function calls to the IAR
XLINK Linker. These directives can be seen if you use the compiler option Assembler
file (-12) to create an assembler list file.

For more information about the function directives, see the JAR Assembler Reference
Guide for V850.

Calling functions

Functions can be called in two fundamentally different ways—directly or via a function
pointer. In this section we will discuss how both types of calls will be performed for each
code model.

ASSEMBLER INSTRUCTIONS USED FOR CALLING
FUNCTIONS

This section presents the assembler instructions that can be used for calling and
returning from functions on the V850 microcontroller.

131

Calling functions

132

IAR C/C++ Compiler
Reference Guide for V850

The normal function calling instruction is the jump-and-link instruction:
jarl label, reg

The location that the called function should return to (that is, the location immediately
after this instruction) is stored in the register.

The destination label must not be further away than 2 Mbytes.
jmp [regl]

This is an instruction to jump to the location that reg points to. After the instruction has
been performed, the code located at the label will start executing.

A C function, for instance alpha, is represented in assembler as a label with the same
name as the function, in this case alpha. The location of the label is the actual location
of the code of the function.

The following sections illustrate how the different code models perform function calls.

Normal code model

The normal code model requires that the location of the called function must not be
further away than 2 Mbytes.

A direct call using this code model is simply:
jarl £, 1lp

When a function should return control to the caller, the following instruction will work.
This is the same way that functions return regardless of the code model.

jmp [1lp]

When assigning a function pointer to the location of a function, the following piece of
code is used:

movhi hil(f), RO, R29
movea 1wl (f), R29, R29

A function call via function pointers has the following form in this code model:
jarl (?Springboard_R29),1lp

?Springboard_R29 is a routine in the runtime library that simply contains the
instruction jmp [R29]. Because IAR Systems reserves the right to change the runtime
environment in the future, it is not recommended to use this function directly in
assembler code. Instead, define an equivalent function in C and call it.

Assembler language interface __4

Large code model

In this code model the standard jar1 instruction cannot be used. Instead, as we can see
below, the return address must be computed and explicitly stored in the return register
LP.

However, there is one exception to this. If a function call is performed to a static function
defined in the same compilation unit (source file), the jarl instruction is used.

The code needed to perform a normal function call is:

movhi hil(f), zero,R5
movea 1wl (f),R5,R5

jarl S+4,1p
add 4,1p
jmp [R5]

Line 1 and 2 build the address of the destination £ in processor register 5. Line 3 contains
the symbol $, which means the current code location. $+4 refers to the location 4 bytes
after the jarl instruction, which is where the add instruction is located. Line 3 uses the
jarl instruction not as a function call, but as a way to get the current code location to
be stored in Lp. Line 4 will modify Lp so that it will point to the location after the jmp
instruction. Finally, line 5 will call the function.

To call a function via function pointers, use the following source code:

jarl S+4,1p
add 4,1p
jmp [R29]

Again, the JARL instruction is used for accessing the current code location in order to
compute the return address.

Returning from a function and assigning a function pointer works in the same way as in
the normal code model.
Position-independent code model

In the position-independent code model, the generated assembler code must work even
if it is placed at a different physical address than the address that the application was
built for.

Fortunately, the destination address of the JARL instruction is encoded as the distance
from the caller to the destination. This means that we can still use the JARL instruction
for plain function calls, because the distance does not change when the code is moved.

Also, functions return the same way as in the normal code model.

For function pointers the situation is not as simple.

133

Memory access methods

In the compiler, the location the function was given by the linker is used as the value of
the function pointers. When a function is called via a function pointer, the distance that
the code was moved is added to the function pointer, as seen in the following piece of
source code:

1d.w (?CODE_DISTANCE-?BREL_BASE-0x8000) [gp],R27
add R29,R27
jarl (?Springboard_R27),1lp

The variable ?CODE_DISTANCE is like any variable except that it is only accessible in
assembler language. Normally, this variable is initialized by taking the difference
between the location of a label calculated dynamically at runtime and the location it was
assigned by the linker.

See also Position-independent code, page 64.

Memory access methods

IAR C/C++ Compiler
134 Reference Guide for V850

This section describes the different memory types presented in the chapter Data storage.
In addition to just presenting the assembler code used for accessing data, this section
will explain the reason behind the different memory types.

You should be familiar with the V850 instruction set, in particular the different
addressing modes used by the instructions that can access memory.

In the V850 architecture, the following instructions are used for accessing memory:

Assembler instruction Description Comment

LD.s displ6lregl, reg Load

LD.s M:disp23[reg], reg Load Only for V850E2M
ST.s reg, displé6[reg] Store

ST.s reg, M:disp23[reg] Store Only for V850E2M
SLD.s disp8lepl, reg Short load

SST.s reg, disp8lepl Short store

SET1 bit#, displé6[regl Sets a bit

CLR1 bit#, displé6lregl] Clears a bit

NOT1 bit#, displé6[reg] Toggles a bit

TST1 bit#, displé6[regl Tests a bit

Table 24: Assembler instructions for accessing memory

Assembler language interface __4

Explanations of the abbreviations used in the table:

s The size of the operation. This could be B, H, and w for byte,
half-word, and word respectively. For the V850E
microcontroller, the load instruction could also use BU and HU.
They are used to load a value from the memory while
performing a zero extension on the resulting register.

disp8 8-, 7-, 5-, or 4-bit unsigned displacement. For # and w the
displacement is 8. For B it is 7. In the V850E cores, the HU can
use 5-bit displacement and BU 4 bits.

displé6 16-bit signed displacement

M:disp23 23-bit signed displacement; only available on V850E2M and
above.

bit# A bit number, a constant between 0 and 7

reg Any register

ep Processor register R30

A C variable, for instance alpha, is accessible in assembly via the assembler label with
the same name as the variable, in this case alpha. The label is the address of a variable.
To access the value of the variable, the memory content location at the address of the
label must be accessed, typically loaded into a register.

For each of the access methods described in the following sections, there are three
examples:

e Accessing a global variable
e Accessing a global array using an unknown index

e Accessing a structure using a pointer.

135

Memory access methods

136

IAR C/C++ Compiler
Reference Guide for V850

These three examples can be illustrated by this C program:

char myVar;
char MyArr([10];

struct MyStruct
{

long mA;

char mB;
}i

char Foo(int i, struct MyStruct *p)

{

return myVar + MyArr[i] + p->mB;

NEAR MEMORY ACCESS METHODS

Near memory is the memory that is located at +32 Kbytes around address 0. The
assembler code for storing something using this memory access method is simply:

ST.W R1, x[RO]

Remember that RO will act as a normal processor register with the exception that the
value of the register always will be zero.

Clearly, the memory range that this assembler instruction can access is limited by the
range of the displacement. Because the displacement is limited to a signed 16-bit value,
only the first and last 32 Kbytes of memory can be reached.

Examples

Address of:
MOVEA MyVar, zero, rl

Accessing a global variable:
LD.B MyVar [zero], rl

Accessing a global array using an unknown index:
LD.B MyArr[rl], r5

Accessing a structure using a pointer:

LD.B (4) [r5],rl

Assembler language interface __4

BASE-RELATIVE ACCESS METHOD

The base-relative (brel) access method can access two memory areas of 64 Kbytes, one
in RAM and one in ROM. Unlike the near memory, the brel memory areas can be placed
anywhere in memory.

There are two assembler labels, ?BREL_BASE and ?BREL_CBASE, located at the
beginning of the brel memory areas. The processor register R4—also known as GP—and
the processor register R25 are initialized as pointers to a location 32 Kbytes into the
memory.

The assembler code for accessing the brel RAM area is:
ST.W R5, (x-?BREL_BASE-0x8000) [GP]

For the brel RAM area, the displacement used is the value of the expression
(x-?BREL_BASE-0x8000), where x refers to the absolute location of the variable x.

If we add together the value of the global pointer (that points to the location 32 kilobytes
after ?BREL_BASE) with the displacement, we end up at address x:

= x-?BREL_BASE-0x8000 + GP
x-?BREL_BASE-0x8000 + ?BREL_BASE+0x8000
= x

The assembler code for accessing the brel ROM area is:
ST.W R5, (y-?BREL_CBASE-0x8000) [R25]

It works the same way as the code for the RAM area.
The base registers GP and R25 do not point to the ?BREL_BASE label or the
?BREL_CBASE label, respectively, because the limitation of the displacement of the
memory instructions would only let us reach 32 Kbytes into the memory area.
Examples
Address of:

MOVEA (MyVar-?BREL_BASE-0x8000) ,gp, rl
Accessing a global variable:

LD.B (MyVar-?BREL_BASE-0x8000) [gp], r6
Accessing a global array using an unknown index:

ADD gp,rl
LD.B (MyArr-?BREL_BASE-0x8000) [rl],xr7

Accessing a structure using a pointer:

LD.B (4) [r5],rl

137

Memory access methods

138

IAR C/C++ Compiler
Reference Guide for V850

BASE-RELATIVE23 ACCESS METHOD

The V850E2M and newer cores provide the 23-bit displacement form of the assembler
instructions LD and ST. The base-relative23 (brel23) access method uses the same base
pointers and placeholder segments as the normal base-relative access method, but can

access 8 Mbytes of ROM and 8 Mbytes of RAM, respectively.

Examples

Address of:
MOVHI hil (MyVar),zero,rl
MOVEA 1wl (MyVar) ,rl,rl

Accessing a global variable:
LD.BU M: (MyVar-?BREL_BASE-0x8000) [gp], r6
Accessing a global array using an unknown index:

ADD gp,rl
LD.BU M: (MyArr-?BREL_BASE-0x8000) [rl],r7

Accessing a structure using a pointer:

LD.B (4) [r5],rl

HUGE ACCESS METHOD

As seen in Table 24, Assembler instructions for accessing memory, it is not possible to
access an arbitrary location using only one instruction. In the V850 microcontroller, this
is solved by using the MOVHI instruction to move part of the memory location to access
to a temporary register.

For example, to store a variable x in huge memory, the following assembler code is used:

MOVHI hil(x), RO, R5

ST.W R1, 1wl (x)[R5]
Examples
Address of:
MOVHI hil (MyVar),zero,rl
MOVEA 1wl (MyVar) ,rl,rl

Accessing a global variable:

MOVHI hil (MyVar),zero,r6
LD.B 1wl (MyVar) [¥6],r6

Assembler language interface __4

Accessing a global array using an unknown index:

MOVHI hil (MyArr),rl,x7
LD.B 1wl (MyArr) [x7],x7

Accessing a structure using a pointer:

LD.B (4) [r5],rl

SHORT ADDRESSING ACCESS METHOD

The short addressing (saddr) access method uses the short variants of the load and store
instructions, SLD and sST. These instructions are both smaller and faster than the
standard LD and ST instructions.

The assembler label ?SADDR_BASE is located at the beginning of the 256 byte memory
area that can be reached using the short load and store instructions. The processor
register EP (R30) is used as a base pointer to this area. Note that when you are using a
data model without short addressing, the EP register is instead a pointer to the frame on
the stack.

The source code needed to store a value to saddr memory is:
SST.W R1, (x-?SADDR_BASE) [ep]

As mentioned in Table 24, Assembler instructions for accessing memory, this
instruction can only reach 256 bytes. When using byte access, it is limited to 128 bytes.
This is the reason for the corresponding limitation on the data for the saddr memory

type.

NO BIT ACCESS

Data objects declared __no_bit_access are never accessed using the V850 bit
instructions. This is primarily useful when accessing memory-mapped peripheral units
that do not allow bit access.

Call frame information

When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the JAR Assembler
Reference Guide for V850.

139

Call frame information

140

IAR C/C++ Compiler
Reference Guide for V850

CFI DIRECTIVES

The cF1 directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

This table lists all the resources defined in the names block used by the compiler:

Resource Description

CFA The call frames of the stack
RO-R29, EP Normal registers

LP The return address register
SP The stack pointer

EIPC, EIPSW, FEPC, FEPSW, ECR, PSW, Special processor registers
CTPC, CTPSW, DBPC, DBPSW, CTBP

?RET The return address

BSEL Bank select register

FPSR Floating-point status register

Table 25: Call frame information resources defined in a names block

Note: The header file c£i . h contains macros that declare a typical names block and a
typical common block. These macros declare a number of resources, both concrete and
virtual.

CREATING ASSEMBLER SOURCE WITH CFl SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

Start with suitable C source code, for example:

Assembler language interface __4

int F(int);
int cfiExample (int i)
{

return i + F(i);

}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

@ On the command line, use the option -1A.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

For the source code in this example, the list file looks like this:

NAME test
RSEG CSTACK:DATA:SORT:NOROOT (2)

PUBLIC cfiExample

FUNCTION cfiExample,021203H
ARGFRAME CSTACK, 0, STACK
LOCFRAME CSTACK, 8, STACK

CFI Names cfiNamesO

CFI StackFrame CFA SP DATA

CFI Resource R0:32, R1:32, R2:32, SP:32, R4:32, R5:32,
R6:32, R7:32

CFI Resource R8:32, R9:32, R10:32, R11:32, R12:32,
R13:32, R14:32

CFI Resource R15:32, R16:32, R17:32, R18:32, R19:32,
R20:32, R21:32

CFI Resource R22:32, R23:32, R24:32, R25:32, R26:32,
R27:32, R28:32

CFI Resource R29:32, EP:32, LP:32, EIPC:32, EIPSW:32,
FEPC:32, FEPSW:32

CFI Resource ECR:32, PSW:32, CTPC:32, CTPSW:32, DBPC:32,
DBPSW:32

CFI Resource CTBP:32, FPSR:32, BSEL:32

CFI VirtualResource ?RET:32

CFI EndNames cfiNamesO

141

Call frame information

142

IAR C/C++ Compiler
Reference Guide for V850

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

Common cfiCommonO Using cfiNamesO
CodeAlign 2
DataAlign 4
ReturnAddress ?RET DATA
CFA SP+0

RO SameValue

R1 Undefined

R2 SameValue

R4 SameValue

R5 Undefined

R6 Undefined

R7 Undefined

R8 Undefined

R9 Undefined
R10 SameValue
R11 SameValue
R12 SameValue
R13 SameValue
R14 SameValue
R15 SameValue
R16 SameValue
R17 SameValue
R18 SameValue
R19 SameValue
R20 SameValue
R21 SameValue
R22 SameValue
R23 SameValue
R24 SameValue
R25 SameValue
R26 SameValue
R27 SameValue
R28 SameValue
R29 SameValue
EP SameValue

LP Undefined
EIPC SameValue
EIPSW SameValue
FEPC SameValue
FEPSW SameValue
ECR SameValue
PSW SameValue
CTPC SameValue
CTPSW SameValue
DBPC SameValue
DBPSW SameValue
CTBP SameValue

Assembler language interface __4

CFI FPSR SameValue

CFI BSEL SameValue

CFI ?RET LP

CFI EndCommon cfiCommon0

EXTERN "F°
FUNCTION ‘F',0202H

RSEG "CODE" :CODE:NOROOT (2)
CFI Block cfiBlock0O Using cfiCommonO
CFI Function cfiExample

cfiExample:
FUNCALL cfiExample, "F°
LOCFRAME CSTACK, 8, STACK
PREPARE {r29,1p},0
CFI R29 Frame(CFA, -4)
CFI ?RET Frame(CFA, -8)
CFI CFA SP+8

MOV rl,r29
JARL ‘F',1p
ADD r29,rl
DISPOSE 0,{r29,1p}, [1p]

CFI EndBlock cfiBlock0

END

Note: The header file c£i .m85 contains the macros CFNAMES and CFCOMMON, which
declare a typical names block and a typical common block. These two macros declare
several resources, both concrete and virtual.

143

Call frame information

IAR C/C++ Compiler
144 Reference Guide for V850

Using C

This chapter gives an overview of the compiler’s support for the C language.

The chapter also gives a brief overview of the IAR C language extensions.

C language overview

The IAR C/C++ Compiler for V850 supports the ISO/IEC 9899:1999 standard
(including up to technical corrigendum No.3), also known as C99. In this guide, this
standard is referred to as Standard C and is the default standard used in the compiler.
This standard is stricter than C89.

In addition, the compiler also supports the ISO 9899:1990 standard (including all

technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this

standard.

The C99 standard is derived from C89, but adds features like these:

The inline keyword advises the compiler that the function defined immediately
after the keyword should be inlined

Declarations and statements can be mixed within the same scope
A declaration in the initialization expression of a for loop
The bool data type

The long long data type

The complex floating-point type

C++ style comments

Compound literals

Incomplete arrays at the end of structs

Hexadecimal floating-point constants

Designated initializers in structures and arrays

The preprocessor operator _Pragma ()

Variadic macros, which are the preprocessor macro equivalents of printf style
functions
VLA (variable length arrays) must be explicitly enabled with the compiler option

--vla

Inline assembler using the asm or the __asm keyword, see Inline assembler, page
119.

145

Extensions overview

146

Note: Even though it is a C99 feature, the IAR C/C++ Compiler for V850 does not
support UCNss (universal character names).

Extensions overview

IAR C/C++ Compiler
Reference Guide for V850

The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

This is an overview of the available extensions:

o IAR C language extensions

For information about available language extensions, see I4R C language extensions,
page 147. For more information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

e Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

e Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

e Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
instructions. For more information about using intrinsic functions, see Mixing C and
assembler, page 117. For information about available functions, see the chapter
Intrinsic functions.

UsingC __4

e Library functions

The IAR DLIB Library provides the C and C++ library definitions that apply to
embedded systems. For more information, see /AR DLIB Library, page 291.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

ENABLING LANGUAGE EXTENSIONS
You can choose different levels of language conformance by means of project options:

Command line IDE* Description

--strict Strict All lAR C language extensions are disabled;
errors are issued for anything that is not part
of Standard C.

None Standard All extensions to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see IAR C
language extensions, page 147.

-e Standard with IAR All IAR C language extensions are enabled.
extensions

Table 26: Language extensions

* In the IDE, choose Project>Options>C/C++ Compiler>Language>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions

The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

® [Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific microcontroller you are using,
typically to meet memory restrictions

® Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 150.

147

IAR C language extensions

148

IAR C/C++ Compiler
Reference Guide for V850

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:

e Memory attributes,type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

e Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
segment. For more information about using these features, see Controlling data and
Sfunction placement in memory, page 167, and location, page 259.

e Alignment control

Each data type has its own alignment; for more information, see Alignment, page
227. If you want to change the alignment, the #pragma pack and #pragma
data_alignment directives are available. If you want to check the alignment of an
object, use the __ALIGNOF__ () operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® _ ALIGNOF__ (type)

® __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.
e Anonymous structs and unions

C++ includes a feature called anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 165.

e Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C

language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
229.

® static_assert()

The construction static_assert (const-expression, "message"); can be
used in C/C++. The construction will be evaluated at compile time and if
const-expression is false, a message will be issued including the message
string.

UsingC __4

o Parameters in variadic macros

Variadic macros are the preprocessor macro equivalents of print £ style functions.
The preprocessor accepts variadic macros with no arguments, which means if no
parameter matches the . .. parameter, the comma is then deleted in the ",
##__VA_ARGS__ " macro definition. According to Standard C, the . . . parameter
must be matched with at least one argument.

Dedicated segment operators

The compiler supports getting the start address, end address, and size for a segment with
these built-in segment operators:

__segment_begin Returns the address of the first byte of the named segment.
__segment_end Returns the address of the first byte affer the named segment.
__segment_size Returns the size of the named segment in bytes.

Note: The aliases __sfb, __sfe, and __sfs can also be used.
The operators can be used on named segments defined in the linker configuration file.

These operators behave syntactically as if declared like:

void * __segment_begin(char const * segment)
void * __segment_end(char const * segment)
size_t * __segment_size(char const * segment)

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined segment in the linker configuration file, the segment
operators can be used for getting the start and end address of the memory range where
the segments were placed.

The named segment must be a string literal and it must have been declared earlier with
the #pragma segment directive. If the segment was declared with a memory attribute
memattr, the type of the __segment_begin operator is a pointer to memattr void.
Otherwise, the type is a default pointer to void. Note that you must enable language
extensions to use these operators.

Example
In this example, the type of the __segment_begin operator is void __near *.

#pragma segment="MYSEGMENT" _ _near

segment_start_address = __segment_begin ("MYSEGMENT") ;

See also segment, page 265, and location, page 259.

149

IAR C language extensions

150

IAR C/C++ Compiler
Reference Guide for V850

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:

Arrays of incomplete types

An array can have an incomplete struct, union, Or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 233.

Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

long float means double
The type long £loat is accepted as a synonym for double.
Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

UsingC __4

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

Non-1lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning.

Note that this also applies to the labels of switch statements.
Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str

{
int a;
} x = 10;

151

IAR C language extensions

152

IAR C/C++ Compiler
Reference Guide for V850

Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the i f statement. A warning is issued.

int test(int x)

{
if (x)

extern int y;
y = 1;

return y;

}

Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string that contains the name of the current function.
Use the symbol __PRETTY_FUNCTION__ to also include the parameter types and
return type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func (char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 206.

Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one valid
token. (If the --strict option is used, the pp-number syntax is used instead.)

Using C++

IAR Systems supports the C++ language. You can choose between the
industry-standard Embedded C++ and Extended Embedded C++. This
chapter describes what you need to consider when using the C++ language.

Overview

Embedded C++ is a proper subset of the C++ programming language which is intended
for embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language. EC++ offers the same object-oriented benefits as C++, but without some

features that can increase code size and execution time in ways that are hard to predict.

EMBEDDED C++
These C++ features are supported:

e Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

e Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

e Overloading of operators and function names, which allows several operators or
functions with the same name, provided that their argument lists are sufficiently
different

o Type-safe memory management using the operators new and delete

e Inline functions, which are indicated as particularly suitable for inline expansion.
C++ features that are excluded are those that introduce overhead in execution time or
code size that are beyond the control of the programmer. Also excluded are features

added very late before Standard C++ was defined. Embedded C++ thus offers a subset
of C++ which is efficient and fully supported by existing development tools.

Embedded C++ lacks these features of C++:

e Templates

e Multiple and virtual inheritance
e Exception handling

°

Runtime type information

153

Overview

154

IAR C/C++ Compiler
Reference Guide for V850

e New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

e Namespaces

e The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in

that:

e The standard template library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates
e Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds these
features to the standard EC++:

Full template support

Multiple and virtual inheritance

Namespace support

The mutable attribute

The cast operators static_cast, const_cast, and reinterpret_cast.
All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL is tailored for use with the Extended EC++
language, which means no exceptions, no multiple inheritance, and no support for
runtime type information (rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with a
module compiled without Extended EC++ enabled.

Using C++ °

Enabling support for C++
@ In the compiler, the default language is C.

To compile files written in Embedded C++, you must use the --ec++ compiler option.
See --ec++, page 206.

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 206.

To enable EC++ or EEC++ in the IDE, choose Project>Options>C/C++
Compiler>Language and select the appropriate standard.

EC++ feature descriptions

When you write C++ source code for the IAR C/C++ Compiler for V850, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type, memory, and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type, memory, and object attributes. Virtual member functions can
only have attributes that are compatible with default function pointers, and constructors
and destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

155

EC++ feature descriptions

Example

class MyClass

{

public:
// Locate a static variable in _ memattr memory at address 60
static __near _ _no_init int mI @ OXFFFF8000;

// A static function using the callt call mechanism
static __callt void F();

// A function using the trap call mechanism
__trap void G();

// Locate a virtual function in default memory
virtual void H();

// Locate a virtual function into SPECIAL
virtual void M() const volatile @ "SPECIAL";

Yi

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

Example

extern "C"

{

typedef void (*FpC) (void); // A C function typedef
}
typedef void (*FpCpp) (void) ; // A C++ function typedef
FpC F1;
FpCpp F2;

void MyF (FpC) ;

void MyG ()
{
MyF (F1) ; // Always works
MyF (F2) ; // FpCpp is compatible with FpC

IAR C/C++ Compiler
156 Reference Guide for V850

Using C++ °

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 95.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

USING NEW HANDLERS

To handle memory exhaustion, you can use the set_new_handler function.

New handlers in Embedded C++

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator newif operator new fails to allocate memory. The
new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

TEMPLATES

Extended EC++ supports templates according to the C++ standard, but not the export
keyword. The implementation uses a two-phase lookup which means that the keyword
typename must be inserted wherever needed. Furthermore, at each use of a template,
the definitions of all possible templates must be visible. This means that the definitions
of all templates must be in include files or in the actual source file.

DEBUG SUPPORT IN C-SPY

C-SPY has built-in display support for the STL containers. The logical structure of
containers is presented in the watch views in a comprehensive way that is easy to
understand and follow.

For more information about this, see the C-SPY® Debugging Guide for V850.

157

EEC++ feature description

158

EEC++ feature description

IAR C/C++ Compiler
Reference Guide for V850

This section describes features that distinguish Extended EC++ from EC++.

TEMPLATES

The compiler supports templates with the syntax and semantics as defined by Standard
C++. However, note that the STL (standard template library) delivered with the product
is tailored for Extended EC++, see Extended Embedded C++, page 154.

VARIANTS OF CAST OPERATORS

In Extended EC++ these additional variants of C++ cast operators can be used:

const_cast<to> (from)
static_cast<to> (from)
reinterpret_cast<to> (from)

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std

You must make sure that identifiers in your application do not interfere with identifiers
in the runtime library.

Using C++ °

C++ language extensions

When you use the compiler in any C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

In a friend declaration of a class, the class keyword can be omitted, for example:
class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to the standard
Yi
Constants of a scalar type can be defined within classes, for example:

class A
{
const int mSize = 10; //Possible when using IAR language
//extensions
int mArr[mSize];
Yi
According to the standard, initialized static data members should be used instead.

In the declaration of a class member, a qualified name can be used, for example:

struct A

{
int A::F(); // Possible when using IAR language extensions
int G(); // According to the standard

Yi

It is permitted to use an implicit type conversion between a pointer to a function

with C linkage (extern "C") and a pointer to a function with C++ linkage

(extern "c++"), for example:

extern "C" void F(); // Function with C linkage

void (*PF) () // PF points to a function with C++ linkage
= &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands can
be implicitly converted to char * or wchar_t =, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
//language extensions

char const *P2 = X ? "abc" : "def";//According to the standard

159

C++ language extensions

160

IAR C/C++ Compiler
Reference Guide for V850

e Default arguments can be specified for function parameters not only in the top-level

function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression can
reference the non-static local variable. However, a warning is issued.

An anonymous union can be introduced into a containing class by a typedef name.
It is not necessary to first declare the union. For example:

typedef union

{

int 1i,3;
} U; // U identifies a reusable anonymous union.
class A
{
public:
U; // OK -- references to A::1 and A::j are allowed.

Yi

In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features (for example, no static data members or member
functions, and no non-public members) and have no nested types other than other
anonymous classes, structs, or unions. For example:

struct A
{
struct
{
int 1i,3;
}; // OK -- references to A::1 and A::j are allowed.
Y

The friend class syntax allows nonclass types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C

{

public:
friend S; // Okay (requires S to be in scope)
friend ST; // Okay (same as "friend S;")
// friend S const; // Error, cv-qualifiers cannot

// appear directly
}i

Using C++ °

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

161

C++ language extensions

IAR C/C++ Compiler
162 Reference Guide for V850

Efficient coding for
embedded applications

For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

e Selecting data types

e Controlling data and function placement in memory
e Controlling compiler optimizations

o Register locking and register constants

e Facilitating good code generation.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

e 32-bit integers (int etc.) are more efficient than 8- and 16-bit integers (char and
short).

e Floating-point types are inefficient. If possible, try to use integers instead. If you
have to use floating-point types, notice that 32-bit floating-point numbers are more
efficient than 64-bit type doubles. Note that some V850 devices have a
floating-point unit which makes floating-point operations faster.

163

Selecting data types

164

IAR C/C++ Compiler
Reference Guide for V850

e Use only bitfields with sizes other than 1 bit when you need to optimize the use of
data storage. The generated code is both larger and slower than if non-bitfield
integers were used.

e Declaring a pointer parameter to const data tells the calling function that the data
pointed to will not change.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. Thus, you should consider
replacing code that uses floating-point operations with code that uses integers, because
these are more efficient.

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type £1loat is more efficient in terms of code size and execution speed.
However, the 64-bit format double supports higher precision and larger numbers.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a £1oat to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test (float a)
{

return a + 1.0;

}

To treat a floating-point constant as a £1loat rather than as a double, add the suffix £
to it, for example:

double Test (float a)
{
return a + 1.0f;

}

For more information about floating-point types, see Floating-point types, page 231.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The V850 microcontroller requires that when accessing data in memory, the data must
be aligned. Each element in a structure must be aligned according to its specified type

Efficient coding for embedded applications __¢

requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are situations when this can be a problem:

e There are external demands; for example, network communication protocols are
usually specified in terms of data types with no padding in between

e You need to save data memory.
For information about alignment requirements, see Alignment, page 227.
There are two ways to solve the problem:

o Use the #pragma pack directive for a tighter layout of the structure. The drawback
is that each access to an unaligned element in the structure will use more code.

e Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For more information about the #pragma pack directive, see pack, page 262.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the IAR C/C++ Compiler for V850 they can be used in C if language
extensions are enabled.

In the IDE, language extensions are enabled by default.

@ Use the -e compiler option to enable language extensions. See -e, page 206, for
additional information.

165

Selecting data types

166

IAR C/C++ Compiler
Reference Guide for V850

Example
In this example, the members in the anonymous union can be accessed, in function F,

without explicitly specifying the union name:

struct S

{

char mTag;

union
{
long mL;
float mF;
Y
} St

void F(void)
{

St.mL = 5;
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char way: 1;
unsigned char out: 1;
}i
} @ OXFFFF8000;

/* The variables are used here. */
void Test (void)
{
IOPORT = 0;
way =
out =

}

1;
1;

This declares an I/O register byte TOPORT at address 0. The 1/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Efficient coding for embedded applications __¢

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

o Code and data models

Use the different compiler options for code and data models, respectively, to take
advantage of the different addressing modes available for the microcontroller and
thereby also place functions and data objects in different parts of memory. For more
information about data and code models, see Data models, page 44, and Code
models, page 53, respectively.

e Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual data objects. For more information about memory attributes for data, see
Using data memory attributes, page 47.

o The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global
and static variables at absolute addresses. The variables must be declared either

__no_init or const.

This is useful for individual data objects that must be located at a fixed address to
conform to external requirements, for example to populate interrupt vectors or other
hardware tables. Note that it is not possible to use this notation for absolute
placement of individual functions.

o The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The variables must be declared either __no_init or const. The
segments can, for example, be placed in specific areas of memory, or initialized or
copied in controlled ways using the segment begin and end operators. This is also
useful if you want an interface between separately linked units, for example an
application project and a boot loader project. Use named segments when absolute
control over the placement of individual variables is not needed, or not useful.

At compile time, data and functions are placed in different segments, see Data segments,
page 71, and Code segments, page 77, respectively. At link time, one of the most

167

Controlling data and function placement in memory

important functions of the linker is to assign load addresses to the various segments used
by the application. All segments, except for the segments holding absolute located data,
are automatically allocated to memory according to the specifications of memory ranges
in the linker configuration file, see Placing segments in memory, page 68.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of these combinations of keywords:

® _ _no_init
® _ _no_init and const (without initializers)

e const (with initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of variables placed at an absolute address are fentative
definitions. Tentatively defined variables are only kept in the output from the compiler
if they are needed in the module being compiled. Such variables will be defined in all
modules in which they are used, which will work as long as they are defined in the same
way. The recommendation is to place all such declarations in header files that are
included in all modules that use the variables.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x1000;/* OK */

The next example contains two const declared objects. The first one is not initialized,
and the second one is initialized to a specific value. Both objects are placed in ROM.
This is useful for configuration parameters, which are accessible from an external
interface. Note that in the second case, the compiler is not obliged to actually read from
the variable, because the value is known.

#pragma location=0x1004
__no_init const int beta; /* OK */

const int gamma @ 0x1008 = 3; /* OK */

IAR C/C++ Compiler
168 Reference Guide for V850

Efficient coding for embedded applications __¢

In the first case, the value is not initialized by the compiler; the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

These examples show incorrect usage:

int delta @ 0x100C; /* Error, neither */
/* "__no_init" nor "const".*/
__no_init int epsilon @ 0x100F; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */
the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SEGMENTS

The @ operator, alternatively the #pragma location directive, can be used for placing
individual variables or individual functions in named segments. The named segment can
either be a predefined segment, or a user-defined segment. The variables must be
declared either __no_init or const. If declared const, they can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker configuration file using the -z or the -p segment
control directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to

169

Controlling compiler optimizations

amalfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the segments can be controlled from the linker configuration file.

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments

In the following examples, a data object is placed in a user-defined segment. If no
memory attribute is specified, the variable will, like any other variable, be treated as if
it is located in the default memory. Note that you must place the user-defined segment
appropriately in the linker configuration file.

__no_init int alpha @ "MY_NOINIT"; /* OK */
#pragma location="MY_CONSTANTS"

const int beta = 42; /* OK */
const int gamma @ "MY_ CONSTANTS" = 17;/* OK */

As usual, you can use memory attributes to select a memory for the variable. Note that
you must as always place the segment appropriately in the linker configuration file.

__huge __no_init int alpha @ "MY_HUGE_NOINIT";/* Placed in
huge*/

This example shows incorrect usage:
int delta @ "MY_ZEROS"; /* Error, neither */
/* "__no_init" nor "const" */
Examples of placing functions in named segments
void f(void) @ "MY_FUNCTIONS";
void g(void) @ "MY_FUNCTIONS"

{
}

#pragma location="MY_FUNCTIONS"
void h(void) ;

Controlling compiler optimizations

IAR C/C++ Compiler

170 Reference Guide for V850

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead

Efficient coding for embedded applications __¢

of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 261, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining, cross call, and cross jump have more
source code to work on. Ideally, the whole application should be compiled as one
compilation unit. However, for large applications this is not practical because of
resource restrictions on the host computer. For more information, see --mfc, page 212.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard unused publics, page 205.

171

Controlling compiler optimizations

172

IAR C/C++ Compiler
Reference Guide for V850

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Optimization level Description

None (Best debug support) Variables live through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above, and:
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Instruction scheduling (when optimizing for speed)
Common subexpression elimination
Static clustering

High (Balanced) Same as above, and:
Peephole optimization
Cross jumping
Cross call (when optimizing for size)
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 27: Compiler optimization levels

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information about these, see Fine-tuning enabled transformations, page 173.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

Efficient coding for embedded applications __¢

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application might in some cases
become smaller even when optimizing for speed rather than size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Static clustering

Cross call

Instruction scheduling.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 214.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

173

Controlling compiler optimizations

174

IAR C/C++ Compiler
Reference Guide for V850

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

For information about the related pragma directive, see unroll, page 268. To disable loop
unrolling, use the command line option --no_unroll, see --no_unroll, page 218.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see Inlining functions, page 63.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

For more information about the command line option, see --no_code motion, page 214.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the

Efficient coding for embedded applications __¢

compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 217.

Example

short F(short *pl, long *p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. If you use explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 213.

Cross call

Common code sequences are extracted to local subroutines. This optimization, which is
performed at optimization level High, can reduce code size, sometimes dramatically, on
behalf of execution time and stack size. The resulting code might however be difficult

to debug. This optimization cannot be disabled using the #pragma optimize directive.

Note: This option has no effect at optimization levels None, Low, and Medium, unless
the option --do_cross_call is used.

For more information about related command line options, see --no_cross_call, page
214.

175

Register locking and register constants

176

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor. Note that not all cores benefit from scheduling. The resulting code
might be difficult to debug.

Note: This option has no effect at optimization levels None, Low and Medium.

For more information about the command line option, see --no_scheduling, page 216.

Register locking and register constants

IAR C/C++ Compiler
Reference Guide for V850

This section introduces the concepts of register locking and register constants.

Register locking means that the compiler can be instructed never to touch some
processor registers. This can be useful in a number of situations. For example:

e Some parts of a system could be written in assembler language to improve
execution speed. These parts could be given dedicated processor registers.

o The register could be used by an operating system, or by other third-party software.

A register constant is a value that is loaded into a dedicated processor register when the

system is initialized. The compiler can then generate code that assumes that the
constants are present in the dedicated registers.

REGISTER LOCKING

Register locking is performed using the --1ock_regs compiler option on predefined
groups of registers. See --lock _regs, page 211.

Note: The compiler never uses the processor register R4.

REGISTER CONSTANTS

When the --reg_const option is specified, the compiler will load the value 0xFF (255
in decimal) and 0xFFFF (65535 in decimal) into the two processor registers R18 and
R19, respectively.

When registers are used as constants, at least two processor registers must be locked
with the --1lock_regs option.

This enables the compiler to generate more efficient code. A typical example is a cast
from a 16-bit unsigned short to a 32-bit value. (A 16-bit value located in a
32-processor register is assumed to contain garbage in the upper 16 bits.) Using register
constants, a two-byte instruction can perform the cast. Without register constants, a

Efficient coding for embedded applications __¢

four-byte instruction is required. Note that this is mainly useful for the V850 core,
because the V850E and newer cores provide instructions to perform zero extension.

COMPATIBILITY ISSUES

In general, if two modules are used together in the same application, they should have
the same setting for register locking and register constants. The reason for this is that
registers that can be locked could also be used as parameter registers when calling
functions. In other words, the calling convention will depend on the number of locked
registers.

However, because this leads to a situation where suppliers of object files and libraries
would be forced to make a choice between either delivering many different prebuilt
versions or selecting a few configurations to support, there is a compiler option
--lock_regs_compatibility. Object files compiled using this option can be linked
with object files that lock the same or a fewer number of registers. Even files compiled
with the --1lock_regs_compatibility option but not with the --reg_const
option, can be linked with files that do. See --lock regs, page 211.

To create object files that are compatible with as many options as possible, you should
lock 10 registers and specify the --lock_regs_compatibility option, using a data
model with support for short addressing.

The --lock_regs_compatibility compiler option will ensure that files use
compatible calling conventions by not allowing functions with too many arguments to
be defined or called.

Facilitating good code generation

This section contains hints on how to help the compiler generate good code, for
example:

e Using efficient addressing modes
e Helping the compiler optimize

o Generating more useful error message.

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

e Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables

177

Facilitating good code generation

IAR C/C++ Compiler

178 Reference Guide for V850

end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

e Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and thus cannot
be placed in a processor register. This results in larger and slower code. Second, the
optimizer can no longer assume that the local variable is unaffected over function
calls.

o Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also avoid taking the address of frequently accessed
static variables.

o The compiler is capable of inlining functions, see Function inlining, page 174. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 171.

e Avoid using inline assembler. Instead, try writing the code in C/C++, use intrinsic
functions, or write a separate module in assembler language. For more information,
see Mixing C and assembler, page 117.

e Set the heap size to a value which accommodates the needs of the standard I/O
buffer, for example to 1 Kbyte. See Heap size and standard /O, page 76, for more
information.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

e If stack space is limited, avoid long call chains and recursive functions.

e Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

EXTENDING THE CODE SPAN

The Normal and Position-independent code models support a code span of 2 Mbytes.
However, in practice it is possible to use more code than this as long as there is no pair
of caller and called functions that are further away from each other than 2 Mbytes.
FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

e Prototyped

Efficient coding for embedded applications __¢

e Kernighan & Ritchie C (K&R C)

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler option
(--require_prototypes).

Prototyped style
In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{
return i + ch;

}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;

int i;

{

return i + ch;

}

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

179

Facilitating good code generation

180

IAR C/C++ Compiler
Reference Guide for V850

In some cases there might be warnings (for example, for constant conditional or
pointless comparison), in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example an 8-bit character, a 16-bit integer, and two’s complement
is assumed:

void F1 (unsigned char cl)
{

if (cl == ~0x80)
}
Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it cannot
be larger than 255. It also cannot be negative, which means that the integral promoted
value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For sequences of accesses to variables that you do not want to be interrupted, use the
__monitor keyword. This must be done for both write and read sequences, otherwise
you might end up reading a partially updated variable. Accessing a small-sized
volatile variable can be an atomic operation, but you should not rely on it unless you
continuously study the compiler output. It is safer to use the __monitor keyword to
ensure that the sequence is an atomic operation. For more information, see __monitor,
page 246.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 235.

Protecting the eeprom write mechanism

A typical example of when it can be necessary to use the __monitor keyword is when
protecting the eeprom write mechanism, which can be used from two threads (for
example, main code and interrupts). Servicing an interrupt during an EEPROM write
sequence can in many cases corrupt the written data.

Efficient coding for embedded applications __¢

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several V850 devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file, as in this example:

no_init volatile union

{

unsigned short mwctl2;

struct

{
unsigned short edr: 1;
unsigned short edw: 1;
unsigned short lee: 2;
unsigned short lemd: 2;
unsigned short lepl: 2;

} mwctl2bit;
} @ OXFFFF8000;

/* By including the appropriate include file
* it is possible to access either the whole register or any
* individual bit (or bitfields) as follows.

*/

in your code,

from C code

void Test ()

{
/* Whole register access */
mwctl2 = 0x1234;

/* Bitfield accesses */
mwctl2bit.edw = 1;
mwctl2bit.lepl = 3;

}

You can also use the header files as templates when you create new header files for other
V850 devices. For information about the @ operator, see Located data, page 76

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

181

Facilitating good code generation

182

IAR C/C++ Compiler
Reference Guide for V850

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate segment, according to the specified memory keyword. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see no_init, page 247. Note that to use this keyword, language
extensions must be enabled; see -e, page 206. For more information, see also
object_attribute, page 261.

Part 2. Reference
information

This part of the IAR C/C++ Compiler Reference Guide for V850 contains these

chapters:

e External interface details
e Compiler options

e Data representation

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e Library functions

e Segment reference

e Implementation-defined behavior for Standard C

e Implementation-defined behavior for C89.

|h|Li‘|i|H|H

183

ARARATEY

184

External interface details

This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the tools, environment variables, the

include file search procedure, and finally the different types of compiler output.

Invocation syntax

You can use the compiler either from the IDE or from the command line. See the /DE
Project Management and Building Guide for information about using the compiler from
the IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:
iccv850 [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use this command to generate an
object file with debug information:

iccv850 prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler:

e Directly from the command line

Specify the options on the command line after the iccv850 command, either before
or after the source filename; see Invocation syntax, page 185.

185

Include file search procedure

186

Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 186.

Via a text file, using the - £ option; see -f, page 208.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:

C_INCLUDE=c: \program files\iar systems\embedded
workbench 6.n\v850\inc;c:\headers

QCCVv850 Specifies command line options; for example: QCCV850=-1A

asm.lst

Table 28: Compiler environment variables

Include file search procedure

This is a detailed description of the compiler’s #include file search procedure:

IAR C/C++ Compiler
Reference Guide for V850

If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>
it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -/, page 209.

2 The directories specified using the C_INCLUDE environment variable, if any; see
Environment variables, page 186.

3 The automatically set up library system include directories. See --dlib_config,
page 205.

If the compiler encounters the name of an #include file in double quotes, for
example:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

External interface details ___¢

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
iccv850 ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src . h.

dir\src File including current file (src.c).
dir\include As specified with the first -I option.
dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For information about the syntax for including header files, see Overview of the
preprocessor, page 281.

Compiler output
The compiler can produce the following output:

e A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r85.

e Optional list files

Various kinds of list files can be specified using the compiler option -1, see -/, page
209. By default, these files will have the filename extension 1st.

187

Compiler output

188

IAR C/C++ Compiler
Reference Guide for V850

Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 189.

Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 188.

Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

ERROR RETURN CODES

The compiler returns status information to the operating system that can be tested in a
batch file.

These command line error codes are supported:

Code Description

0
|

Compilation successful, but there might have been warnings.

Warnings were produced and the option --warnings_affect_exit_code
was used.

Errors occurred.
Fatal errors occurred, making the compiler abort.

Internal errors occurred, making the compiler abort.

Table 29: Error return codes

External interface details ___¢

Diagnostics

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.
MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levell[tag]: message

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.
SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued, but can be enabled, see --remarks, page 223.

Woarning

A diagnostic message that is produced when the compiler finds a potential programming
error or omission which is of concern, but which does not prevent completion of the
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see page 218.

189

Diagnostics

190

IAR C/C++ Compiler
Reference Guide for V850

Error

A diagnostic message that is produced when the compiler finds a construct which clearly
violates the C or C++ language rules, such that code cannot be produced. An error will
produce a non-zero exit code.

Fatal error

A diagnostic message that is produced when the compiler finds a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the message is issued, compilation terminates. A fatal error will produce
a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 193, for information about the compiler options
that are available for setting severity levels.

See the chapter Pragma directives, for information about the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

o The product name

o The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

Your license number
The exact internal error message text

The source file of the application that generated the internal error

A list of the options that were used when the internal error occurred.

Compiler options

This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and Jong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 185.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specitying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

191

Options syntax

192

IAR C/C++ Compiler
Reference Guide for V850

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac2004=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst
or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

e Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.1lst
in the directory . .\1listings\:

iccv850 prog.c -1 ..\listings\List.lst

Compiler options _¢

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccv850 prog.c -1 ..\listings\

The produced list file will have the default name . .\1istings\prog.lst
o The current directory is specified with a period (.). For example:

iccv850 prog.c -1

/ can be used instead of \ as the directory delimiter.

By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccv850 prog.c -1 -

Additional rules
These rules also apply:

e When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; this example will create a list file called -x:

iccv850 prog.c -1 ---r

e For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:
--diag_warning=Be0001,Be0002
Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options

This table summarizes the compiler command line options:

Command line option Description

--aggressive_inlining Inlines functions more aggressively at the
optimization level High.

--aggressive_unrolling Unrolls loops more aggressively at the
optimization level High.

--allow_misaligned_data_access Allows misaligned data accesses for V850E cores

Table 30: Compiler options summary

193

Summary of compiler options

194

IAR C/C++ Compiler
Reference Guide for V850

Command line option

Description

--c89
--char_is_signed
--char_is_unsigned
--code_model

--cpu

-D

--data_model
--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables

--disable_sld_suppression

--discard_unused_publics

--dlib_config

-e
--ec++
--eec++

--enable_multibytes

--error_limit

-f
--fpu

--guard_calls

--header_context

-I

Specifies the C89 dialect
Treats char as signed

Treats char as unsigned
Specifies the code model
Specifies a specific core
Defines preprocessor symbols
Specifies the data model
Generates debug information
Lists file dependencies

Treats these as errors

Treats these as remarks
Suppresses these diagnostics
Treats these as warnings
Lists all diagnostic messages

Disables suppression of SLD instructions that
could trigger a V850E hardware problem

Discards unused public symbols

Uses the system include files for the DLIB library
and determines which configuration of the library
to use

Enables language extensions
Specifies Embedded C++
Specifies Extended Embedded C++

Enables support for multibyte characters in
source files

Specifies the allowed number of errors before
compilation stops

Extends the command line

Enables the floating-point unit

Enables guards for function static variable
initialization

Lists all referred source files and header files

Specifies include file path

Table 30: Compiler options summary (Continued)

Command line option

Compiler options _¢

Description

-1

--library_module
--lock_regs
--lock_regs_compatibility
-m

--macro_positions_in
_diagnostics

--mfc

--migration_preprocessor

_extensions

--misracl998

--misrac2004

--misrac_verbose

--module_name
--no_clustering
--no_code_motion
--no_cross_call

--no_cse

--no_data_model_rt_attribute

--no_inline

--no_path_in_file_macros

--no_scheduling

--no_size_constraints

--no_static_destruction

Creates a list file

Creates a library module

Locks registers

Permits different register locking levels
Specifies the data model

Obtains positions inside macros in diagnostic
messages

Enables multi-file compilation

Extends the preprocessor

Enables error messages specific to
MISRA-C:1998. See the IAR Embedded
Workbench® MISRA C:1998 Reference Guide.

Enables error messages specific to
MISRA-C:2004. See the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

Sets the object module name

Disables static clustering optimizations
Disables code motion optimization

Disables cross-call optimization

Disables common subexpression elimination

Suppresses the generation of the runtime
attribute for the data model

Disables function inlining

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables the instruction scheduler

Relaxes the normal restrictions for code size
expansion when optimizing for speed.

Disables destruction of C++ static variables at
program exit

Table 30: Compiler options summary (Continued)

195

Summary of compiler options

196

IAR C/C++ Compiler
Reference Guide for V850

Command line option

Description

--no_system_include

--no_tbaa
--no_typedefs_in_diagnostics
--no_unroll
--no_warnings
--no_wrap_diagnostics
-0

-o

--omit_types
--only_stdout
—--output
--predef_macros

--preinclude

--preprocess
--public_equ

-r

--reg_const

--relaxed_fp

--remarks

--require_prototypes

--silent

--strict

--system_include_dir
--use_c++_inline

-v

--vla

--warnings_affect_exit_code

Disables the automatic search for system include
files

Disables type-based alias analysis

Disables the use of typedef names in diagnostics
Disables loop unrolling

Disables all warnings

Disables wrapping of diagnostic messages

Sets the optimization level

Sets the object filename. Alias for --output.
Excludes type information

Uses standard output only

Sets the object filename

Lists the predefined symbols.

Includes an include file before reading the source
file

Generates preprocessor output
Defines a global named assembler label

Generates debug information. Alias for
--debug.

Puts constants in registers

Relaxes the rules for optimizing floating-point
expressions

Enables remarks

Verifies that functions are declared before they
are defined

Sets silent operation

Checks for strict compliance with Standard
C/C++

Specifies the path for system include files
Uses C++ inline semantics in C99
Specifies a specific core

Enables C99 VLA support

Warnings affect exit code

Table 30: Compiler options summary (Continued)

Compiler options _¢

Command line option Description

--warnings_are_errors Warnings are treated as errors

Table 30: Compiler options summary (Continued)

Descriptions of compiler options
The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
& options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--aggressive_inlining

Syntax --aggressive_inlining

Description Use this option to make the compiler inline more functions. This might reduce execution
time in some cases, but often increases the code size. The resulting code becomes more
difficult to debug.

See also Inlining functions, page 63

Project>Options>C/C++ Compier>Optimizations

--aggressive_unrolling

Syntax --aggressive_unrolling

Description Use this option to make the compiler perform more aggressive loop unrolling. This
might reduce execution time in some cases, but increases the code size. The resulting
code becomes more difficult to debug.

See also Loop unrolling, page 173

Project>Options>C/C++ Cmpiler>Optimizations

197

Descriptions of compiler options

--allow_misaligned_data_access

Syntax --allow_misaligned_data_access

Description This option makes it possible to access misaligned data objects on any V850E core. The
option can be used in conjunction with the #pragma pack directive for structs with
misaligned members.

Typically, using this option is more efficient than a normal access to a packed structure.
However, a misaligned access is slower than an aligned access.
See also #pragma pack, page 262 for more information about using the #pragma pack directive.

Project>Options>C/C++ Compiler>Optimizations>Enable misaligned data access

--c89
Syntax --c89
Description Use this option to enable the C89 C dialect instead of Standard C.
Note: This option is mandatory when the MISRA C checking is enabled.
See also C language overview, page 145.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

--char_is_signed
Syntax --char_is_signed
Description By default, the compiler interprets the plain char type as unsigned. Use this option to

make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

IAR C/C++ Compiler
198 Reference Guide for V850

Compiler options _¢

--char_is_unsigned

Syntax --char_is_unsigned

Description Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--code_model

Syntax --code_model={normal |pic|large}

Parameters
normal (default) Allows for up to 2 Mbytes of memory

pic Allows for position-independent code in up to 2 Mbytes of
memory
large Allows for up to 4 Gbytes of memory
Description Use this option to select the code model for which the code is to be generated. The

position-independent code (pic) can be placed anywhere in memory. If you do not select
a code model, the compiler uses the default code model. Note that all modules of your
application must use the same code model.

See also Code models, page 53.

Project>Options>General Options>Target>Code model

--cpu
Syntax --cpu={v850|v850e|v850e2|v850e2m|v850e2s}
Parameters
v850 (default) Specifies the V850 core
v850e Specities the V850E and V850ES cores
v850e2 Specifies the V850E2 core
v850e2m Specifies the V8S0E2M core

199

Descriptions of compiler options

Description

Syntax

Parameters

Description

--data_model, -m

Syntax

Parameters

IAR C/C++ Compiler
200 Reference Guide for V850

v850e2s Specifies the V850E2S core

The compiler supports different cores of the V850 microcontroller family. Use this
option (or -v) to select which of these cores for which the code is to be generated. If you
do not choose a processor core, the compiler will compile for the V850 core.

Project>Options>General Options>Target>Device

-D symbol[=value]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specity the = sign but nothing after, for example:

-DFO0=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model={t|T|s|S|m|M|1|L}

t Specifies the tiny data model

Description

See also

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

Compiler options _¢

T Specifies the tiny data model with short addressing

s (default) Specifies the small data model

S Specifies the small data model with short addressing

m Specifies the medium data model

M Specifies the medium data model with short addressing
1 Specifies the large data model

L Specifies the large data model with short addressing

Use this option (or -m) to select the data model, which means a default placement of data
objects. If you do not select a data model, the compiler uses the default data model. Note
that all modules of your application must use the same data model.

Data models, page 44.

Project>Options>General Options>Target>Data model

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.
Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies[=[1i|m]] {filename|directory}
i (default) Lists only the names of files
m Lists in makefile style

201

Descriptions of compiler options

202

Description

Example

--diag_error

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide for V850

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 192.

Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\lar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

foo.r85: c:\iar\product\include\stdio.h
foo.r85: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

Set up the rule for compiling files to be something like:

%$.r85 : %.c
$(ICC) S$(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension . d).

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)
Because of the dash (-) it works the first time, when the . d files do not yet exist.

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pell7

Compiler options _¢

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example the

message number Pel77

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress
Syntax --diag_suppress=tagl, tag, .. .]
Parameters
tag The number of a diagnostic message, for example the
message number Pell7
Description Use this option to suppress certain diagnostic messages. These messages will not be

displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

203

Descriptions of compiler options

--diag_warning

Syntax

Parameters

Description

--diagnostics_tables

Syntax

Parameters

Description

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pe826

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ CompilerLinker>Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 192.

Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

--disable_sld_suppression

Syntax

Description

IAR C/C++ Compiler
204 Reference Guide for V850

--disable_sld_suppression

A hardware conflict can occur in V850E cores for certain code sequences involving the
SLD instruction. The compiler compensates for this hardware problem automatically by
not generating these code sequences. Use this option to override this behavior.

Project>Options>C/C++ Compiler>Code>Disable SLD instruction suppression

Compiler options _¢

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.
Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output.

See also --mfc, page 212 and Multi-file compilation units, page 171.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config

Syntax --dlib_config filename.h|config

Parameters
filename A DLIB configuration header file. For information about
specifying a filename, see Rules for specifying a filename or
directory as parameters, page 192.

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.

Description Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
v850\1ib. For examples and information about prebuilt runtime libraries, see Using a
prebuilt library, page 83.

205

Descriptions of compiler options

206

Syntax

Description

See also

-=ec++
Syntax

Description

-=eec++

Syntax

Description

IAR C/C++ Compiler
Reference Guide for V850

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 94.

To set related options, choose:

Project>Options>General Options>Library Configuration

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.

Enabling language extensions, page 147.
Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

-—ec++
In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.
Project>Options>C/C++ Compiler>Language 1>C++

and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>Embedded C++

--eec++

In the compiler, the default language is C. If you take advantage of Extended Embedded
C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

See also

--enable_multibytes

Syntax

Description

--error_limit

Syntax

Parameters

Description

Compiler options _¢

Extended Embedded C++, page 154.
Project>Options>C/C++ Compiler>Language 1>C++
and

Project>Options>C/C++ Compiler>Language 1>C++ dialect>Extended
Embedded C++

--enable_multibytes

By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language 2>Enable multibyte support

-—error_limit=n

n The number of errors before the compiler stops the
compilation. n must be a positive integer; 0 indicates no
limit.

Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

207

Descriptions of compiler options

Syntax

Parameters

Description

--fpu
Syntax

Parameters

Description

--guard_calls

Syntax

Description

IAR C/C++ Compiler
208 Reference Guide for V850

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 192.

Use this option to make the compiler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu={auto|single|double}

auto (default) Uses the best FPU setting for the selected CPU.
single Uses the floating-point unit for 32-bit operation.

double Uses the floating-point unit for all operations.

Use this option to enable the floating-point unit.

Project>Options>General Options>Target>FPU

--guard_calls
Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

Note: This option requires a threaded C++ environment, which is not supported in the
IAR C/C++ Compiler for V850.

--header_context

Syntax

Description

-1
Syntax

Parameters

Description

See also

-1
Syntax

Parameters

Compiler options _¢

This option is not available in the IDE.

--header_context
Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic

message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

-1 path

path The search path for #include files

Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

Include file search procedure, page 186.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-1[a|A|b|B|c|C|D]IN][H] {filename|directory}

a (default) Assembler list file

A Assembler list file with C or C++ source as comments

209

Descriptions of compiler options

Description

--library_module

Syntax

Description

IAR C/C++ Compiler
210 Reference Guide for V850

b Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

B Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

c C or C++ list file
C (default) C or C++ list file with assembler source as comments
D C or C++ list file with assembler source as comments, but

without instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 192.

Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--library_module

Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will
only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Module type>Library Module

--lock_regs

Syntax

Parameters

Description

See also

Compiler options _¢

--lock_regs={0]2]|6|10}

0 No registers are locked

2 Locks registers R18-R19
6 Locks registers R17-R22
10 Locks registers R15-R24

Normally R1 and R5-R29 are available for the compiler to use.
Use this option to prevent the compiler from using a specific set of registers.
Note that the register R2 is free to use by an operating system, because it is not used by

the compiler at all.

Register locking and register constants, page 176 and --lock regs compatibility, page
211.

Project>Options>C/C++ Compiler>Code>Use of registers

--lock_regs_compatibility

Syntax

Description

See also

--lock_regs_compatibility

Use this option to be able to link the module being compiled with object files that lock
fewer registers than the module. Those object files can also use register constants, even
if no register constants are used for this module.

This option does not allow definitions or functions that are not compatible when
different register locking levels are used. In practice this means an upper limit to the
number of parameters to functions.

The --lock_regs_compatibility option is well suited for use by a third-party
library provider to keep down the number of required configurations.

Compatibility issues, page 177 and --lock regs, page 211.

Project>Options>C/C++ Compiler>Code>Use of register

211

Descriptions of compiler options

--macro_positions_in_diagnostics

Syntax --macro_positions_in_diagnostics

Description Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccv850 myfilel.c myfile2.c myfile3.c --mfc

See also --discard_unused_publics, page 205, --output, -o, page 220, and Multi-file compilation
units, page 171.

Project>Options>C/C++ Compiler>Multi-file compilation

--migration_preprocessor_extensions

Sym:ax --migration_preprocessor_extensions

Description If you need to migrate code from an earlier IAR Systems C or C/C++ compiler, you
might want to use this option. Use this option to use the following in preprocessor
expressions:

e Floating-point expressions
e Basic type names and sizeof

e All symbol names (including typedefs and variables).

IAR C/C++ Compiler
212 Reference Guide for V850

--module_name

Syntax

Parameters

Description

--no_clustering

Syntax

Description

See also

Compiler options _¢

Note: If you use this option, not only will the compiler accept code that does not
conform to the ISO/ANSI C standard, but it will also reject some code that does conform
to the standard.

Important! Do not depend on these extensions in newly written code, because support
for them might be removed in future compiler versions.

Project>Options>C/C++ Compiler>Language>Enable IAR migration
preprocessor extensions

--module_name=name

name An explicit object module name

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

--no_clustering

Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization levels below Medium.

Static clustering, page 175.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

213

Descriptions of compiler options

--no_code_motion
Syntax --no_code_motion

Description Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

See also Code motion, page 174.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cross_call

Syntax --no_cross_call

Description Use this option to disable the cross-call optimization.
Note: This option has no effect at optimization levels below High, or when optimizing
Balanced or for Speed, because cross-call optimization is not enabled then.

See also Cross call, page 175 .

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross call

--NO_cse
Syntax --no_cse
Description Use this option to disable common subexpression elimination.
Note: This option has no effect at optimization levels below Medium.
See also Common subexpression elimination, page 173.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

IAR C/C++ Compiler
214 Reference Guide for V850

Compiler options _¢

--no_data_model_rt_attribute

Syntax

Description

--no_inline

Syntax
Description

See also

--no_data_model_rt_attribute

Suppresses the generation of the runtime attribute for the data model. This is useful
when compiling a file that might be used together with other files built using other data
models, for example when providing a third-party library.

Note that great care must be taken to ensure that nothing that is provided to other
modules rely on the selected data model, in particular global variables without an
explicit memory attribute.

For example, the prebuilt libraries are built using this option.

To set this option, use Project>Options>C/C++ Compiler>Extra options

--no_inline
Use this option to disable function inlining.

Inlining functions, page 63.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax

Description

See also

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

Description of predefined preprocessor symbols, page 282.

This option is not available in the IDE.

215

Descriptions of compiler options

216

--no_scheduling

Syntax

Description

See also

--NO_size_constraints

Syntax

Description

See also

--no_static_destruction

Syntax

Description

IAR C/C++ Compiler
Reference Guide for V850

--no_scheduling

Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

Instruction scheduling, page 176.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

--no_size_constraints
Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -0Ohs.

Speed versus size, page 173.

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_static_destruction

Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_system_include

Syntax

Description

See also

--no_tbaa

Syntax

Description

See also

Compiler options _¢

--no_system_include

By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 compiler option.

--dlib_config, page 205, and --system_include dir, page 224.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa

Use this option to disable type-based alias analysis.

Note: This option has no effect at optimization levels below High.

Type-based alias analysis, page 174.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "foo";
will give an error message like this:

Error([Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

217

Descriptions of compiler options

Error([Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll
Syntax --no_unroll

Description Use this option to disable loop unrolling.

Note: This option has no effect at optimization levels below High.

See also Loop unrolling, page 173.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

Syntax --no_warnings
Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

IAR C/C++ Compiler
218 Reference Guide for V850

Syntax

Parameters

Description

See also

--omit_types

Syntax

Description

Compiler options _¢

-0[n|l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*The most important difference between None and Low is that at None, all non-static
variables will live during their entire scope.

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.
Controlling compiler optimizations, page 170.

Project>Options>C/C++ Compiler>Optimizations

--omit_types

By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

219

Descriptions of compiler options

--only_stdout

Syntax

Description

--output, -o

Syntax
Parameters

Description

--predef_macros

Syntax

Parameters

Description

IAR C/C++ Compiler
220 Reference Guide for V850

--only_stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output {filename|directory}
-0 {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a

filename or directory as parameters, page 192.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r85. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--predef_macros {filename|directory}

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 192.

Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

Note that this option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude

Syntax

Parameters

Description

--preprocess

Syntax

Parameters

Description

--public_equ

Syntax

Parameters

Compiler options _¢

--preinclude includefile

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 192.

Use this option to make the compiler read the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess([=[c] [n] [1]] {filename|directory}
c Preserve comments

n Preprocess only

1 Generate #1ine directives

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 192.

Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ symbol[=value]

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol

221

Descriptions of compiler options

222

Description

--reg_const

Syntax

Description

Example

See also

--relaxed_fp

Syntax

Description

IAR C/C++ Compiler
Reference Guide for V850

This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

--reg_const

Use this option with the V850 core (--cpu=v850) to permanently load the two numbers
255 (0xFF) and 65535 (0xFFFF) into the two dedicated registers R18 and R19. This
enables the compiler to generate more efficient code.

Note: This option should not be used with the V850E core and higher.

On the V850 microcontroller, the 4-byte instruction is normally used for zero-extending
a character to full register width:

ANDI 0x000000FF,R1,R1

When the --reg_const option is used, the following 2-byte instruction is generated
instead:

AND R18, R1

To use this feature, at least two registers must be locked with the --1ock_regs option.

Register locking and register constants, page 176.

Project>Options>C/C++ Compiler>Code>Use of registers

--relaxed_fp

Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

o The expression consists of both single- and double-precision values

o The double-precision values can be converted to single precision without loss of
accuracy

Example

--remarks

Syntax

Description

See also

--require_prototypes

Syntax

Description

Compiler options _¢

e The result of the expression is converted to single precision.
Note that performing the calculation in single precision instead of double precision

might cause a loss of accuracy.

float F(float a, float b)
{
return a + b * 3.0;

}

The C standard states that 3. 0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_f£p optionis used, 3.0 will be converted to £1oat and the whole expression
can be evaluated in £loat precision.

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Severity levels, page 189.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes
Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

223

Descriptions of compiler options

--silent

Syntax

Description

--strict

Syntax

Description

See also

--system_include_dir

Syntax

Parameters

IAR C/C++ Compiler
224 Reference Guide for V850

e An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--silent

By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strict

By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

Enabling language extensions, page 147.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--system_include_dir path

path The path to the system include files. For information about
specifying a path, see Rules for specifying a filename or
directory as parameters, page 192.

Compiler options _¢

Description By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

See also --dlib_config, page 205, and --no_system_include, page 217.

This option is not available in the IDE.

--use_c++_inline

Syntax --use_c++_inline

Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.
See also Inlining functions, page 63

Project>Options>C/C++ Compiler>Language 1>C dialect>C99>C++ inline
semantics

'

Syntax -v={0]1|2]3]4}

Parameters
0 (default) Specifies the V850 core
1 Specifies the V850E and V850ES cores
2 Specifies the V850E2 core
3 Specifies the V850E2M core
4 Specifies the V850E2S core

Description The compiler supports different cores of the V850 microcontroller family. Use this

option (or --cpu) to select which of these cores for which the code is to be generated.
If you do not choose a processor core, the compiler will compile for the V850 core.

Project>Options>General Options>Target>Device

225

Descriptions of compiler options

--via

Syntax

Description

See also

--vla

Use this option to enable support for C99 variable length arrays. Such arrays are located
on the heap. This option requires Standard C and cannot be used together with the
--c89 compiler option.

Note: --v1a should not be used together with the 1ongjmp library function, as that can
lead to memory leakages.
C language overview, page 145.

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

IAR C/C++ Compiler
226 Reference Guide for V850

--warnings_affect_exit_code
By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

--diag_warning, page 204.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

Data representation

This chapter describes the data types, pointers, and structure types supported
by the compiler.

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack. However, the code needed to access a packed structure
is typically much more inefficient than the code for accessing an aligned structure.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
234.

Note that with the #pragma data_alignment directive you can increase the
alignment demands on specific variables.
ALIGNMENT ON THE V850 MICROCONTROLLER

The V850 microcontroller can access 4-byte objects using a single assembler instruction
only when the object is stored at an address divisible by 4. For the same reason, 2-byte
objects must be stored at addresses divisible by 2.

227

Basic data types

Basic data types

The compiler supports both all Standard C basic data types and some additional types.

INTEGER TYPES

This table gives the size and range of each integer data type:

Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32 bits -32768 to 32767 4
unsigned int 32 bits 0 to 65535 4
signed long 32 bits 2310231 4
unsigned long 32 bits 0 to 232.] 4
signed long long 64 bits 28310 283 4
unsigned long long 64 bits 0 to 2841 4

Table 31: Integer types

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The long long type

The long long data type is supported with this restriction:

A long long variable cannot be used in a switch statement.

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

IAR C/C++ Compiler
228 Reference Guide for V850

Data representation __¢

When TAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long, unsigned long, long long, Or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef . h from the
runtime library.

Bitfields

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for V850, plain integer types are treated as signed.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed into a container of its base type from the least significant bit to
the most significant bit. If the last container is of the same type and has enough bits
available, the bitfield is placed into this container, otherwise a new container is
allocated.

If you use the directive #pragma bitfield=reversed, bitfields are placed from the
most significant bit to the least significant bit in each container. See bitfields, page 253.

229

Basic data types

230

IAR C/C++ Compiler
Reference Guide for V850

Example
Assume this example:

struct BitfieldExample
{

uint32_t a 12;
uintlé_t b : 3;
uintlé_t c : 7;
uint8_t d;

}i

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

The fourth member, 4, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order , each bitfield is instead placed starting from the most
significant bit of its container.

This is the layout of bitfield_example:

MSB LSB MSB LsB
uint32_t a uintl6_t c |b = padding
MSE LSB MsB LSB MSB LS8 MSB LSB MsB LSB MSB LB MsB LSB
a c b c d
| 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB
a a c b c d reversed

~_MSB .
uint32_t a uintlé6_t | b| ¢

MSB LSB/,'"

Data representation __¢

FLOATING-POINT TYPES

In the IAR C/C++ Compiler for V850, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

Type Size Alignment
float 32 bits 4
double 64 bits 4
long double 64 bits 4

Table 32: Floating-point types

The compiler supports subnormal numbers, but not the floating-point unit (FPU). When
using the FPU, operations that should produce subnormal numbers will instead generate
Zero.

Floating-point environment

Exception flags are not supported. The feraiseexcept function does not raise any
exceptions.

32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

31 30 2322 0
‘S ‘Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)8 * 2(Exponent-127) x 1 Mantissa
The range of the number is at least:
+1.18E-38 to *#3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

63 62 5251 0
’S ‘Exponent Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.

231

Pointer types

232

The value of the number is:

(_1)5 * 2(Exponent71023) * 1 . Mantissa

The range of the number is at least:
+2.23E-308 to +1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers
This list describes the representation of special floating-point numbers:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

e Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)S » 2(1-BIAS) % g Mantissa

where BIaS is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.

Note: The floating-point unit (FPU) does not support subnormal numbers. Instead,
operations that should have resulted in a subnormal number return zero.

Pointer types

IAR C/C++ Compiler
Reference Guide for V850

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The size of function pointers is always 32 bits, and they can address the entire memory.

DATA POINTERS

The size of data pointers is always 32 bits, and they can address the entire memory.

Data representation __¢

CASTING

Casts between pointers have these characteristics:

e Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

e Casting a value of an integer type to a pointer of a larger type is performed by sign
extension

Casting a pointer type to a smaller integer type is performed by truncation
Casting a pointer type to a larger integer type is performed by zero extension

Casting a data pointer to a function pointer and vice versa is illegal

Casting a function pointer to an integer type gives an undefined result.

size t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the IAR C/C++ Compiler for V850, the size of size_t is 32 bits.

ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the IAR C/C++ Compiler for V850, the size
of ptrdiff_t is 32 bits.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for V850, the size of intptr_t is 32 bits.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types have the same alignment as the member with the highest
alignment requirement. The size of a struct is also adjusted to allow arrays of aligned
structure objects.

233

Structure types

234

IAR C/C++ Compiler
Reference Guide for V850

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Example

struct First
{
char c;
short s;
} os;

This diagram shows the layout in memory:

c pad s

0 | 2 3

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The #pragma pack directive is used for relaxing the alignment requirements of the
members of a structure. This changes the layout of the structure. The members are
placed in the same order as when declared, but there might be less pad space between
members.

Note that accessing an object that is not correctly aligned requires code that is both
larger and slower. If such structure members are accessed many times, it is usually better
to construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

Data representation __¢

Example
This example declares a packed structure:

#pragma pack(1l)
struct S
{
char c;
short s;
}i

#pragma pack()

In this example, the structure s has this memory layout:

c S

0 | 2

This example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2

{
struct S s;
long 1;

Y

52 has this memory layout

c s pad 1

0 | 2 3 4 5 6 7

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 4, which means that alignment of
the structure 52 will become 4.

For more information, see Alignment of elements in a structure, page 164.

Type qualifiers

According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any
accesses can have side effects—thus all accesses to the volatile object must be
preserved.

235

Type qualifiers

236

IAR C/C++ Compiler
Reference Guide for V850

There are three main reasons for declaring an object volatile:
e Shared access; the object is shared between several tasks in a multitasking
environment

e Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

o Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

e The compiler considers each read and write access to an object declared volatile
as an access

o The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a =>5; /* A write access */
a += 6; /* First a read then a write access */

e An access to a bitfield is treated as an access to the underlying type

e Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for V850 are described
below.

Rules for accesses

In the IAR C/C++ Compiler for V850, accesses to volatile declared objects are
subject to these rules:

All accesses are preserved
All accesses are complete, that is, the whole object is accessed

°
°
o All accesses are performed in the same order as given in the abstract machine
°

All accesses are atomic, that is, they cannot be interrupted.

The compiler adheres to these rules for all accesses to 8-bit, 16-bit, and 32-bit objects.

Data representation __¢

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, follow this example:

/* Header */
extern int const xVar;
#define x (* (int const volatile *) &xVar)

/* Source that uses x */
int DoSomething ()
{

return x;

/* Source that defines x */
#pragma segment = "FLASH"
int const xVar @ "FLASH" = 6;

The segment FLASH contains the initializers. They must be flashed manually when the
application starts up.

Thereafter, the initializers can be reflashed with other values at any time.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const and located in all memory types except saddr
are allocated in read-only memory. For saddr, the objects are allocated in RAM and
initialized by the runtime system at startup.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions

237

Data types in C++

can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.

IAR C/C++ Compiler
238 Reference Guide for V850

Extended keywords

This chapter describes the extended keywords that support specific features
of the V850 microcontroller and the general syntax rules for the keywords.
Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar

with some related concepts.

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the V850 microcontroller. There are two types of
attributes—t#ype attributes and object attributes:

e Type attributes affect the external functionality of the data object or function
e Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For more information about each attribute, see Descriptions of extended
keywords, page 243.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

@ Use the -e compiler option to enable language extensions. See -e, page 206 for more
information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

239

General syntax rules for extended keywords

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcontroller.

brel brel23 huge, and

Jp—

e Available data memory attributes: __near
_ _saddr.

S —— s ——

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is
implicitly used by the compiler. You can specify one memory attribute for each level of
pointer indirection.

General type attributes
These general type attributes are available:

® Function type attributes affect how the function should be called: __interrupt,

__monitor, __task,__trap, callt,and __syscall

® Data type attributes: __no_bit_access.

You can specify as many type attributes as required for each level of pointer indirection.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the__huge type attribute to the variables i and j; in
other words, the variables i and j are placed in huge memory. However, note that an
individual member of a struct or union cannot have a type attribute. The variables k
and 1 behave in the same way:

__huge int i, 3j;
int __huge k, 1;

Note that the attribute affects both identifiers.

IAR C/C++ Compiler
240 Reference Guide for V850

Extended keywords __4

This declaration of i and 7 is equivalent with the previous one:
#pragma type_attribute=__huge
int i, 3;

The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 49.

An easier way of specifying storage is to use type definitions. These two declarations
are equivalent:

typedef char __huge Byte;
typedef Byte *BytePtr;
Byte b;

BytePtr bp;

and

__huge char b;
char __huge *bp;

Note that #pragma type_attribute can be used together with a typedef
declaration.

Syntax for type attributes on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__interrupt void my_handler (void) ;

or

void (__interrupt my_handler) (void) ;

This declaration of my_handler is equivalent with the previous one:
#pragma type_attribute=__interrupt

void my_handler (void) ;

OBJECT ATTRIBUTES

Normally, object attributes affect the internal functionality of functions and data objects,
but not directly how the function is called or how the data is accessed. This means that
an object attribute does not normally need to be present in the declaration of an object.

241

Summary of extended keywords

242

These object attributes are available:

o Object attributes that can be used for variables: __no_init

e Object attributes that can be used for functions and variables: location, @, and

__root

e Object attributes that can be used for functions: __flat, _intrinsic,

__noreturn, and vector.

You can specify as many object attributes as required for a specific function or data

object.

For more information about location and e, see Controlling data and function

placement in memory, page 167. For more information about vector, see vector, page

269.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray

in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init

int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords

This table summarizes the extended keywords:

Extended keyword

Description

__brel
__brel23
__callt
__flat
__huge
__interrupt
__intrinsic

__monitor

Controls the storage of data objects

Controls the storage of data objects

Controls the storage of functions for the V850E cores
Inhibits saving certain processor registers

Controls the storage of data objects

Specifies interrupt functions

Reserved for compiler internal use only

Specifies atomic execution of a function

Table 33: Extended keywords summary

IAR C/C++ Compiler
Reference Guide for V850

Extended keywords __4

Extended keyword Description

_ _near Controls the storage of data objects

__no_bit_access Prevents bit-instruction accessing of data objects

__no_init Places a data object in non-volatile memory

_ _noreturn Informs the compiler that the function will not return

__root Ensures that a function or variable is included in the object code

even if unused

__saddr Controls the storage of data objects

__syscall Controls the storage of functions for the V850E cores
__task Relaxes the rules for preserving registers

__trap Supports trap functions

Table 33: Extended keywords summary (Continued)

Descriptions of extended keywords

These sections give detailed information about each extended keyword.

__brel

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 239.

Description The __brel memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in base-relative (brel)
memory.

Storage information Address range: 64 Kbytes anywhere in RAM and 64 Kbytes anywhere in ROM

Example __brel int x;

See also Memory types, page 45.

__brel23
Syntax Follows the generic syntax rules for memory type attributes that can be used on data

objects, see Type attributes, page 239.

243

Descriptions of extended keywords

Description

Storage information

Example

See also

__calle

Syntax

Description

Storage information

Example

See also

__flat

Syntax

Description

IAR C/C++ Compiler
244 Reference Guide for V850

The __brel23 memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in base-relative (brel)
memory using the disp23 addressing mode of LD and ST instructions.

This memory attribute is only available for the V850E2M core and above.

Address range: 8 Mbytes anywhere in RAM and 8 Mbytes anywhere in ROM. The
memory is overlayed with the normal brel memory.

__brel23 int x;

Memory types, page 45 and Memory access methods, page 134.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 239.

All V850E cores have a call table that can be used for storing 64 function pointers. Calls
to such functions can then be performed by executing a CALLT instruction.

The __callt memory attribute places individual functions in the call table.

A call table function which is declared without a #pragma vector directive cannot be
called directly from a C/C++ program.

Vector range: 0-63

Declaring a callt function using call table vector 0x25:

#pragma vector=0x25
__callt void my_callt_function(int my_int);

Callt functions, page 58.

Follows the generic syntax rules for object attributes, see Object attributes, page 241.

The __flat keyword can be used in the definition of a trap, interrupt, callt, or syscall
function to inhibit the generation of code that stores and restores special processor
registers at the entry and leave code, respectively.

Example

See also

__huge

Syntax
Description

Storage information

Example

See also

__interrupt

Syntax

Description

Example

See also

Extended keywords __4

Note: You should not use this keyword if the system is supposed to handle nested
interrupts, or if the trap or callt function could—directly or indirectly—call another trap
or callt function.

__flat __interrupt void my_int_func (void)

Primitives for interrupts, concurrency, and OS-related programming, page 55

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 239.

The __huge memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in huge memory.

e Address range: Anywhere in memory

e Maximum object size: 4 Gbytes

_huge int x;

Memory types, page 45.

Follows the generic syntax rules for type attributes that can be used on functions, see
DBpe attributes, page 239.

The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. Itis possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.

#pragma vector=0x70
__interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 55, vector, page 269, and INTVEC, page 310.

245

Descriptions of extended keywords

246

__intrinsic

Description

___monitor

Syntax

Description

Example

See also

__near

Syntax

Description

Storage information
Example

See also

__no_bit_access

Syntax

IAR C/C++ Compiler
Reference Guide for V850

The __intrinsic keyword is reserved for compiler internal use only.

Follows the generic syntax rules for type attributes that can be used on functions, see
DBype attributes, page 239.

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

__monitor int get_lock(void) ;
Monitor functions, page 59. For information about related intrinsic functions, see

__disable_interrupt, page 274, _enable_interrupt, page 274, get interrupt state,
page 275,and __ set_interrupt state, page 279, respectively.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 239.

The __near memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in near memory. You
can also use the __near attribute to create a pointer explicitly pointing to an object
located in the near memory.

Address range: 0x0-07FFF and 0xFFFF8000-0xFFFFFFFF (64 Kbytes)

__near int x;

Memory types, page 45.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 239.

Extended keywords __4

Description Data objects declared with the __no_bit_access keyword will not be accessed using
bit instructions. The main use of this keyword is to declare memory-mapped peripheral
units that do not support bit access.

Example __no_bit_access int x;

__no_init
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 241.
Description Usethe __no_init keyword to place a data object in non-volatile memory. This means

that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray([10];

___noreturn
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 241.
Description The __noreturn keyword can be used on a function to inform the compiler that the

function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Example __noreturn void terminate(void);

__root
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 241.
Description A function or variable with the __root attribute is kept whether or not it is referenced

from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];

See also For more information about modules, segments, and the link process, see the [4R Linker
and Library Tools Reference Guide.

247

Descriptions of extended keywords

__saddr

Syntax

Description

Storage information

Example

See also

__syscall

Syntax

Description

Storage information

Example

See also

IAR C/C++ Compiler
248 Reference Guide for V850

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 239.

The __saddr memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in short addressing

(saddr) memory. You can also use the __saddr attribute to create a pointer explicitly
pointing to an object located in the short addressing memory.

e Address range: From processor register R30 (EP) and 256 bytes onward.

e Maximum object size: 256 bytes (128 bytes for objects that require byte access).
__saddr int x;

Memory types, page 45.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 239.

All V850E2M and newer cores have a syscall table that can be used for storing 256
function pointers. Calls to such functions can then be performed by executing a
SYSCALL instruction.

The __syscall memory attribute places individual functions in the syscall table.
A syscall table function which is declared without a #pragma vector directive cannot
be called directly from a C/C++ program.

Vector range: 0-255

Declaring a syscall function using syscall table vector 0x25:

#pragma vector=0x25
syscall void my_syscall_function(int my_int) ;

Syscall functions, page 58.

Extended keywords __4

__task

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 239.

Description This keyword allows functions to relax the rules for preserving registers. Typically, the
keyword is used on the start function for a task in an RTOS.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __task do not save all
registers, and therefore require less stack space.

Because a function declared __task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

Example __task void my_handler (void) ;

__trap

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 239.

Description A trap function is called and then executed by the TRAP assembler instruction and
returned by the EIRET or RETI instruction, depending on which core you are using. To
specify one or several vectors, use the #pragma vector directive. See the chip
manufacturer’s hardware documentation for information about the trap vector range. If
a trap vector is not given, an error will be issued if the function is called. A trap function
can take parameters and return a value and it has the same calling convention as other
functions. You can call the trap functions from your C or C++ application.

Example #pragma vector=0x0B
__trap int my_trap_function(void) ;

See also Calling convention, page 124 and Trap functions, page 57.

249

Descriptions of extended keywords

IAR C/C++ Compiler
250 Reference Guide for V850

Pragma directives

This chapter describes the pragma directives of the compiler.

The #tpragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members
constseg Places constant variables in a named segment.
data_alignment Gives a variable a higher (more strict) alignment
dataseg Places variables in a named segment.
diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
error Signals an error while parsing

include_alias Specifies an alias for an include file

inline Controls inlining of a function

language Controls the IAR Systems language extensions
location Specifies the absolute address of a variable, or places

groups of functions or variables in named segments

Table 34: Pragma directives summary

251

Summary of pragma directives

252

IAR C/C++ Compiler

Reference Guide for V850

Pragma directive

Description

message
no_epilogue
object_attribute
optimize

pack

__printf_args

required

rtmodel

__scanf_args

section

segment

STDC CX_LIMITED_RANGE

STDC FENV_ACCESS

STDC FP_CONTRACT

type_attribute

unroll

vector

Prints a message

Inlines the prologue and epilogue sequences

Changes the definition of a variable or a function
Specifies the type and level of an optimization

Specifies the alignment of structures and union members

Verifies that a function with a printf-style format string is
called with the correct arguments

Ensures that a symbol that is needed by another symbol is
included in the linked output

Adds a runtime model attribute to the module

Verifies that a function with a scanf-style format string is
called with the correct arguments

This directive is an alias for #pragma segment
Declares a segment name to be used by intrinsic functions

Specifies whether the compiler can use normal complex
mathematical formulas or not

Specifies whether your source code accesses the
floating-point environment or not.

Specifies whether the compiler is allowed to contract
floating-point expressions or not.

Changes the declaration and definitions of a variable or
function

Unrolls loops

Specifies the vector of an interrupt or trap function

Table 34: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page

324.

Pragma directives __4

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

bitfields
Symax #pragma bitfields={reversed|default}
Parameters
reversed Bitfield members are placed from the most significant bit to
the least significant bit.
default Bitfield members are placed from the least significant bit to
the most significant bit.
Description Use this pragma directive to control the order of bitfield members.
Example #pragma bitfields=reversed
/* Structure that uses reversed bitfields. */
struct S
{
unsigned char error : 1;
unsigned char size : 4;
unsigned short code : 10;
Y
#pragma bitfields=default /* Restores to default setting. */
See also Bitfields, page 229.
constseg
Symax #pragma constseg:[__memoryattribute]{SEGMENT;NAME|default}
Parameters

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is
used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment for constants.

253

Descriptions of pragma directives

254

Description

Example

data_alignment

Syntax

Parameters

Description

dataseg

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide for V850

Use this pragma directive to place constant variables in a named segment. The segment
name cannot be a segment name predefined for use by the compiler and linker. The
setting remains active until you turn it off again with the #pragma constseg=default
directive.

#pragma constseg=__near MY_CONSTANTS
const int factorySettings([] = {42, 15, -128, 0};
#pragma constseg=default

#pragma data_alignment=expression

expression A constant which must be a power of two (1, 2, 4, etc.).

Use this pragma directive to give a variable a higher (more strict) alignment of the start
address than it would otherwise have. This directive can be used on variables with static
and automatic storage duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can thus be used for creating situations where the size is not a
multiple of the alignment.

#pragma dataseg=[__memoryattributel] { SEGMENT NAME|default}

__memoryattribute An optional memory attribute denoting in what memory the

segment will be placed; if not specified, default memory is
used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment.

Description

Example

diag default

Syntax

Parameters

Description

See also

diag _error

Syntax

Parameters

Description

See also

Pragma directives __4

Use this pragma directive to place variables in a named segment. The segment name
cannot be a segment name predefined for use by the compiler and linker. The variable
will not be initialized at startup, and can for this reason not have an initializer, which
means it must be declared __no_init. The setting remains active until you turn it off
again with the #pragma dataseg=default directive.

#pragma dataseg=__near MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

#pragma diag_default=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pel77.

Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags.

Diagnostics, page 189.

#pragma diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pel77.

Use this pragma directive to change the severity level to error for the specified
diagnostics.

Diagnostics, page 189.

255

Descriptions of pragma directives

diag remark

Syntax

Parameters

Description
See also

diag suppress

Syntax

Parameters

Description

See also

diag_warning
Syntax
Parameters

Description

See also

IAR C/C++ Compiler
256 Reference Guide for V850

#pragma diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pel77.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

Diagnostics, page 189.

#pragma diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pell7.

Use this pragma directive to suppress the specified diagnostic messages.

Diagnostics, page 189.

#pragma diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the
message number Pe826.

Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

Diagnostics, page 189.

Pragma directives __4

error

S)’ntax #pragma error message

Parameters
message A string that represents the error message.

Description Use this pragma directive to cause an error message when it is parsed. This mechanism
is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

Example #if FOO_AVAILABLE
#define FOO
#else
#define FOO _Pragma("error\"Foo is not available\"")

#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

include_alias

Symax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters
orig_header The name of a header file for which you want to create an
alias.

subst_header The alias for the original header file.

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to arelative
file.

This pragma directive must appear before the corresponding #include directives and

subst_header must match its corresponding #include directive exactly.

Exmnph #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

257

Descriptions of pragma directives

258

See also

inline
Syntax

Parameters

Description

See also

language
Syntax

Parameters

IAR C/C++ Compiler
Reference Guide for V850

Include file search procedure, page 186.

#pragma inline[:forced|:never]

No parameter Has the same effect as the inline keyword.
forced Disables the compiler’s heuristics and forces inlining.
never Disables the compiler’s heuristics and makes sure that the

function will not be inlined.

Use #pragma inline to advise the compiler that the function defined immediately after
the directive should be inlined according to C++ inline semantics.

Specifying #pragma inline=forced will always inline the defined function. If the
compiler fails to inline the function for some reason, for example due to recursion, a
warning message is emitted.

Inlining is normally performed only on the High optimization level. Specifying
#pragma inline=forced will enable inlining of the function also on the Medium
optimization level.

Inlining functions, page 63

#pragma language={extended|default|save|restore}

extended Enables the IAR Systems language extensions from the first
use of the pragma directive and onward.

default From the first use of the pragma directive and onward,
restores the settings for the IAR Systems language
extensions to whatever that was specified by compiler
options.

Description

Example

See also

location

Syntax

Parameters

Description

Pragma directives __4

save|restore Saves and restores, respectively, the IAR Systems language
extensions setting around a piece of source code.

Each use of save must be followed by a matching restore
in the same file without any intervening #include directive.

Use this pragma directive to control the use of language extensions.

At the top of a file that needs to be compiled with IAR Systems extensions enabled:

#pragma language=extended
/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR Systems
extensions enabled, but where the state before the sequence cannot be assumed to be the
same as that specified by the compiler options in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

-e, page 206 and --strict, page 224.

#pragma location:{address|NAME}

address The absolute address of the global or static variable for which
you want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a segment for placing either a variable or a function whose declaration
follows the pragma directive. Do not place variables that would normally be in different
segments (for example, variables declared as __no_init and variables declared as
const) in the same named segment.

259

Descriptions of pragma directives

260

Example

See also

message

Syntax

Parameters

Description

Example

no_epilogue
Syntax

Description

IAR C/C++ Compiler
Reference Guide for V850

#pragma location=0xFF2000
_ no_init volatile char PORT1; /* PORT1l is located at address
0xFF2000 */

#pragma segment="FLASH"
#pragma location="FLASH"
__no_init char PORT2; /* PORT2 is located in segment FLASH */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma ("location=\"FLASH\"")

/* Lo %/

FLASH _ no_init int i; /* i is placed in the FLASH segment */

Controlling data and function placement in memory, page 167.

#pragma message (message)

message The message that you want to direct to the standard output
stream.

Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

#ifdef TESTING
#pragma message ("Testing")
#endif

#pragma no_epilogue

Use this pragma directive to inline the prologue and epilogue sequences instead of
performing calls to internal library routines. This pragma directive can be used when a
function needs to exist on its own as in, for example, a bootloader that needs to be
independent of the libraries it is replacing.

Example

object_attribute

Syntax

Parameters

Description

Example

See also

optimize
Syntax

Parameters

Pragma directives __4

#pragma no_epilogue
void bootloader (void) @"BOOTSECTOR"
{

#pragma object_attribute=object_attributel, object_attribute, ...]

For information about object attributes that can be used with this pragma directive, see
Object attributes, page 241.

Use this pragma directive to declare a variable or a function with an object attribute. This
directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it
is not necessary to specify an object attribute in declarations.

#pragma object_attribute=__no_init
char bar;

General syntax rules for extended keywords, page 239.

#pragma optimize=[goal] [level] [no_optimization...]

goal Choose between:
size, optimizes for size
balanced, optimizes balanced between speed and size
speed, optimizes for speed.

no_size_constraints, optimizes for speed, but relaxes the
normal restrictions for code size expansion.

level Specifies the level of optimization; choose between none,
low, medium, Or high.

261

Descriptions of pragma directives

262

Description

Example

See also

pack

Syntax

IAR C/C++ Compiler
Reference Guide for V850

no_optimization Disables one or several optimizations; choose between:
no_code_motion, disables code motion
no_cse, disables common subexpression elimination
no_inline, disables function inlining
no_tbaa, disables type-based alias analysis
no_unroll, disables loop unrolling

no_scheduling, disables instruction scheduling.

Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use
preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

#pragma optimize=speed
int SmallAndUsedOften ()
{

/* Do something here. */

#pragma optimize=size
int BigAndSeldomUsed ()
{

/* Do something here. */

Fine-tuning enabled transformations, page 173.

#pragma pack(n)

#pragma pack()
#pragma pack({push|pop}[,name] [,n])

Parameters

Description

See also

__printf_args

Syntax

Description

Example

Pragma directives __4

n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed
alignment

name An optional pushed or popped alignment label

Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or the end of the compilation unit.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Structure types, page 233.

#pragma __printf_args

Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma printf_args
int printf (char const *,...);

void PrintNumbers (unsigned short x)

{

printf("%d", x); /* Compiler checks that x is an integer */

263

Descriptions of pragma directives

264

required

Syntax

Parameters

Description

Example

rtmodel

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide for V850

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{

/* Do something here. */

}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

#pragma rtmodel="key", "value"

"key' A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model
attribute. Using the special value * is equivalent to not
defining the attribute at all.

Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

Pragma directives __4

A module can have several runtime model definitions.
Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

See also Checking module consistency, page 112.
__scanf_args
Syntax #pragma __scanf_args
Description Use this pragma directive on a function with a scanf-style format string. For any call to

that function, the compiler verifies that the argument to each conversion specifier (for
example $d) is syntactically correct.

Example #pragma __ scanf_args
int scanf (char const *,...);

int GetNumber ()
{
int nr;
scanf ("%d", &nr); /* Compiler checks that
the argument is a
pointer to an integer */

return nr;

segment
Symnx #pragma segment="NAME" [__memoryattribute] [align]
alias
#pragma section="NAME" [__memoryattribute] [align]
Parameters
NAME The name of the segment.

265

Descriptions of pragma directives

__memoryattribute An optional memory attribute identifying the memory the
segment will be placed in; if not specified, default memory is
used.

align Specifies an alignment for the segment. The value must be a
constant integer expression to the power of two.

Description Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin, __segment_end, and __segment_size. All segment
declarations for a specific segment must have the same memory type attribute and
alignment.

The align and the __memoryattribute parameters are only relevant when used
together with the segment operators __segment_begin, __segment_end, and
__segment_size. If you consider using align on an individual variable to achieve a
higher alignment, you must instead use the #pragma data_alignment directive.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void __memoryattribute *.
Example #pragma segment="MYSEG" __huge 4
/* Fill MYSEG with zeroes */

void clear (void)

{

for (long * p = __sfb("MYSEG"); p != __sfe("MYSEG"); ++p)
*p = 0;
}
See also Dedicated segment operators, page 149. For more information about segments, see the

chapter Placing code and data.

STDC CX_LIMITED_RANGE

Syntax #pragma STDC CX_LIMITED_RANGE {ON|OFF |DEFAULT}

Parameters
ON Normal complex mathematic formulas can be used.
OFF Normal complex mathematic formulas cannot be used.
DEFAULT Sets the default behavior, that is OFF.

IAR C/C++ Compiler
266 Reference Guide for V850

Pragma directives __4

Description Use this pragma directive to specify that the compiler can use the normal complex
mathematic formulas for * (multiplication), / (division), and abs.

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF |DEFAULT}

Parameters
ON Source code accesses the floating-point environment. Note
that this argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.
DEFAULT Sets the default behavior, that is OFF.
Description Use this pragma directive to specify whether your source code accesses the

floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF |DEFAULT}
Parameters

ON The compiler is allowed to contract floating-point
expressions.

OFF The compiler is not allowed to contract floating-point
expressions. Note that this argument is not supported by the
compiler.

DEFAULT Sets the default behavior, that is ON.

Description Use this pragma directive to specify whether the compiler is allowed to contract

floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC FP_CONTRACT=ON

267

Descriptions of pragma directives

268

type_attribute

Syntax

Parameters

Description

Example

See also

unroll

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide for V850

#pragma type_attribute=type_attributel, type_attribute, ...]

For information about type attributes that can be used with this pragma directive, see
Bpe attributes, page 239.

Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
In this example, an int object with the memory attribute __brel is defined:

#pragma type_attribute=__brel
int x;
This declaration, which uses extended keywords, is equivalent:

__brel int x;

The chapter Extended keywords for more information.

#pragma unroll=n

n The number of loop bodies in the unrolled loop, a constant
integer.

Use this pragma directive to specify that the loop following immediately after the
directive should be unrolled and that the unrolled loop should have n copies of the loop
body. The pragma directive can only be placed immediately before a for, do, or while
loop, whose number of iterations can be determined at compile time.

Normally, unrolling is most effective for relatively small loops. However, in some cases,
unrolling larger loops can be beneficial if it exposes opportunities for further
optimizations between the unrolled loop iterations, for example common subexpression
elimination or dead code elimination.

The #pragma unroll directive can be used to force a loop to be unrolled if the
unrolling heuristics are not aggressive enough. The pragma directive can also be used to

Pragma directives __4

reduce the aggressiveness of the unrolling heuristics; #pragma unroll = 1 will
prevent the unrolling of a loop.

Example #pragma unroll=4
for (1 = 0; i < 64; ++1)
{
foo(i * k; (i + 1) * k);

See also Loop unrolling, page 173.
vector
Syntax #pragma vector=vectorl[, vector2, vector3, ...]
Parameters
vectorN The vector number(s) of an interrupt or trap function.
Description Use this pragma directive to specify the vector(s) of an interrupt or trap function whose

declaration follows the pragma directive. Note that several vectors can be defined for
each function.

Example #pragma vector=0x70
__interrupt void my_handler (void) ;

269

Descriptions of pragma directives

IAR C/C++ Compiler
270 Reference Guide for V850

Intrinsic functions

This chapter gives reference information about the intrinsic functions, a
predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into inline code, either as a single instruction or as a short

sequence of instructions.

Summary of intrinsic functions
To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:
__disable_interrupt
This table summarizes the intrinsic functions:

Intrinsic function Description

__absolute_to_pic Converts a function pointer from absolute to
position-independent memory position

__code_distance Returns the distance between the code and the
position it was linked for

_compare_and_exchange_for Supports atomic lock operations using the CAXT

_interlock instruction

__disable_interrupt Disables interrupts

__enable_interrupt Enables interrupts

__fpu_sqgrt_double Returns the square root of a double
__fpu_sart_float Returns the square root of a floating-point number
__get_interrupt_state Returns the interrupt state
__get_processor_register Returns the value of the processor register
__halt Inserts a HALT instruction

__no_operation Inserts a NOP instruction
__pic_to_absolute Converts a function pointer from

position-independent to absolute memory position

Table 35: Intrinsic functions summary

271

Descriptions of intrinsic functions

Intrinsic function

Description

_ _saturated_add
__saturated_sub
__search_ones_left
__search_ones_right
__search_zeros_left
__search_zeros_right
__set_interrupt_state
__set_processor_register
__synchronize_exceptions
__synchronize_memory

__synchronize_pipeline

Generates a saturated addition instruction
Generates a saturated subtraction instruction
Searches for the leftmost 1

Searches for the rightmost 1

Searches for the leftmost 0

Searches for the rightmost 0

Restores the interrupt state

Assigns a value to a processor register
Synchronizes exceptions

Synchronizes memory devices

Synchronizes the pipeline

_upper_mulé64 Returns the 32 most significant bits of a 64-bit

multiplication of two 32-bit long values.

Table 35: Intrinsic functions summary (Continued)

Descriptions of intrinsic functions

This section gives reference information about each intrinsic function.

__absolute_to_pic

Sym:ax void *__absolute_to_pic(void *);

Description Converts a function pointer from an absolute to a position-independent memory
position. This function is only available in the position-independent code model.

In this code model, code pointers are represented as the position that the code should
have had if it had not been moved. At the actual call site, the distance that the code has
moved is added in order to produce the current position of the code.

The __absolute_to_pic intrinsic function converts a function pointer from the actual
memory position to a format used in the position-independent code model.

Note that this intrinsic function returns a void pointer that must be explicitly converted
to the appropriate type.

IAR C/C++ Compiler
272 Reference Guide for V850

Intrinsic functions __¢

Example Here we call a function that we know is positioned at address 0x10000:

typedef void (* my_function_pointer_type) (void) ;

fp = (my_function_pointer_type) __absolute_to_pic(0x10000) ;
(*fp) () ;
See also Position-independent code, page 64
__code_distance
Syntax long __code_distance(void) ;
Description Returns the number of bytes between the placement of code in memory and the position

it was linked for.

This intrinsic function is only available in the position-independent code model.

See also Position-independent code, page 64

__compare_and_exchange_for_interlock

Syntax int __compare_and_exchange_for_interlock(int * ptr,
int old_token, int new_token) ;

Description Performs the following in an atomic operation using the assembler instruction CAXI: it
reads the value that ptr points to, and if it is equal to o1d_token itis assigned the value
of new_token.

Returns the value originally stored in the location pointed to by ptr.

This intrinsic function is intended for use in a concurrent environment where atomic
operations are required when implementing for example a semaphore or a mutex.

273

Descriptions of intrinsic functions

Example

__disable_interrupt

Syntax

Description

__enable_interrupt

Syntax

Description

__fpu_sqrt_double

Syntax

Description

IAR C/C++ Compiler
274 Reference Guide for V850

#include "intrinsics.h"

#define FREE 0
#define LOCKED 1

extern int lock;
void myFunction (void)
{
if (__compare_and_exchange_for_interlock(&lock, FREE,
== FREE)

/* Do something */

_compare_and_exchange_for_interlock(&lock, LOCKED,

void __disable_interrupt (void) ;

Disables interrupts by inserting the DI instruction.

void __enable_interrupt (void) ;

Enables interrupts by inserting the ET instruction.

double __fpu_sqgrt_double(double) ;

Calculates the square root by using the FPU instruction SQRTF.

LOCKED)

FREE) ;

The sqgrt function provided by the runtime library also uses the dedicated FPU

instruction.

This intrinsic function is only available when the corresponding FPU is used.

Intrinsic functions __¢

Example #include "intrinsics.h"

double hypot (double x, double vy)
{

return __ fpu_sqgrt_double(x*x, y*Vy);
}
__fpu_sqrt_float
Syntax double __fpu_sqgrt_float (float);
Description Calculates the square root by using the FPU instruction SQRTF.

The sgrt function provided by the runtime library also uses the dedicated FPU
instruction.

This intrinsic function is only available when the corresponding FPU is used.
Example #include "intrinsics.h"

float hypot (float x, float y)
{

return __ fpu_sqrt_float (x*x, v*vy);
}
__get_interrupt_state
Symax __listate_t __get_interrupt_state(void);
Description Returns the global interrupt state. The return value can be used as an argument to the

__set_interrupt_state intrinsic function, which will restore the interrupt state.

275

Descriptions of intrinsic functions

276

Example

#include "intrinsics.h"

/*
This is what the __monitor keyword does.
*/
void CriticalFcn(void)
{
__istate_t s = __get_interrupt_state();
_ disable_interrupt () ;

/* Do something here. */

__set_interrupt_state(s);

}

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

__get_processor_register

Syntax

Description

IAR C/C++ Compiler
Reference Guide for V850

unsigned long __get_processor_register (int reg);

Returns the value of the processor register reg. Both normal processor registers like rR8,
and special system registers can be accessed. The supported registers are defined in the
header file intrinsics.h.

For registers RO to R31, the following aliases can be used:

Register Alias

Reg_R2 Reg_HP
Reg_R3 Reg_SP
Reg_R4 Reg_GP
Reg_R30 Reg_EP
Reg_R31 Reg_LP

Note: This intrinsic function only works when applied to a literal constant, because the
function is expanded into an STSR or MOV instruction that must know which system
register it operates on at compile time.

Intrinsic functions __¢

__halt
Syntax void __halt(void);
Description Inserts a HALT instruction.

__ho_operation

Syntax void __no_operation(void) ;

Description Inserts a NOP instruction.

__pic_to_absolute

Syntax void *__pic_to_absolute(void *);

Description Converts a function pointer from the representation used in the position-independent
code model to where it is located in memory. This function is only available in the
position-independent code model.

In the position-independent code model, code pointers are represented as the position it
was originally linked for.

Note that this intrinsic function returns a void pointer that must be explicitly converted

to the appropriate type.

See also Position-independent code, page 64

__saturated_add

Syntax int __saturated_add(int, int);

Description Returns the result of a saturated addition. A saturated operation computes just like a
normal operation unless an overflow or underflow occurs. If this should happen, the
result will be the highest or lowest possible representable value.

For example, the maximum positive value that an int can store is 0Ox7FFFFFFF. A
normal addition between 0x7FFFFFFE (that is, one less than the maximal positive
value) and 2 will result in 0x8000000. The result of a saturated addition will be
0x7FFFFFFF.

277

Descriptions of intrinsic functions

278

__saturated_sub

Syntax

Description

__search_ones_left

Syntax

Description

Example

__search_ones_right

Syntax

Description

Example

IAR C/C++ Compiler
Reference Guide for V850

int __saturated_sub(int, int);

Returns the result of a saturated subtraction. A saturated operation computes just like a
normal operation unless an overflow or underflow occurs. If this should happen, the
result will be the highest or lowest possible representable value.

int __search_ones_left (unsigned int);

Searches for the leftmost 1 and returns the bit position, where 1 represents the leftmost
(most significant) bit and 32 the rightmost (least significant) bit. If no bit is found, 0 is
returned.

This intrinsic function is implemented using the assembler instruction SCH1L, and is
available for V850E2 and higher.

See search_omes_right, page 278, for a similar example.

int __search_ones_right (unsigned int) ;

Searches for the rightmost 1 and returns the bit position, where 1 represents the
rightmost (least significant) bit and 32 the leftmost (most significant) bit. If no bit is
found, 0 is returned.

This intrinsic function is implemented using the assembler instruction SCH1R, and is
available for V850E2 and higher.

#include "intrinsics.h"

/*
Left adjust the value in 'x'.
Return 0 if 'x' is =zero.

*/

int left_adjust (unsigned int x)

{
int left_zeroes = _ search_ones_left(x) - 1;
if (left_zeroces < 0) return 0; // x was O
return x << left_zeroes;

__search_zeros_left

Syntax

Description

Example

__search_zeros_right

Syntax

Description

Example

__set_interrupt_state

Syntax

Description

Intrinsic functions __¢

int __search_zeros_left (unsigned int);

Searches for the leftmost 0 and returns the bit position, where 1 represents the leftmost
(most significant) bit and 32 the rightmost (least significant) bit. If no bit is found, 0 is
returned.

This intrinsic function is implemented using the assembler instruction SCHOL.

See _search_omes_right, page 278, for a similar example.

int __search_zeros_right (unsigned int) ;

Searches for the rightmost 0 and returns the bit position, where 1 represents the
rightmost (least significant) bit and 32 the leftmost (most significant) bit. If no bit is
found, 0 is returned.

This intrinsic function is implemented using the assembler instruction SCHOR.

See search_ones right, page 278, for a similar example.

void __set_interrupt_state(__istate_t);

Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see _get interrupt state, page 275.

__set_processor_register

Syntax

Description

void __set_processor_register (int reg, unsigned long value);

Sets the register reg to the value value.

This intrinsic function can be used to set a processor register to a specific value. The
registers supported are the same as for _ get processor register, page 276.

279

Descriptions of intrinsic functions

280

__synchronize_exceptions

Syntax void __synchronize_exceptions (void) ;
Description Synchronizes exceptions before continuing execution by using the assembler instruction
SYNCE.

__synchronize_memory

Syntax void __synchronize_memory (void) ;

Description Synchronizes memory devices before continuing execution by using the assembler
instruction SYNCM.

__synchronize_pipeline

Syntax void __synchronize_pipeline(void) ;

Description Synchronizes the pipeline before continuing execution by using the assembler
instruction SYNCP.

__upper_mulé4

Syntax long __upper_mul6d (long x,long y);

Description Returns the 32 most significant bits of a 64-bit multiplication of two 32-bit long values.
This intrinsic function is only available on V850E and above as it is implemented by
using the MUL instruction.

IAR C/C++ Compiler
Reference Guide for V850

The preprocessor

This chapter gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other
related information.

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for V850 adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:
e Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For more information, see Description of predefined
preprocessor symbols, page 282.

e User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 200.

e Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives. For information about the
corresponding _Pragma operator and the other extensions related to the
preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 286.

e Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 221.

To specify a path for an include file, use forward slashes:
#include "mydirectory/myfile"

In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");

Note that backslashes can also be used. In this case, use one in include file paths and two
in source code strings.

281

Description of predefined preprocessor symbols

282

Description of predefined preprocessor symbols

__BASE _FILE__

Description

See also

__BUILD_NUMBER__

Description
__CODE_MODEL__

Description

__CORE__

Description

__cplusplus__

Description

IAR C/C++ Compiler
Reference Guide for V850

This section lists and describes the preprocessor symbols.

A string that identifies the name of the base source file (that is, not the header file), being
compiled.

Seealso FILE , page 283, and --no_path_in_file macros, page 215.

A unique integer that identifies the build number of the compiler currently in use. The
build number does not necessarily increase with a compiler that is released later.

An integer that identifies the code model in use. The symbol reflects the - -code_model
option and is defined to __CODE_MODEL_NORMAL__, __CODE_MODEL_LARGE__, Or
__CODE_MODEL_PIC__. These symbolic names can be used when testing the
__CODE_MODEL_ _ symbol.

An integer that identifies the chip core in use. The symbol reflects the - -cpu option and
is defined to one of __CORE_v850__, __CORE_V850E CORE_V850E2_ _,
__CORE_V850E2M__, or __CORE_V850E2S__. These symbolic names can be used
when testing the __CORE__ symbol.

N S

An integer which is defined when the compiler runs in any of the C++ modes, otherwise
it is undefined. When defined, its value is 199711L. This symbol can be used with
#ifdef to detect whether the compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++ code.

This symbol is required by Standard C.

The preprocessor ___4

CPU

Description Deprecated, the same as __CORE_ _.

__DATA_MODEL__

Description An integer that identifies the data model in use. The symbol reflects the --data_model
option and is defined to one of:

_ _DATA_MODEL_SMALL_ _
__DATA_MODEL_TINY__

_ _DATA_MODEL_TINY_WITH_SADDR__

_ _DATA_MODEL_SMALL_ _

_ _DATA_MODEL_SMALL_WITH_SADDR__
__DATA_MODEL_MEDIUM__

_ _DATA_MODEL_MEDIUM_WITH_SADDR__
__DATA_MODEL_LARGE_ _

_ _DATA_MODEL_LARGE_WITH_SADDR_ _

These symbolic names can be used when testing the __DATA_ MODEL__ symbol.

__DATE__

Description A string that identifies the date of compilation, which is returned in the form "Mmm dd
yyyy", for example "oct 30 2010"

This symbol is required by Standard C.

__embedded_cplusplus

Description An integer which is defined to 1 when the compiler runs in any of the C++ modes,
otherwise the symbol is undefined. This symbol can be used with #ifdef to detect
whether the compiler accepts C++ code. It is particularly useful when creating header
files that are to be shared by C and C++ code.

This symbol is required by Standard C.

__FILE__

Description A string that identifies the name of the file being compiled, which can be both the base
source file and any included header file.

This symbol is required by Standard C.

283

Description of predefined preprocessor symbols

See also

FPU

Description

__func__

Description

See also

__FUNCTION__

Description

See also

See also BASE FILE _, page 282, and --no_path_in_file_macros, page 215.

Specifies the selected floating-point unit. The symbol reflects the --£pu option and is
defined to one of __FPU_NONE__, __FPU_V850E1_SINGLE__,
__FPU_V850E2_SINGLE__, Or __FPU_V850_DOUBLE__.

A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

This symbol is required by Standard C.

-e, page 206. See also _ PRETTY FUNCTION __, page 285.

A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

-e, page 206. See also _ PRETTY FUNCTION __, page 285.

__IAR_SYSTEMS_ICC__

Description

__ICCVv850__

Description

IAR C/C++ Compiler
284 Reference Guide for V850

An integer that identifies the IAR compiler platform. The current value is 8. Note that
the number could be higher in a future version of the product. This symbol can be tested
with #1ifdef to detect whether the code was compiled by a compiler from IAR Systems.

An integer that is set to 1 when the code is compiled with the IAR C/C++ Compiler for
V850.

The preprocessor ___4

__LINE__

Description An integer that identifies the current source line number of the file being compiled,
which can be both the base source file and any included header file.

This symbol is required by Standard C.

__LITTLE_ENDIAN__

Description An integer that identifies the byte order of the microcontroller. For the V850
microcontroller family, the value of this symbol is defined to 1 (TRUE), which means that
the byte order is little-endian.

__PRETTY_FUNCTION__

Description A predefined string identifier that is initialized with the function name, including
parameter types and return type, of the function in which the symbol is used, for
example "void func (char) ". This symbol is useful for assertions and other trace
utilities. The symbol requires that language extensions are enabled.

See also -e, page 206. See also __func__, page 284.

__SADDR_ACTIVE__

Description This predefined symbol expands to 1 if a data model with short address support is in use,
otherwise it is undefined.

__STDC__

Description Aninteger that is set to 1, which means the compiler adheres to Standard C. This symbol
can be tested with #1ifdef to detect whether the compiler in use adheres to Standard C.*

This symbol is required by Standard C.

__STDC_VERSION__

Description An integer that identifies the version of the C standard in use. The symbol expands to
199901L, unless the --c89 compiler option is used in which case the symbol expands
to 199409L. This symbol does not apply in EC++ mode.

This symbol is required by Standard C.

285

Descriptions of miscellaneous preprocessor extensions

286

__SUBVERSION__

Description

__TIME__

Description

__VER__

Description

An integer that identifies the subversion number of the compiler version number, for
example 3 in 1.2.3.4.

A string that identifies the time of compilation in the form "hh:mm:ss".

This symbol is required by Standard C.

An integer that identifies the version number of the IAR compiler in use. The value of
the number is calculated in this way: (100 * the major version number + the
minor version number). For example, for compiler version 3.34, 3 is the major
version number and 34 is the minor version number. Hence, the value of __VER_ _ is
334.

Descriptions of miscellaneous preprocessor extensions

NDEBUG

Description

See also

IAR C/C++ Compiler
Reference Guide for V850

This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

e not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert . h standard include file.

Assert, page 112.

The preprocessor ___4

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

#warning message
Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.

287

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Compiler
288 Reference Guide for V850

Library functions

This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Library overview

The compiler comes with the IAR DLIB Library, a complete library, compliant with
Standard C and C++. This library also supports floating-point numbers in IEEE 754
format and it can be configured to include different levels of support for locale, file
descriptors, multibyte characters, etc.

For more information about customization, see the chapter The DLIB runtime
environment.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For more information about library functions, see the chapter Implementation-defined
behavior for Standard C in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic project configuration, page 37 . The linker will

289

Library overview

290

IAR C/C++ Compiler
Reference Guide for V850

include only those routines that are required—directly or indirectly—by your
application.

ALTERNATIVE MORE ACCURATE LIBRARY FUNCTIONS

The default implementation of cos, sin, tan, and pow is designed to be fast and small.
As an alternative, there are versions designed to provide better accuracy. They are
named __iar_xxx_accuratef for float variants of the functions and

__iar xxx_accuratel for long double variants of the functions, and where xxx is
cos, sin, etc.

To use any of these more accurate versions, use the -e linker option.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant because they need static data:

e Heap functions—malloc, free, realloc, calloc, and the C++ operators new
and delete

Locale functions—1localeconv, setlocale

Multibyte functions—mbrlen, mbrtowc, mbsrtowc, mbtowe, wertomb,
wcsrtomb, wctomb

Rand functions—rand, srand
Time functions—asctime, localtime, gmtime, mktime

The miscellaneous functions atexit, strerror, strtok

Functions that use files or the heap in some way. This includes printf, sprintf,
scanf, sscanf, getchar, and putchar.

Functions that can set errno are not reentrant, because an errno value resulting from
one of these functions can be destroyed by a subsequent use of the function before it is
read. This applies to math and string conversion functions, among others.

Remedies for this are:

e Do not use non-reentrant functions in interrupt service routines

e Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

Library functions __4

THE LONGJMP FUNCTION

A longjmp is in effect a jump to a previously defined setjmp. Any variable length
arrays or C++ objects residing on the stack during stack unwinding will not be
destroyed. This can lead to resource leaks or incorrect application behavior.

IAR DLIB Library

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

o Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For additional information, see the chapter Implementation-defined
behavior for Standard C in this guide.

e Standard C library definitions, for user programs.
® C++ library definitions, for user programs.

CSTARTUP, the module containing the start-up code, see the chapter The DLIB
runtime environment in this guide.

e Runtime support libraries; for example low-level floating-point routines.

e Intrinsic functions, allowing low-level use of V850 features. See the chapter
Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, see Added C

functionality, page 295.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Using C.

This table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute
complex.h Computing common complex mathematical functions
ctype.h Classifying characters

errno.h Testing error codes reported by library functions
fenv.h Floating-point exception flags

float.h Testing floating-point type properties

Table 36: Traditional Standard C header files—DLIB

291

IAR DLIB Library

Header file Usage

inttypes.h Defining formatters for all types defined in stdint.h
iso0646.h Using Amendment |—iso0646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments
stdbool.h Adds support for the bool data type in C.
stddef.h Defining several useful types and macros
stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

tgmath.h Type-generic mathematical functions

time.h Converting between various time and date formats
uchar.h Unicode functionality (IAR extension to Standard C)
wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 36: Traditional Standard C header files—DLIB (Continued)

C++ HEADER FILES
This section lists the C++ header files:

e The C++ library header files

The header files that constitute the Embedded C++ library.
o The C++ standard template library (STL) header files

The header files that constitute STL for the Extended Embedded C++ library.
o The C++ C header files

The C++ header files that provide the resources from the C library.

IAR C/C++ Compiler
292 Reference Guide for V850

Library functions __4

The C++ library header files
This table lists the header files that can be used in Embedded C++:

Header file Usage

complex Defining a class that supports complex arithmetic

fstream Defining several /O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several /O stream classes that manipulate string containers

streambuf Defining classes that buffer 1/O stream operations

string Defining a class that implements a string container

strstream Defining several /O stream classes that manipulate in-memory character
sequences

Table 37: C++ header files

The C++ standard template library (STL) header files

The following table lists the standard template library (STL) header files that can be
used in Extended Embedded C++:

Header file Description

algorithm Defines several common operations on sequences
deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm
hash_set A set associative container, based on a hash algorithm
iterator Defines common iterators, and operations on iterators
list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

Table 38: Standard template library header files

293

IAR DLIB Library

Header file Description

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container
stack A stack sequence container
utility Defines several utility components
vector A vector sequence container

Table 38: Standard template library header files (Continued)

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h.

This table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute
cctype Classifying characters

cerrno Testing error codes reported by library functions
cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h
climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions
csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstdbool Adds support for the bool data type in C.
cstddef Defining several useful types and macros
cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Table 39: New Standard C header files—DLIB

IAR C/C++ Compiler
294 Reference Guide for V850

Library functions __4

Header file Usage
cwchar Support for wide characters
cwctype Classifying wide characters

Table 39: New Standard C header files—DLIB (Continued)

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY
The IAR DLIB Library includes some added C functionality.

The following include files provide these features:

fenv.h
stdio.h
stdlib.h

string.h

time.h

fenv.h

In fenv.h, trap handling support for floating-point numbers is defined with the
functions fegettrapenable and fegettrapdisable.

stdio.h

These functions provide additional I/O functionality:

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

putw Puts a wchar_t character to stdout.

__ungetchar Corresponds to ungetc on stdout.

__write_array Corresponds to fwrite on stdout.

295

IAR DLIB Library

296

IAR C/C++ Compiler
Reference Guide for V850

string.h

These are the additional functions defined in string.h:

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.
strncasecmp Compares strings case-insensitive and bounded.
strnlen Bounded string length.

time.h

There are two interfaces for using time_t and the associated functions time, ctime,
difftime, gmtime, localtime, and mktime:

o The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
for time_t. The type and function have names like __time32_t, __time32, etc.
This variant is mainly available for backwards compatibility.

EJp—

o The 64-bit interface supports years from -9999 up to 9999 and uses a signed
long long for time_t. The type and function have names like __time64_t,
__timeé64, etc.

The interfaces are defined in the system header file time.h.

An application can use either interface, and even mix them by explicitly using the 32-
or 64-bit variants. By default, the library and the header redirect time_t, time etc. to
the 32-bit variants. However, to explicitly redirect them to their 64-bit variants, define
_DLIB_TIME_USES_64 in front of the inclusion of time.h or ctime.

See also, Time, page 109.

SYMBOLS USED INTERNALLY BY THE LIBRARY

The following symbols are used by the library, which means that they are visible in
library source files, etc:

__assignment_by_bitwise_copy_allowed
This symbol determines properties for class objects.
__code

This symbol is used as a memory attribute internally by the compiler, and it might have
to be used as an argument in certain templates.

Library functions __4

_constrange ()

Determines the allowed range for a parameter to an intrinsic function and that the
parameter must be of type const.

__construction_by_bitwise_copy_allowed
This symbol determines properties for class objects.

_has_constructor has_destructor

— Jp—

These symbols determine properties for class objects and they function like the sizeof
operator. The symbols are true when a class, base class, or member (recursively) has a
user-defined constructor or destructor, respectively.

__memory_of

Determines the class memory. A class memory determines which memory a class
object can reside in. This symbol can only occur in class definitions as a class memory.

Note: The symbols are reserved and should only be used by the library.

Use the compiler option --predef_macros to determine the value for any predefined
symbols.

297

IAR DLIB Library

IAR C/C++ Compiler
298 Reference Guide for V850

Segment reference

The compiler places code and data into named segments which are referred
to by the IAR XLINK Linker. Details about the segments are required for
programming assembler language modules, and are also useful when
interpreting the assembler language output from the compiler.

For more information about segments, see the chapter Placing code and data.

Summary of segments

The table below lists the segments that are available in the compiler:

Segment Description

BREL_BASE An empty placeholder segment, used as a base for the BREL and
BREL23 segments holding variable data.

BREL_CBASE An empty placeholder segment, used as a base for the BREL and
BREL23 segment holding constant data.

BREL_C Holds __brel constant data.

BREL_TI Holds __Dbrel static and global initialized variables.

BREL_ID Holds initial values for __brel static and global variables in BREL_I.

BREL_N Holds __no_init __brel static and global variables.

BREL_Z Holds zero-initialized __brel static and global variables.

BREL23_C Holds __brel23 constant data.

BREL23_1I Holds __brel23 static and global initialized variables.

BREL23_ID Holds initial values for __brel23 static and global variables in
BREL23_T.

BREL23_N Holds __no_init __brel23 static and global variables.

BREL23_7Z Holds zero-initialized __brel23 static and global variables.

CHECKSUM Holds the checksum generated by the linker.

CLTCODE Holds code for the callt functions.

CLTVEC Holds the vector of callt functions.

CODE Holds the program code.

CSTACK Holds the stack used by C or C++ programs.

Table 40: Segment summary

299

Summary of segments

Segment Description
CSTART Holds the startup code.
DIFUNCT Holds pointers to code, typically C++ constructors, that should be

executed by the system startup code before main is called.

GLOBAL_AC Holds located constant data.

GLOBAL_AN Holds located uninitialized data.

HEAP Holds the heap used for dynamically allocated data.

HUGE_C Holds __huge constant data.

HUGE_I Holds __huge static and global initialized variables.

HUGE_ID Holds initial values for __huge static and global variables in HUGE_I.

HUGE_N Holds __no_init __huge static and global variables.

HUGE_Z Holds zero-initialized __huge static and global variables.

ICODE Holds the interrupt code.

INTVEC Contains the reset and interrupt vectors.

NEAR_C Holds __near constant data.

NEAR_TI Holds __near static and global initialized variables.

NEAR_ID Holds initial values for __near static and global variables in NEAR_I.

NEAR_N Holds __no_init __near static and global variables.

NEAR_Z Holds zero-initialized __near static and global variables.

RCODE Holds the library code.

SADDR_BASE An empty placeholder segment, used as a base for the SADDR7 and
SADDRS segment groups.

SADDR7_TI Holds __saddr static and global initialized character variables.

SADDR7_ID Holds initial values for ___saddr static and global character variables in
SADDR7_T.

SADDR7_N Holds __no_init __saddr static and global character variables.

SADDR7_Z Holds zero-initialized __saddr static and global character variables.

SADDRS_T Holds __saddr static and global initialized non-character variables.

SADDRS_ID Holds initial values for __saddr static and global non-character

variables in SADDR8_T.

SADDRS_N Holds __no_init __saddr static and global non-character variables.

SADDRS8_Z Holds zero-initialized __saddr static and global non-character
variables.

SYSCALLCODE Holds code for the syscsall functions.

Table 40: Segment summary (Continued)

IAR C/C++ Compiler
300 Reference Guide for V850

Segment reference ___4

Segment Description
SYSCALLVEC Holds the vector of syscall functions.
TRAPVEC Holds the trap vector.

Table 40: Segment summary (Continued)

Descriptions of segments

BREL_BASE

Description

Segment memory type

Memory placement

BREL_CBASE

Description

This section gives reference information about each segment.

The segments are placed in memory by the segment placement linker directives -z and
-p, for sequential and packed placement, respectively. Some segments cannot use
packed placement, as their contents must be continuous.

In each description, the segment memory type—CODE, CONST, or DATA—indicates
whether the segment should be placed in ROM or RAM memory; see Table 7, XLINK
segment memory types, page 68.

For information about the -z and the - P directives, see the [AR Linker and Library Tools
Reference Guide.

For information about how to define segments in the linker configuration file, see
Customizing the linker configuration file, page 68.

For more information about the extended keywords mentioned here, see the chapter
Extended keywords.

Empty placeholder segment; a base for the BREL and BREL23 segments holding data.
The brel base register GP (register R4) points with an 0x8000 offset to this segment. The
segments of the BREL segment group holding RAM data—BREL_TI, BREL_N, and
BREL_Z—must be placed within 64 Kbytes following the placeholder segment. The
segments of the BREL23 segment group holding RAM data must be placed within

+4 Mbytes of the base pointer, which points to BREL_BASE + 0x8000.

DATA

This segment can be placed anywhere in memory.

Empty placeholder segment; a base for the BREL and BREL23 segments holding constant
data. The brel constant base register (R25) points with an 0x8000 offset to this segment.

301

Descriptions of segments

Segment memory type

Memory placement

BREL_C

Description

Segment memory type
Memory placement

Access type

BREL_I

Description

Segment memory type
Memory placement

Access type

BREL_ID

Description

IAR C/C++ Compiler
302 Reference Guide for V850

The segment BREL_C must be placed within 64 Kbytes following the placeholder
segment. The segment BREL23_C must be placed +4 Mbytes of the base pointer, which
points to BREL_CBASE + 0x8000.

CONST

This segment can be placed anywhere in memory.

Holds __brel constant data. This can include constant variables, string and aggregate
literals, etc.

CONST
This segment must be placed within 64 Kbytes following BREL_CBASE.

Read-only

Holds __brel static and global initialized variables initialized by copying from the
segment BREL_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA
This segment must be placed within 64 Kbytes following BREL_BASE.

Read-write

Holds initial values for __brel static and global variables in the BREL_I segment.
These values are copied from BREL_ID to BREL_TI at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

Segment memory type
Memory placement

Access type

BREL_N

Description
Segment memory type
Memory placement

Access type

BREL_Z

Description

Segment memory type
Memory placement

Access type

BREL23_C

Description

Segment memory type

Memory placement

Segment reference ___4

CONST
This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __brel variables.
DATA
This segment must be placed within 64 Kbytes following BREL_BASE.

Read-write

Holds zero-initialized __brel static and global variables. The contents of this segment
is declared by the system startup code.

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed within 64 Kbytes following BREL_BASE.

Read-write

Holds __brel23 constant data. This can include constant variables, string and
aggregate literals, etc. This segment is only used for V850E2M and above.

CONST

This segment must be placed within +4 Mbytes around the constant brel base pointer
(r25) which points to BREL_CBASE + 0x8000.

303

Descriptions of segments

Access type

BREL23_I

Description

Segment memory type

Memory placement

Access type

BREL23_ID

Description

Segment memory type
Memory placement

Access type

BREL23_N

Description

Segment memory type

IAR C/C++ Compiler
304 Reference Guide for V850

Read-only

Holds __brel23 static and global initialized variables initialized by copying from the
segment BREL23_ID at application startup. This segment is only used for V8S0E2M and
above.

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed within £4 Mbytes around the brel base pointer (Gp) which
points to BREL_BASE + 0x8000.

Read-write

Holds initial values for __bre123 static and global variables in the BREL23_I segment.
These values are copied from BREL23_ID to BREL23_T at application startup. This
segment is only used for V8S0E2M and above.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

CONST

This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __brel23 variables. This segment is only used for
V850E2M and above.

DATA

Memory placement

Access type

BREL23_Z

Description

Segment memory type

Memory placement

Access type

CHECKSUM

Description

Segment memory type
Memory placement

Access type

CLTCODE

Description

Segment memory type

Segment reference ___4

This segment must be placed within £4 Mbytes around the brel base pointer (Gp) which
points to BREL_BASE + 0x8000.

Read-write

Holds zero-initialized __brel23 static and global variables. The contents of this
segment is declared by the system startup code. This segment is only used for V§50E2M
and above.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed within +4 Mbytes around the brel base pointer (Gp) which
points to BREL_BASE + 0x8000.

Read-write

Holds the checksum bytes generated by the linker. This segment also holds the
__checksum symbol. Note that the size of this segment is affected by the linker option
-J.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Holds code for callt functions. This segment must be placed following the CLTVEC
segment.

CODE

305

Descriptions of segments

Memory placement

Access type

CLTVEC

Description
Segment memory type
Memory placement

Access type

CODE

Description
Segment memory type

Memory placement

Access type

CSTACK

Description
Segment memory type
Memory placement

Access type

IAR C/C++ Compiler
306 Reference Guide for V850

This segment must be placed within 64 Kbytes following CLTVEC, and in the same
2-Mbyte area as CODE if normal functions are called from callt functions.

Read-only

Holds the callt vector table generated by the use of the extended keyword __callt.
CONST
This segment can be placed anywhere in memory.

Read-only

Holds program code, except the code for system initialization.

CODE

In the Normal and Position-independent code models, this segment must be placed
within a 2-Mbyte area. The area must also include the CSTART segment. If any calls are
performed from interrupt or callt functions, the corresponding segment, ICODE or

CLTCODE, respectively, must be placed in this 2-Mbyte area. Function calls can originate
from this segment or from the CLTCODE, ICODE, and CSTART segments.

In the Large code model, this segment can be placed anywhere in memory.

Read-only

Holds the internal data stack.
DATA
This segment can be placed anywhere in memory.

Read-write

Segment reference ___4

See also The stack, page 74.
CSTART
Description Holds the startup code.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

Segment memory type CODE
Memory placement This segment must be placed in the same 2-Mbyte area as CODE.
Access type Read-only
DIFUNCT
Description Holds the dynamic initialization vector used by C++.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only
GLOBAL_AC
Description Holds located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

GLOBAL_AN

Description Holds __no_init located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker configuration file.

307

Descriptions of segments

HEAP

Description

Segment memory type
Memory placement
Access type

See also

HUGE_C

Description

Segment memory type
Memory placement

Access type

HUGE_I

Description

Segment memory type
Memory placement

Access type

IAR C/C++ Compiler
308 Reference Guide for V850

Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

DATA
This segment can be placed anywhere in memory.
Read-write

The heap, page 75.

Holds __huge constant data. This can include constant variables, string and aggregate
literals, etc.

CONST
This segment can be placed anywhere in memory.

Read-only

Holds __huge static and global initialized variables initialized by copying from the
segment HUGE_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment can be placed anywhere in memory.

Read-write

Segment reference ___4

HUGE_ID
Description Holds initial values for __huge static and global variables in the HUGE_I segment.
These values are copied from HUGE_ID to HUGE_I at application startup.
This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only
HUGE_N
Description Holds static and global __no_init __huge variables.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read-write
HUGE_Z
Description Holds zero-initialized __huge static and global variables. The contents of this segment
is declared by the system startup code.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read-write

309

Descriptions of segments

ICODE

Description
Segment memory type

Memory placement

Access type

INTVEC

Description

Segment memory type
Memory placement

Access type

NEAR_C

Description

Segment memory type

Memory placement

Access type

NEAR |

Description

IAR C/C++ Compiler
310 Reference Guide for V850

Holds interrupt code. Must be able to be called from the interrupt vector table.

CODE
This segment must be placed in one of the ranges 0x0—0x1FFFFF and
0xFFE00000—-0xFFFFFFFF. This segment must also be located in the same 2-Mbyte

area as CODE if normal functions are called from interrupt functions.

Read-only

Holds the interrupt vector table generated by the use of the __interrupt and __trap
extended keywords in combination with the #pragma vector directive.

CODE
This segment must be placed at address 0x0.

Read-only

Holds __near constant data. This can include constant variables, string and aggregate
literals, etc.

CONST

This segment must be placed in one of the ranges 0x0—0x7FFF and
O0xXFFFF8000—0xFFFFFFFF.

Read-only

Holds __near static and global initialized variables initialized by copying from the
segment NEAR_ID at application startup.

Segment memory type

Memory placement

Access type

NEAR_ID

Description

Segment memory type
Memory placement

Access type

NEAR_N

Description
Segment memory type

Memory placement

Access type

NEAR Z

Description

Segment reference ___4

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed in one of the ranges 0x0—0x7FFF and
0XFFFF8000—0xFFFFFFFF.

Read-write

Holds initial values for __near static and global variables in the NEAR_I segment.
These values are copied from NEAR_ID to NEAR_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

CONST

This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __near variables.

DATA

This segment must be placed in one of the ranges 0x0—0x7FFF and
0xXFFFF8000—0xFFFFFFFF.

Read-write

Holds zero-initialized __near static and global variables. The contents of this segment
is declared by the system startup code.

311

Descriptions of segments

Segment memory type

Memory placement

Access type

RCODE

Description
Segment memory type
Memory placement

Access type

SADDR_BASE

Description

Segment memory type

Memory placement

SADDR7_I

Description

IAR C/C++ Compiler
312 Reference Guide for V850

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed in one of the ranges 0x0—0x7FFF and
0XFFFF8000—0xFFFFFFFF.

Read-write

Holds library code.
CODE
This segment must be placed in the same 2-Mbyte area as the CODE segment.

Read-only

Empty placeholder segment, a base for the SADDR7 and SADDRS segment groups. The
saddr base pointer will point to this segment. The segments of the SADDR7 and SADDR8
segment groups (with the exception of SADDR7_1D and SADDR8_ID) must be placed
within 128 and 256 bytes, respectively, following this segment.

Any

This segment can be placed anywhere in memory.

Holds __saddr static and global initialized character variables with a 128-byte offset,
initialized by copying from the segment SADDR7_1D at application startup.

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

Segment memory type
Memory placement

Access type

SADDR?7_ID

Description

Segment memory type
Memory placement

Access type

SADDR7_N

Description
Segment memory type
Memory placement

Access type

SADDR7_Z

Description

Segment memory type

Segment reference ___4

DATA
This segment must be placed within 128 bytes following SADDR_BASE.

Read-write

Holds initial values for __saddr static and global character variables with a 128-byte
offset in the SADDR7_T segment. These values are copied from SADDR7_ID to
SADDR7_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

CONST
This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __saddr character variables with a 128-byte offset.

DATA
This segment must be placed within 128 bytes following SADDR_BASE.

Read-write

Holds zero-initialized __saddr static and global character variables with a 128-byte
offset. The contents of this segment is declared by the system startup code.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

313

Descriptions of segments

Memory placement

Access type

SADDRS_I

Description

Segment memory type
Memory placement

Access type

SADDRS_ID

Description

Segment memory type
Memory placement

Access type

SADDRS8_N

Description

Segment memory type

IAR C/C++ Compiler
314 Reference Guide for V850

This segment must be placed within 128 bytes following SADDR_BASE.

Read-write

Holds __saddr static and global initialized non-character variables with a 256-byte
offset, initialized by copying from the segment SADDR8_ID at application startup.

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA
This segment must be placed within 256 bytes following SADDR_BASE.

Read-write

Holds initial values for __saddr static and global non-character variables with a
256-byte offset in the SADDR8_ T segment. These values are copied from SADDR8_ID to
SADDRS_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

CONST

This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __saddr non-character variables with a 256-byte
offset.

DATA

Memory placement

Access type

SADDRS8_Z

Description

Segment memory type
Memory placement

Access type

SYSCALLCODE

Description
Segment memory type
Memory placement

Access type

SYSCALLVEC

Description
Segment memory type
Memory placement

Access type

Segment reference ___4

This segment must be placed within 256 bytes following SADDR_BASE.

Read-write

Holds zero-initialized __saddr static and global non-character variables with a
256-byte offset. The contents of this segment is declared by the system startup code.

This segment cannot be placed in memory by using the - directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker configuration file, the -z directive must be used.

DATA

This segment must be placed within 256 bytes following SADDR_BASE.

Read-write

Holds code for syscall functions.
CODE
This segment can be placed anywhere in memory.

Read-only

Holds the callt vector table generated by the use of the extended keyword __syscall.
CONST
This segment can be placed anywhere in memory.

Read-only

315

Descriptions of segments

TRAPVEC

Description
Segment memory type
Memory placement

Access type

IAR C/C++ Compiler
316 Reference Guide for V850

Holds the trap vector table.
CONST
This segment can be placed anywhere in memory.

Read-only

Implementation-defined
behavior for Standard C

This chapter describes how the compiler handles the implementation-defined
areas of the C language based on Standard C.

Note: The IAR Systems implementation adheres to a freestanding
implementation of Standard C. This means that parts of a standard library can

be excluded in the implementation.

If you are using C89 instead of Standard C, see Implementation-defined behavior
for C89, page 333. For a short overview of the differences between Standard
C and C89, see C language overview, page 145.

Descriptions of implementation-defined behavior

This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

J.3.1 TRANSLATION

Diagnostics (3.10, 5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.

317

Descriptions of implementation-defined behavior

J.3.2 ENVIRONMENT

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, if you use the
--enable_multibytes compiler option, the host character set is used instead.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see Customizing system initialization, page 99.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
tomain).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Signals, their semantics, and the default handling (7.14)

In the DLIB library, the set of supported signals is the same as in Standard C. A raised
signal will do nothing, unless the signal function is customized to fit the application.

Signal values for computational exceptions (7.14.1.1)
In the DLIB library, there are no implementation-defined values that correspond to a
computational exception.

Signals at system startup (7.14.1.1)

In the DLIB library, there are no implementation-defined signals that are executed at
system startup.

IAR C/C++ Compiler
318 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

Environment names (7.20.4.5)

In the DLIB library, there are no implementation-defined environment names that are
used by the getenv function.

The system function (7.20.4.6)

The system function is not supported.
J.3.3 IDENTIFIERS

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may not appear in identifiers.

Significant characters in identifiers (5.2.4.1, 6.1.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 CHARACTERS

Number of bits in a byte (3.6)
A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the host
character set.

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a-7, \b-8, \£-12, \n-10,
\r-13, \t-9, and \v-11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char.

319

Descriptions of implementation-defined behavior

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. By
default, the source character set is the standard ASCII character set. However, if you use
the command line option --enable_multibytes, the source character set will be the
host computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. By default, the execution character set is the standard ASCII character set.

However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set. See
Locale, page 105.

Integer character constants with more than one character (6.4.4.4)
An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

Wide character constants with more than one character (6.4.4.4)
A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Locale used for wide string literals (6.4.5)

By default, the C locale is used. If the --enable_multibytes compiler option is used,
the default host locale is used instead.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

J.3.5 INTEGERS

Extended integer types (6.2.5)

There are no extended integer types.

IAR C/C++ Compiler
320 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, O for positive and zero.

For information about the ranges for the different integer types, see Basic data types,
page 228.
The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.

Signed bitwise operations (6.5)
Bitwise operations on signed integers work the same way as bitwise operations on

unsigned integers; in other words, the sign-bit will be treated as any other bit.

J.3.6 FLOATING POINT

Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FLT_ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integral value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Converting floating-point values to floating-point values (6.3.1.5)

When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

321

Descriptions of implementation-defined behavior

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS is OFF.

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is OFF.
J.3.7 ARRAYS AND POINTERS

Conversion from/to pointers (6.3.2.3)

For information about casting of data pointers and function pointers, see Casting, page
233.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff t, page 233.
J.3.8 HINTS

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See Inlining functions,
page 63.

IAR C/C++ Compiler
322 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

J.3.9 STRUCTURES, UNIONS, ENUMERATIONS, AND
BITFIELDS
Sign of 'plain’ bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain’ int bitfield is treated, see Bitfields, page 229.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
206.

Bitfields straddling a storage-unit boundary (6.7.2.1)

A bitfield is always placed in one—and one only—storage unit, which means that the
bitfield cannot straddle a storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 229.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 227.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

J.3.10 QUALIFIERS

Access to volatile objects (6.7.3)

Any reference to an object with volatile qualified type is an access, see Declaring
objects volatile, page 235.

J.3.11 PREPROCESSING DIRECTIVES

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash "\
is not treated as an escape sequence. See Overview of the preprocessor, page 281.

323

Descriptions of implementation-defined behavior

Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 198.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 186.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 186.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

Universal character names (6.10.3.2)

Universal character names (UCN) are not supported.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the Pragma directives chapter and here, the information
provided in the Pragma directives chapter overrides the information here.

alignment

baseaddr
basic_template_matching
building_runtime

can_instantiate

IAR C/C++ Compiler
324 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

codeseg

Cspy_support
define_type_info
do_not_instantiate
early_dynamic_initialization
function

function_effects

hdrstop

important_typedef
instantiate

keep_definition
library_default_requirements
library_provides
library_requirement_override
memory

module_name

no_pch

once

public_equ

system_include

warnings

Default __DATE__ and __TIME__ (6.10.8)

The definitions for __TIME _ and __DATE__ are always available.
J.3.12 LIBRARY FUNCTIONS

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—tequiere a low-level implementation in the application. For more
information, see The DLIB runtime environment, page 81.

325

Descriptions of implementation-defined behavior

Diagnostic printed by the assert function (7.2.1.1)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Representation of the floating-point status flags (7.6.2.2)

For information about the floating-point status flags, see fenv.h, page 295.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see Floating-point environment, page 231.

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the set locale function, see Locale, page 105.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematic functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematic functions set errno to the macro ERANGE (a macro in errno . h) and return
zero for underflow errors.

fmod return value (7.12.10.1)

The £mod function returns a floating-point NaN when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

signal() (7.14.1.1)
The signal part of the library is not supported.

IAR C/C++ Compiler
326 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 109.

NULL macro (7.17)

The NULL macro is defined to 0.

Terminating newline character (7.19.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Space characters before a newline character (7.19.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.19.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.19.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.19.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 105.

File buffering (7.19.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.19.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.19.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

327

Descriptions of implementation-defined behavior

328

IAR C/C++ Compiler
Reference Guide for V850

Number of times a file can be opened (7.19.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

Multibyte characters in a file (7.19.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.

remove() (7.19.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 105.

rename() (7.19.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 105.

Removal of open temporary files (7.19.4.3)
Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.19.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.19.6.1, 7.24.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(InF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.19.6.1, 7.24.2.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

Reading ranges in scanf (7.19.6.2, 7.24.2.1)

A - (dash) character is always treated as a range symbol.

Implementation-defined behavior for Standard C _¢

%p in scanf (7.19.6.2, 7.24.2.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

File position errors (7.19.9.1, 7.19.9.3, 7.19.9.4)

On file position errors, the functions fgetpos, ftell, and £setpos store EFPOS in

errno.

An n-char-sequence after nan (7.20.1.3, 7.24.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.20.1.3, 7.24.4.1.1)

errno is set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.20.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.20.4.1, 7.20.4.4)

A calltoabort () or _Exit () will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.20.4.1, 7.20.4.3, 7.20.4.4)

The termination status will be propagated to __exit () as a parameter. exit () and
_Exit () use the input parameter, whereas abort uses EXIT_FAILURE.

The system function return value (7.20.4.6)

The system function is not supported.

The time zone (7.23.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see Time, page 109.

Range and precision of time (7.23)

The implementation uses signed long for representing clock_t and time_t, based
at the start of the year 1970. This gives a range of approximately plus or minus 69 years
in seconds. However, the application must supply the actual implementation for the
functions time and clock. See Time, page 109.

329

Descriptions of implementation-defined behavior

clock() (7.23.2.1)

The application must supply an implementation of the clock function. See Time, page
109.

%Z replacement string (7.23.3.5, 7.24.5.1)

By default, ":" is used as a replacement for $z. Your application should implement the
time zone handling. See Time, page 109.

Math functions rounding mode (F.9)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 ARCHITECTURE

Values and expressions assigned to some macros (5.2.4.2, 7.18.2,
7.18.3)

There are always 8 bits in a byte.

MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
2217.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint . h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value O (treat as is).
The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 227.

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 227.

J. 4 LOCALE

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. If the compiler option --enable_multibytes is used, the host multibyte
characters are accepted in comments and string literals as well.

IAR C/C++ Compiler
330 Reference Guide for V850

Implementation-defined behavior for Standard C _¢

The meaning of the additional character set (5.2.1.2)

Any multibyte characters in the extended source character set is translated verbatim into
the extended execution character set. It is up to your application with the support of the
library configuration to handle the characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

Using the compiler option --enable_multibytes enables the use of the host’s default
multibyte characters as extended source characters.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

The decimal point character (7.1.1)

The default decimal-point character is a '.". You can redefine it by defining the library
configuration symbol _LOCALE_DECIMAL_POINT.

Printing characters (7.4, 7.25.2)

The set of printing characters is determined by the chosen locale.

Control characters (7.4, 7.25.2)

The set of control characters is determined by the chosen locale.

Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10,
7.4.1.11,7.25.2.1.2,7.25.5.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10,
7.25.2.1.11)

The sets of characters tested are determined by the chosen locale.

The native environment (7.1.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.20.1,
7.24.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.21.4.3, 7.24.4.4.2)

The collation of the execution character set is determined by the chosen locale.

331

Descriptions of implementation-defined behavior

Message returned by strerror (7.21.6.2)

The messages returned by the strerror function depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS filepositioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 41: Message returned by strerror()—IAR DLIB library

IAR C/C++ Compiler
332 Reference Guide for V850

Implementation-defined
behavior for C89

This chapter describes how the compiler handles the implementation-defined
areas of the C language based on the C89 standard.

If you are using Standard C instead of C89, see Implementation-defined behavior
for Standard C, page 317. For a short overview of the differences between
Standard C and C89, see C language overview, page 145.

Descriptions of implementation-defined behavior

The descriptions follow the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 99.

333

Descriptions of implementation-defined behavior

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.
IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set.

See Locale, page 105.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file 1imits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

IAR C/C++ Compiler
334 Reference Guide for V850

Implementation-defined behavior for C89 ___4

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.
Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the AR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.

See Locale, page 105.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.
INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 228, for information about the ranges for the different integer
types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

335

Descriptions of implementation-defined behavior

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.
Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)
The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 231, for information about the ranges and sizes for the
different floating-point types: £loat and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4,7.1.1)

See size_t, page 233, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 233, for information about casting of data pointers and function
pointers.

IAR C/C++ Compiler
336 Reference Guide for V850

Implementation-defined behavior for C89 ___4

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff t, page 233, for information about the ptrdiff_t.
REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.
STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 228, for information about the alignment
requirement for data objects.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

337

Descriptions of implementation-defined behavior

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile", "rt");

IAR C/C++ Compiler
338 Reference Guide for V850

Implementation-defined behavior for C89 ___4

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the Pragma directives chapter and here, the information
provided in the Pragma directives chapter overrides the information here.

alignment

baseaddr
basic_template_matching
building_runtime
can_instantiate

codeseg

Cspy_support
define_type_info
do_not_instantiate
early_dynamic_initialization
function

function_effects

hdrstop

important_typedef
instantiate

keep_definition
library_default_requirements
library_provides
library_requirement_override
memory

module_name

no_pch

once

public_equ

system_include

warnings

339

Descriptions of implementation-defined behavior

Default _ DATE__and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to £mod () is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 1009.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

IAR C/C++ Compiler
340 Reference Guide for V850

Implementation-defined behavior for C89 ___4

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or the end of the file, depends on the application-specific implementation
of the low-level file routines.

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 105.

The characteristics of the file buffering is that the implementation supports files that are
unbuffered, line buffered, or fully buffered.

Whether a zero-length file actually exists depends on the application-specific
implementation of the low-level file routines.

Rules for composing valid file names depends on the application-specific
implementation of the low-level file routines.

Whether the same file can be simultaneously open multiple times depends on the
application-specific implementation of the low-level file routines.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 105.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 105.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to print£ () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

341

Descriptions of implementation-defined behavior

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and £tell store EFPOS in errno.

Message generated by perror() (7.9.10.4)
The generated message is:

usersuppliedprefix: errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(),malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 108.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 108.

IAR C/C++ Compiler
342 Reference Guide for V850

Implementation-defined behavior for C89 ___4

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS filepositioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 42: Message returned by strerror()—IAR DLIB library

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
109.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 109.

343

Descriptions of implementation-defined behavior

IAR C/C++ Compiler
344 Reference Guide for V850

A

abort
implementation-defined behavior. 329
implementation-defined behavior in C89 (DLIB)342
system termination (DLIB) 98
absolute location
data, placing at (@) 168
language supportfor 148
#pragmalocation 259
__absolute_to_pic (intrinsic function). 65,272

addressing. See memory types, data models,
and code models

--aggressive_inlining (compiler option) 197
--aggressive_unrolling (compiler option) 197
algorithm (STL headerfile) 293
alignment L 227
forcing stricter (#pragma data_alignment).......... 254
in structures (#pragmapack) 263
in structures, causing problems 164
of an object (_ALIGNOF__) 148
ofdatatypes.o i 227
restrictions for inline assembler. 120
alignment (pragma directive) 324,339
__ALIGNOF__(operator)covuuenenen.. 148
--allow_misaligned_data_access (compiler option) 198
ANONYMOUS SIUCLUIES . . . v v ettt e e e e e e 165
anonymous symbols, creating. 145
ANSI C. See C89
application
building, overview of Lo oL 36
startup and termination (DLIB) 95
architecture
more informationabout 25
of VB50 . ..o 43
ARGFRAME (assembler directive) 131
argv (argument), implementation-defined behavior 318
arrays
designated initializersin 145

Index

global, accessing 135
implementation-defined behavior. 322
implementation-defined behavior in C89........... 336
incomplete atend of structs 145
non-lvalue L. L i, 151
of incomplete types 150
single-value initialization. 151
asm, __asm (language extension) 119
assembler code
callingfromC i 121
callingfrom C++. 123
insertinginline. 119
assembler directives
for call frame information 140
forstaticoverlay 131
using in inline assemblercode 120
assembler instructions
CAXI. oo 273
CLRI. .ot e 134
insertinginline., 119
LD . 134, 138
MOVHI 138
NOTIL. ..o 134
SCHOL.t e 279
SCHOR. e 279
SCHIL. ... e 278
SCHIR. 278
SETI .o 134
SLD .o 134
SST 134
ST o 134,138
SYNCE 280
SYNCM. ... 280
SYNCP ... 280
TSTL oo 134
used for calling functions. 131
assembler labels
REL_BASE....... i i, 137
REL_CBASE. i, 137

—e

345

346

?SADDR BASE 139

assembler labels, making public (--public_equ) 222
assembler language interface 117
calling convention. See assembler code
labels 132
assembler list file, generating 209
assembleroutputfile., 122
assembler variable, ?7CODE_DISTANCE 134
ASSEITS . . vttt et e e 112
implementation-defined behaviorof 326
implementation-defined behavior of in C89, (DLIB). . 340
including in application 286
assert.h (DLIB headerfile) 291
__assignment_by_bitwise_copy_allowed, symbol used
inlibrary 296
@ (operator)
placing at absolute address. 168
placinginsegments 169
AtOMIC OPETatioNSo vttt et 59
CMONMILOT .« v vttt et e 246
attributes
ODJECt . et et e 241
Y PE o 239
auto variables i 50-51
at functionentrance 126
programming hints for efficientcode.............. 177
using in inline assemblercode 120

backtrace information See call frame information

Barr, Michael 28
baseaddr (pragma directive) 324,339
_ BASE_FILE__ (predefined symbol)............... 282
base-relative memory, 46

accessing using assembler 137
base-relative23 memory, accessing using assembler. 138

basic type names, using in preprocessor expressions
(--migration_preprocessor_extensions). 212

IAR C/C++ Compiler
Reference Guide for V850

basic_template_matching (pragma directive) 324,339
batch files
error return codes.o ov i 188
none for building library from command line 94
binary streams.t 327
binary streams in C89 (DLIB). 341
bitnegation.............. 179
bitfields
data representationof. L. 229
hints.o 164
implementation-defined behavior. 323
implementation-defined behavior in C89........... 337
non-standard typesin. 0. 148
bitfields (pragma directive). 253
bits in a byte, implementation-defined behavior 319
bold style,inthis guide. 30
bool (datatype).oouuiiinin i 228
adding supportforinDLIB 292,294
__brel (extended keyword) 243
brel base pointer register, considerations. 126
brel memory. See base-relative memory
brel (Memory type)ovvven e 46
BREL_BASE (segment)ooouinon. .. 301
BREL_C(segment).c.covuiuiuiinenenen .. 302
BREL_CBASE (segment).ccoouvnen... 301
BREL_I(segment)coouiuiiiininenen .. 302
BREL_ID (segment).c.oovuiininenen .. 302
BREL_N (segment)c.covuiiiinininen... 303
BREL_Z (segment).c.covuiuiuninnenen .. 303
__brel23 (extended keyword) L L 244
brel23 (memory type)o v i 47
BREL23_C(segment).covuvuvuninenenen .. 303
BREL23 I(segment)c.c.ouvuvinininen .. 304
BREL23_ID (segment).c.vuuunenenen... 304
BREL23_N(segment)c.c.vuvunenenen... 304
BREL23 Z (segment).c.covuiiniininen .. 305
building_runtime (pragma directive)............. 324, 339
_ BUILD_NUMBER__ (predefined symbol) 282

byte order

identifying i 285
CandC++linkaget 124
C/C++ calling convention. See calling convention
Cheaderfiles i 291
C language, OVeIVIEWo viitnin i 145
call frame information 139

inassembler listfile........... 122

in assembler listfile (-1A) 210
callstack.o 139
calltable 244
callee-save registers, stored on stack. 51
calling convention

C++, requiring C linkage 123

incompiler. L L i 124
calloc (library function) 52

See also heap
implementation-defined behavior in C89 (DLIB)342

callt. ..o 97
__callt (extended keyword). 58-59, 244
callt functions

inClanguage.ot 58

placementin memory. 78
callt vector table, CLTVEC segment. 306
callt (function type). 58
can_instantiate (pragma directive) 324,339
cassert (library headerfile) 294
cast operators

inExtended EC++........................ 154, 158

missing from Embedded C++ 154
casting

of pointers and integers 233

pointers to integers, language extension. 150
CAXI (assembler instruction) 273
cctype (DLIB headerfile) 294
cerrno (DLIB header file) 294

Index __4

cexit (system termination code)

inDLIB..... 96
placementinsegment., 77
CFI (assembler directive)covuuineen.... 139
CFI_COMMON (call frame information macro) 143
CFI_NAMES (call frame information macro). 143
cfi.h (CFI header examplefile) 140
cfi.m85 (CFI header example file) 143
cfloat (DLIB headerfile).......................... 294
char (datatype).........covninininnininnen .. 228
changing default representation (--char_is_signed) . . . 198
changing representation (--char_is_unsigned) 199
implementation-defined behavior. 319
signed and unsigned. 229
character set, implementation-defined behavior 318
characters, implementation-defined behavior 319
characters, implementation-defined behavior in C89334
character-based I/0
inDLIB 101
--char_is_signed (compiler option). 198
--char_is_unsigned (compiler option) 199
CHECKSUM (segment)covvnvunenenenen .. 305
cinttypes (DLIB header file) 294
climits (DLIB header file). 294
clocale (DLIB headerfile) 294
clock (DLIB library function),
implementation-defined behavior in C89 343
clock (library function)
implementation-defined behavior 330
ClocK.C « e 109
__close (DLIB library function) 105
CLRI1 (assembler instruction) 134
CLTCODE (segment)v.vueennunenenan.. 78, 305
CLTVEC (segment)c.oouuuiunenenan.. 78, 306
clustering (compiler transformation). 175
disabling (--no_clustering). 213
cmath (DLIB headerfile) 294
code
execution of L 38
interruption of execution 55

347

348

position-independent 64

verifying linked result 79
codemodels 53
calling functionsin. 131
configuration il 38
identifying (_ CODE_MODEL_)............... 282
large. . oo 54
normal 54
position-independent 54
specifying on command line (--code_model). 199
code motion (compiler transformation). 174
disabling (--no_code_motion) 214
code segments, used for placement. 77
code span, extending. 178
CODE (S6gMent)oeviiinmenenenananeennn. 306
USIIE « .ottt e e e 77
codeseg (pragma directive) 325, 339
__code_distance (intrinsic function) 65,273
__CODE_MODEL___ (predefined symbol). 282
__code_model (runtime model attribute) 114
--code_model (compiler option) 199
__code, symbolusedinlibrary 296

command line options
See also compiler options

part of compiler invocation syntax................ 185

PASSINE . . ottt 185

typographic convention 30
command prompt icon, in this guide. 30
comments

after preprocessor directives. 151

C++style, usinginCcode. 145
common block (call frame information) 140
common subexpr elimination (compiler transformation) . 173

disabling (--n0_Cs€) 214
__compare_and_exchange_for_interlock
(intrinsic function) 273
compilation date

exacttimeof (_ TIME_)...................... 286

identifying (_ DATE_) 283

IAR C/C++ Compiler
Reference Guide for V850

compiler
environment variables 186
INVOCAtION SYNEAX . « & v v v vt et e eeeeeen e 185
output from 187
compiler listing, generating (-1). 209
compiler objectfile........... 36
including debug information in (--debug, -r) 201
output from compiler. 187
compiler optimization levels. 172
compiler options 191
passingtocompiler L. 185
reading from file (-f) L. 208
specifying parameters 193
SUMMATY .« o vvvtt e te ettt e 193
SYIEAX. © o vt ettt et 191
for creating skeletoncode 122
instruction scheduling 176
SlOCK _T€ES. . vt 176
--lock_regs_compatibility 177
STEZ COMSE. & vttt et e e e e e e 176
--warnings_affect_exit_code 188
compiler platform, identifying 284
compiler subversionnumber. 286
compiler transformations 170
compiler versionnumber 286
compiling
from the command line 36
13 1172 G P 185
complex numbers, supported in Embedded C++. 154
complex (library header file). 293
complex.h (library header file) 291
compound literals 145
computer style, typographic convention 30
configuration
basic project settings, 37
_dow_level init oo il 99
configuration symbols
for file inputandoutput L. 105
forlocale i 106

forprintfandscanf. 103

forstrtod 110

in library configurationfiles. 95, 100
consistency, module, 112
const

declaring objectsc. . 237

non-toplevel L., 151
constants without constructors, C++. 46
constants, placing in named segment 254
__constrange(), symbol used in library 297
__construction_by_bitwise_copy_allowed, symbol used
inlibrary 297
constseg (pragma directive) 253
const_cast (Cast OPerator)c.c.euereraenn. 154
contents, of thisguide. 25
control characters,
implementation-defined behavior 331
conventions, used in thisguide 29
copyright noticeot 2
__CORE__ (predefined symbol). 282
core

identifying i 282-283
COTE SELENE .« v v v vttt et e e et 38
cos (library function) 290
cos (library routine), 110-111
cosf (library routine)., 111-112
cosl (library routine), 111-112
__cplusplus (predefined symbol) 282
__CPU__ (predefined symbol) 283
__cpu (runtime model attribute) 114
cross call (compiler transformation) 175
csetjmp (DLIB headerfile)........................ 294
csignal (DLIB headerfile) 294
cspy_support (pragma directive). 325, 339
CSTACK (Segment)covueninenenennennn. 306

example 74

See also stack
CSTART (segment). o.vvvenenenenenennen.. 77, 307
cstartup (system startup code)

codesegmentfor, 77

Index __4

customizing system initialization. 99

source filesfor (DLIB). 96
cstdarg (DLIB headerfile) 294
cstdbool (DLIB headerfile) 294
cstddef (DLIB headerfile) 294
cstdio (DLIB header file) 294
cstdlib (DLIB header file). 294
cstring (DLIB header file). 294
ctime (DLIB header file). 294
ctype.h (library header file). 291
cwctype.h (library header file) 295
C_INCLUDE (environment variable) 186
C-SPY

debug support for C++. i 157

including debugging support 89

interface to system termination 99

Terminal I/O window, including debug support for91
C++
See also Embedded C++ and Extended Embedded C++

absolute location 169
callingconvention, 123
dynamic initializationin 78
headerfiles. L. 292
language extensions. L. 159
special function types.o ... 62
standard template library (STL). 293
static member variables L L. 169
supportfor........ 35
Ct++headerfiles.......... ... i 293
C++ names, in assemblercode 123
C++ objects, placing in memory type 50
C++terminology.oo i 29
Ct++-stylecomments., .. 145
C89
implementation-defined behavior. 333
supportfor........ .. . 145
--c89 (compileroption).o 198

C99. See Standard C

349

350

D

-D (compileroption).o, 200
data
alignmentof. L. 227
different ways of storing 43
located, declaringextern 169
placing....... oL 167, 254, 299
at absolute location 168
representation of oL, 227
SEOTAZE « o v v v vttt ettt e e e 43
verifying linked result 79
data block (call frame information). 140
data memory attributes, using. 47
datamodels.ol 44
configuration oo 38
identifying (__DATA_ MODEL_) 283
data PoIntersvvv i 232
data segments 71
datatypes . ..o v v 228
floatingpoint i 231
INCH . 237
INEEEET EYPES. « v v vttt et e e 228
dataseg (pragma directive)ouiin.n. 254
data_alignment (pragma directive) 254
__DATA_MODEL__ (predefined symbol)............ 283
--data_model (compiler option) 200
__data_model (runtime model attribute). 114
__DATE__ (predefined symbol).................... 283
date (library function), configuring support for......... 109
DC32 (assembler directive).un.. .. 120
--debug (compileroption) oL 201
debug information, including in objectfile............ 201
decimal point, implementation-defined behavior 331
declarations
13101 0] 1720 AN 151
inforloops.o 145
Kernighan & Ritchie 179
offunctions i 124

IAR C/C++ Compiler
Reference Guide for V850

declarations and statements, mixing 145
declarators, implementation-defined behavior in C89. . . .338
define_type_info (pragma directive) 325,339
delete (keyword)ttt 52
denormalized numbers. See subnormal numbers
--dependencies (compiler option) 201
deque (STL headerfile) 293
destructors and interrupts, using 157
DI (assembler instruction).o..... 274
diagnostic MesSagesv vt 189
classifying as compilationerrors 202
classifying as compilation remarks 203
classifying as compiler warnings 204
disabling compiler warnings 218
disabling wrapping of in compiler................ 218
enabling compiler remarks. L. 223
listing all used by compiler 204
suppressing incompiler. 203
--diagnostics_tables (compiler option) 204
diagnostics, implementation-defined behavior 317
diag_default (pragma directive) 255
--diag_error (compileroption) 202
diag_error (pragma directive) 255
--diag_remark (compiler option). 203
diag_remark (pragma directive) 256
--diag_suppress (compiler option) 203
diag_suppress (pragma directive) 256
--diag_warning (compiler option). 204
diag_warning (pragma directive) 256
DIFUNCT (segment)c.ooueuvunenenen.. 79, 307
directives
function for staticoverlay 131
Pragma. . .o oo vttt et e 41, 251
directory, specifying as parameter. 192
__disable_interrupt (intrinsic function). 274
--disable_sld_suppression (compiler option). 204
--discard_unused_publics (compiler option). 205
disclaimer............ i 2

DLIB. . .ottt e 39,291
configurationsoiiiiiiiiian.. 100
configuring.c. i 82, 205
documentation i 27
including debug support. 89
reference information. See the online help system. . . . 289
runtime environmentoueuenee..n. 81

--dlib_config (compiler option). 205

DLib_Defaults.h (library configuration file). 95, 100

__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 105

document CONVeNtoNS. ovvvue e e e e, 29

documentation
overviewof guides. oL, 27

domain errors, implementation-defined behavior 326

domain errors, implementation-defined behavior in C89

(DLIB) . ettt e et e e e e e 340

double (datatype).oviiininiii i 231

do_not_instantiate (pragma directive)............ 325, 339

dynamic initialization L L. 95
and CH+. oo 78

dynamic memoryc.ouuerininiineenen.. 52

-e (compileroption), 206

early_initialization (pragma directive) 325, 339

--ec++ (compileroption). Lo 206

edition, of thisguide 2

--eec++ (compileroption). oL 206

EI (assembler instruction). 274

Embedded C++......o 153
differences from C++......... 153
enabling......... i 206
function linkage oL 124
language extensions. 153
OVEIVIEW ..ottt e 153

Embedded C++ Technical Committee 29

embedded systems, IAR special supportfor............ 40

__embedded_cplusplus (predefined symbol) 283

Index __4

__enable_interrupt (intrinsic function) 274
--enable_multibytes (compiler option) 207
entry label, program L L. 96
enumerations, implementation-defined behavior. 323

enumerations, implementation-defined behavior in C89. . 337

enums
datarepresentation.i i, 228
forward declarationsof 150
environment
implementation-defined behavior. 318
implementation-defined behavior in C89........... 333
runtime (DLIB) 81

environment names, implementation-defined behavior. . . 319
environment variables

C_INCLUDE. i 186
environment (native),
implementation-defined behavior 331
EP (processorregister)oooinia.... 139
EQU (assembler directive) 222
ERANGE 326
ERANGE (C89)o 340
errno value at underflow,
implementation-defined behavior 329
errno.h (library header file). 291
EITOL MESSAZES . . o v vttt ettt 190
classifying for compiler........................ 202
error return Codeso 188
error (pragma directive), 257
--error_limit (compiler option) 207
escape sequences, implementation-defined behavior319
exception handling, missing from Embedded C++. 153
EXCEPLION VECLOTS . oot vttt e e e e e e eeen s 77
EXCP (assembler instruction). 57-58
_Exit (library function) 98
exit (library function) 98
implementation-defined behavior. 329
implementation-defined behavior in C89........... 342
_exit (library function) 98
__exit(library function), 98
exp (libraryroutine) 110

351

352

expf (library routine).
expl (library routine).
export keyword, missing from Extended EC++
extended command line file
forcompiler. i
PasSING OPLiONS. « .« oo vttt
Extended Embedded C++.
enabling i
extended keywords
enabling (-€).t
OVEIVIEW . .ottt

__interrupt
See also INTVEC (segment)

_osyscall L
See also SYSCALLVEC (segment)
__trap
See also INTVEC (segment)
extern "C"linkage. i i

F

-f (compileroption). i
fatal error messages
fdopen,instdioh L i L
fegettrapdisable. L i i

IAR C/C++ Compiler
Reference Guide for V850

fegettrapenable L L. 295
FENV_ACCESS, implementation-defined behavior. 322
fenv.h (library header file). 291
additional C functionality. 295
fgetpos (library function), implementation-defined
behavior 329
fgetpos (library function), implementation-defined
behaviorinC89........... 342
__FILE__ (predefined symbol)..................... 283
file buffering, implementation-defined behavior. 327
file dependencies, tracking 201
file paths, specifying for #include files. 209
file position, implementation-defined behavior. 327
file (zero-length), implementation-defined behavior. 327
filename
extension for linker configuration file 68
ofobjectfile. i 220
search procedure for. 186
specifying as parameter 192
filenames (legal), implementation-defined behavior. 327
fileno,instdioh 295
files, implementation-defined behavior
handling of temporary 328
multibyte charactersin. 328
103 9753 1113V 328
__flat (extended keyword) 244
float (datatype).ov e 231
floating-point constants
hexadecimal notation. 145
hints. 164
floating-point environment, accessing ornot 267
floating-point expressions
CONraCting OT NOt. « . o v v vt vt e e e e 267
floating-point expressions,
using in preprocessor extensions. 212
floating-point format. 231
hints....... ... 163-164
implementation-defined behavior. 321
implementation-defined behavior in C89........... 336
special Cases. u i 232

32-DItS ¢ v 231

G4-DILS . oot 231
floating-point status flags 295
floating-point unit

identifying i 284
float.h (library header file) 291
FLT_EVAL_METHOD, implementation-defined
behavior, 321, 326, 330
FLT_ROUNDS, implementation-defined
behavior 321, 330
fmod (library function),
implementation-defined behaviorin C89 340
for loops, declarationsin. 145
formats

floating-point values 231

standard IEEE (floating point) 231
_ FPU__ (predefined symbol) 284
--fpu (compileroption) 208
FPU instructions

SQRTF. 274-275
__fpu_double (runtime model attribute) 114
__fpu_single (runtime model attribute). 114
__fpu_sqrt_double (intrinsic function) 274
__fpu_sqrt_float (intrinsic function) 275
FP_CONTRACT, implementation-defined behavior. 322
fragmentation, of heapmemory 52
free (library function). See alsoheap 52
fsetpos (library function), implementation-defined
behavior i 329
fstream (library headerfile) 293

ftell (library function), implementation-defined behavior . 329
ftell (library function), implementation-defined behavior in

C8O . 342
Full DLIB (library configuration)................... 100
__func__ (predefined symbol) 152,284
FUNCALL (assembler directive) 131
_ _FUNCTION__ (predefined symbol) 152,284
function calls

callingconvention, 124

CoStof ... 54

Index __4

largecodemodel 133
normal codemodel. 132
position-independent code model. 133
stackimage after L, 127
function calls, costof 54
function declarations, Kernighan & Ritchie 179
function directives for staticoverlay 131
function inlining (compiler transformation) 174
disabling (--no_inline) 215
function pointers.o.vni i 232
converting to an absolute memory position 277
function prototypes.cvv e 178
enforcing 223
function return addresses 128
function type information, omitting in object output. 219
FUNCTION (assembler directive) 131
function (pragma directive). 325,339
functional (STL header file) 293
fUNCtionsS.ot 53
calling in different code models. 131
C++ and special function types 62
declaring i 124, 178
inlining. i 145, 174, 178, 258
INEITUPL . . o e ettt 55,59
INMENSIC « oottt e 117,178
MONITOTottt 59
omitting typeinfo L L. 219
PATAMELETS . . . oottt et e e 126
placinginmemory 167, 169
recursive
avoiding 178
storing dataonstack 51
reentrancy (DLIB) 290
related extensions. il 53
return values from o oL oL oLl 128
special function types.o ... 55
L5621 o T P 57
verifying linked result 79
function_effects (pragma directive). 325,339

353

354

G

getenv (library function), configuring support for. 108
getw,instdioh L 295
getzone (library function), configuring support for. 109
GEIZOME.C. v v v vt ettt et e et e e e e 109
__get_interrupt_state (intrinsic function) 275
__get_processor_register (intrinsic function) 56,276
global arrays, accessingc...ouiuiiiin.. 135
global pointer (GP) it 46
global variables
ACCESSING . o v o vt e 135
initialization. L oL oo 73
GLOBAL_AC (segment)c.covuinvevennn. 307
GLOBAL_AN (segment)c.oovuvnenvennn. 307
--guard_calls (compiler option). 208
guidelines, reading i, 25
__halt (intrinsic function) 277
HALT (assembler instruction). 277
Harbison, Samuel P. 28
hardware conflict, in V850Ex/xxx devices 204
hardware support in compiler....................... 81
hash_map (STL headerfile) 293
hash_set (STL headerfile) 293
__has_constructor, symbol used in library 297
__has_destructor, symbol used in library 297
hdrstop (pragma directive) 325, 339
header files
C o 291
G o 292-293
library 289
special function registers 181
STL ot 293
DLib_Defaults.ho L. 95, 100
including stdbool.h forbool. 228
including stddef.h forwchar_t................ ... 229

IAR C/C++ Compiler
Reference Guide for V850

header names, implementation-defined behavior 323
--header_context (compiler option). 209
heap

dynamic memoryooeni it 52

segments for. 75

storingdata 44

VLA allocatedon., 226
heap segments

HEAP (segment), 308

placing. 76
heap size

andstandard /O. o L., 76

changingdefault. 76
HEAP (segment).c.oiniinnenenan.. 75, 308
heap (zero-sized), implementation-defined behavior. 329
hints

for good code generation 177

implementation-defined behavior. 322

using efficient datatypes 163
__huge (extended keyword) 245
huge memory, accessing using assembler............. 138
huge (memory type) 47
HUGE_C(segment)c.oovuiiiinininen .. 308
HUGE_I(segment)...........c.cooiuiiininen... 308
HUGE_ID (segment)c.coouvuiinininen .. 309
HUGE_N(segment)c.covuiiiinininen .. 309
HUGE_Z (segment)c.oovuiiiiininen .. 309
-I (compileroption). i 209
IAR Command Line Build Utility. 94
IAR Systems Technical Support.................... 190
iarbuild.exe (utility) i 94
__iar_cos_accurate (library routine) 111
__iar_cos_accuratef (library routine) 112
__iar_cos_accuratef (library function) 290
__iar_cos_accuratel (library routine) 112
__iar_cos_accuratel (library function) 290

__iar_cos_small (library routine) 110
__iar_cos_smallf (library routine). 111
__iar_cos_smalll (library routine). 111
__iar_exp_small (library routine) 110
__iar_exp_smallf (library routine) 111
__iar_exp_smalll (library routine) 111
__iar_log_small (library routine) 110
__iar_log_smallf (library routine). 111
__iar_log_smalll (library routine). 111
__iar_logl10_small (library routine) 110
__iar_log10_smallf (library routine)................. 111
__iar_logl10_smalll (library routine) 111
__iar_Powf (library routine) 112
__iar_Powl (library routine) 112
__iar_Pow_accurate (library routine) 111
__iar_pow_accurate (library routine) 111
__iar_Pow_accuratef (library routine) 112
__iar_pow_accuratef (library routine). 112
__iar_pow_accuratef (library function). 290
__iar_Pow_accuratel (library routine). 112
__iar_pow_accuratel (library routine). 112
__iar_pow_accuratel (library function). 290
__iar_pow_small (library routine). 110
__iar_pow_smallf (library routine). 111
__iar_pow_smalll (library routine) 111
__iar_program_start (label). 96
__iar_Sin (library routine) 110
__iar_Sinf (library routine). 112
__iar_Sinl (library routine) 112
__iar_Sin_accurate (library routine) 111
__iar_sin_accurate (library routine) 111
__iar_Sin_accuratef (library routine) 112
__iar_sin_accuratef (library routine). 112
__iar_sin_accuratef (library function). 290
__iar_Sin_accuratel (library routine) 112
__iar_sin_accuratel (library routine). 112
__iar_sin_accuratel (library function). 290
__iar_Sin_small (library routine) 110
__iar_sin_small (library routine). 110

Index __4

__iar_Sin_smallf (library routine). 111
__iar_sin_smallf (library routine) 111
__iar_Sin_smalll (library routine). 111
__iar_sin_smalll (library routine) 111
__IAR_SYSTEMS_ICC__ (predefined symbol) 284
__iar_tan_accurate (library routine) 111
__iar_tan_accuratef (library routine). 112
__iar_tan_accuratef (library function). 290
__iar_tan_accuratel (library routine). 112
__iar_tan_accuratel (library function). 290
__iar_tan_small (library routine) 110
__iar_tan_smallf (library routine). 111
__iar_tan_smalll (library routine) 111
__ICCV850__ (predefined symbol) 284
ICODE (segment).c.ouiuiununenenan.. 78, 310
icons,inthisguide 30
IDE

building a library from. 95

building applications from, an overview 36
identifiers, implementation-defined behavior 319
identifiers, implementation-defined behavior in C89334
IEEE format, floating-point values 231
implementation-defined behavior

CBY 333

Standard C........ 317
important_typedef (pragma directive)............ 325,339
include files

including before source files 221

specifying ... 186
include_alias (pragma directive) 257
infinity 232
infinity (style for printing), implementation-defined
behavior 328
inheritance, in Embedded C++ 153
initialization

dynamic........... 95

single-value i 151
initialized data segments., 73
initializers, static. oot 150

355

356

inlineassembler 119

avoidingot 178
See also assembler language interface
inlinefunctions. 145
incompiler. 174
inline (pragma directive). oL 258
inlining functions, implementation-defined behavior 322
installation directory 29
instantiate (pragma directive) 325, 339
instruction scheduling (compiler option). 176
int (data type) signed and unsigned. 228
INEEEET LYPES « « v v e ettt et e e e e 228
CASHING . oottt e 233
implementation-defined behavior. 320
1101707 o A AN 233
ptrdiff t. ... 233
/< AP 233
1000 0103 OO 233
integers, implementation-defined behavior in C89 335
integral promotion. i 179
internal error. 190
__interrupt (extended keyword) 56, 245
using in pragma directives 269
interrupt functions. Lol 55
placementin memory. 77
interrupt handler. See interrupt service routine
interrupt Service routine 55
interrupt state, TeStOringvvenven e 279
INEEITUPE VECLOT .« . v ettt et e e e e 55
specifying with pragma directive 269
interrupt vector table. L L oL 55,57
in linker configurationfile 77
INTVEC segmentc.ovuiiienenan.. 310
interrupts
disabling i 246
during function execution 59
PrOCESSOL SEALE « . o v v v v e et e e 51
using with EC++ destructors 157
INtPtr_t (INtEEEr tYPE) « o v v v v et e e et 233

IAR C/C++ Compiler
Reference Guide for V850

__intrinsic (extended keyword). 246
intrinsic functions L i 178
fpu_sqrt_double.l 274
fpu_sqrt_float. 275
OVETVIEW o vt vttt e e e et e e e e 117
SUMMATY . o v ovvoe e ettt et e e e e ee e eaenen 271
__absolute_to_pic ii 272
example. 65
_code_distance. 273
example. 65
__compare_and_exchange_for_interlock. 273
et _processor_Iegister.oeuenenon... 276
example. 56
__pic_to_absolute 277
example. 65
_saturated_add. 277
_saturated_sub. 278
_search_ones_left. 278
__search_ones_right 278
__search_zeros_left........................... 279
__search_zeros_right............. 279
__Set_Processor_Iegistercoeuen... 279
example. 57
__synchronize_exceptions. 280
__synchronize_memory........................ 280
__synchronize_pipeline........................ 280
_upper_mulé4 ... 280
intrinsics.h (header file) 271
inttypes.h (library header file). 292
INTVEC (segment).covninninennan.. 77,310
INVOCAtION SYNEAX . oo vv ettt 185
iomanip (library header file) 293
ios (library header file) 293
iosfwd (library header file) 293
iostream (library header file). 293
is0646.h (library header file). 292
istream (library header file). 293
italic style, inthisguide 30
iterator (STL headerfile) 293

1/O register. See SFR

)

Josuttis, Nicolai M.. 28
keep_definition (pragma directive) 325, 339
Kernighan & Ritchie function declarations. 179
disallowing.ot it 223
Kernighan, Brian W.. 28
keywords. 239
extended, overview of, 41
-l (compileroption). L. 209
for creating skeletoncode 122
labels. . .o 151
assembler, making public. 222
_dar_program_Start.c...eninaneannn 96
_Program_Start. 96
labels, inassembler. 132
Labrosse,JeanJ........... 28
Lajoie,Joséeo 28
language extensions
Embedded C++ 153
enabling using pragma.i.o... 258
enabling (-€). 206
language overviewol 35
language (pragma directive)c.citiin.. 258
largecodemodel. 54
functioncalls L 133
large with saddr (datamodel) 201
large (codemodel), 54
large (datamodel). i i 201
LD (assembler instruction) 134, 138

Index __4

libraries
definitionof L 36
standard template library 293
usingaprebuilt i 83
library configuration files
DLIB ..ottt e 100
DLib_Defaults.h 95, 100
modifying L 95
SPECIfying . ..ot 205
library documentation. 289
library features, missing from Embedded C++......... 154
library functions L L. 289
summary, DLIB.............., 291
library header files 289
library modules
CIEALINE « oottt ettt e e e 210
overriding. L 93
library objectfiles. 289
library options, Settingoeueuenenn.. 40
library project template. 39
USINE . oottt 94
library_default_requirements (pragma directive) . . .325, 339
--library_module (compiler option) 210
library_provides (pragma directive) 325,339
library_requirement_override (pragma directive) . . . 325, 339
lightbulb icon, in this guide. 30
limits.h (library header file) 292
__LINE__ (predefined symbol) 285
link register, considerations. 126
linkage, Cand C++. i 124
linker configurationfile 68
CUSIOMUZING .« .« v vttt ettt 68
usingthe-Pcommand 70
usingthe-Zcommand 70
linkermapfile.......... i 79
linker outputfiles il 37
linker segment. See segment
linking
from the commandline 37

357

358

required iNput. 37

Lippman, Stanley B.. 28
list (STL header file). i, 293
listing, generating 209
literals, compound.l 145
literature, recommended, 28
__LITTLE_ENDIAN__ (predefined symbol).......... 285
local variables, See auto variables

locale

adding support forinlibrary 107

changingatruntime 107

implementation-defined behavior. 320, 330

removing supportfor, 107

SUpport for. 106
locale.h (library header file) 292
located datasegmentsc..ovuiinenenan.. 76
located data, declaring extern 169
location (pragma directive) 168, 259
LOCFRAME (assembler directive). 131
locking, of registers. 176
--lock_regs (compiler option) 176, 211
--lock_regs_compatibility (compiler option). 211
log (library routine).o, 110
logf (library routine) 111
logl (library routine), 111
logl0 (library routine). 110
loglOf (library routine), 111
loglOl (library routine)covninen e vennn. 111
long double (datatype)...........coiinini .. 231
long float (data type), synonym for double............ 150
long long (data type)

TESIHCHONSo 228
long long (data type) signed and unsigned 228
long (data type) signed and unsigned 228
longjmp, restrictions forusing 291
loop unrolling (compiler transformation) 173

disabling i 218
loop-invariant eXpressions. 174

IAR C/C++ Compiler
Reference Guide for V850

_dow_level dnit. 96
CUSIOMUZING . . o oo vttt et e 99
low_level init.C........ 96
low-level processor operations 146, 271
ACCESSING . v v v ettt et et e 117
__Iseek (library function) 105
macros
embedded in #pragma optimize 262
ERANGE (inerrnoh) 326, 340
inclusionof assert 286
NULL, implementation-defined behavior 327
inC89forDLIB, 340
substituted in #pragma directives. 146
variadic 145
--macro_positions_in_diagnostics (compiler option)212
main (function)
definition (C89) i 333
implementation-defined behavior. 318
malloc (library function)
Seealsoheap 52
implementation-defined behavior in C89........... 342
Mann, Bernhard i 28
map (STL header file). 293
map, linker 79
math functions rounding mode,
implementation-defined behavior 330
math functions (library functions). 110
math.h (library header file) 292
MB_LEN_MAX, implementation-defined behavior. 330
medium with saddr (datamodel). 201
medium (datamodel), 201
memory
access methods using assembler
base relative (brel)., 137
base-relative23 oL 138
huge o 138

MEAT. .« ottt et e e e 136
short address (saddr). 139
ACCESSING . o\ vttt et 38,45, 134
allocating inC++.o 52
dynamicC.ouiu it e 52
heap 52
nobitaccessingo.iiiiiin.. 139
non-initialized L oL 181
RAM,Savingoovtii e 178
releasing in C++. 52
Stack. . .. 50
SAVINE oo e ettt 178
used by global or static variables 43
memory layout, V850 L 43
memory management, type-safe 153
memory map
customizing the linker configuration file for 69
memory placement
using pragma directive. 49
using type definitions. 49, 241
memory segment. See segment
MEMOTY CYPES « « o e v e et ettt e et e e e 45
brel (base-relative).oiiiinn. 46
brel23. ... 47
CH o 50
huge. 47
T2 46
placing variablesin 50
saddr (shortaddress) 47
specifying ... 47
SLIUCLUIES . . oottt 49
SUMMATY « v vttt e e e e et e e 48
memory (pragma directive). 325,339
memory (STL header file). 293
__memory_of
symbolusedinlibrary 297
message (pragma directive)., 260
messages
disabling i 224

Index __4

forcing....... .. 260
Meyers, SCOtt ov it 28
--mfc (compiler option). 212
--migration_preprocessor_extensions (compiler option). .212
migration, from earlier IAR compilers 28
MISRA C, documentationc.oovuunn. 28
--misrac_verbose (compiler option) 195
--misrac1998 (compiler option) 195
--misrac2004 (compiler option) 195
mode changing, implementation-defined behavior 328
module consistency. 112

rtmodel. 264
module map, in linker mapfile...................... 79
module name, specifying (--module_name) 213
module summary, in linker map file 79
--module_name (compiler option) 213
module_name (pragma directive) 325,339
__monitor (extended keyword) 246
monitor functions oL 59, 246
MOVHI (assembler instruction) 138
multibyte character support. 207
multibyte characters, implementation-defined
behavior 319, 331
multiple inheritance

inExtended EC++......... 154

missing from Embedded C++ 153

missing from STL 154
multi-file compilation. 171
mutable attribute, in Extended EC++ 154, 158
names block (call frame information)................ 140
namespace support

inExtended EC++........................ 154, 158

missing from Embedded C++ 154
Naming CONVENtIONS vvvt v v enneiaeenann 30
NaN

implementationof L. 232

359

360

implementation-defined behavior. 328
native environment,

implementation-defined behavior 331
NDEBUG (preprocessor symbol)on... 286
__near (extended keyword). L. 246
NEAT TNETNIOTY . .« ettt et et e te e et e e e e eaens 136
near (MEMOTY tYPE). « . o v v v e v ee et eee e 46
NEAR_C(segment)covuininenennnnennn. 310
NEAR_I(segment).cuuuiininenannnnennn. 310
NEAR_ID (segment)coouiuenennnnennn. 311
NEAR_N(segment)cuvniininenennnnenan. 311
NEAR_Z (segment)couueninenennnnennn. 311
new (keyword) 52
new (library headerfile) 293
no bit access (memory restriction) 139
non-initialized variables, hintsfor. 182
non-scalar parameters, avoiding 178
NOP (assembler instruction). 277
__noreturn (extended keyword) 247
Normalcodemodel. 54
Normal DLIB (library configuration) 100
normal (codemodel). 54
Notanumber NaN)............................. 232
NOT1 (assembler instruction). 134
__no_bit_access (extended keyword) 247
--no_clustering (compiler option) 213
--no_code_motion (compiler option) 214
--no_cross_call (compiler option). 214
--no_cse (compileroption), 214
--no_data_model_attribute (compiler option) 215
no_epilogue (pragma directive). 260
__no_init (extended keyword) 182, 247
--no_inline (compiler option) 215
__no_operation (intrinsic function). 277
--no_path_in_file_macros (compiler option). 215
no_pch (pragma directive) 325, 339
--no_scheduling (compiler option) 216
--no_size_constraints (compiler option) 216
--no_static_destruction (compiler option)............. 216
--no_system_include (compiler option) 217

IAR C/C++ Compiler
Reference Guide for V850

--no_tbaa (compiler option) 217
--no_typedefs_in_diagnostics (compiler option). 217
--no_unroll (compiler option) 218
--no_warnings (compiler option) 218
--no_wrap_diagnostics (compiler option) 218
NULL
implementation-defined behavior. 327
implementation-defined behavior in C89 (DLIB)340
pointer constant, relaxation to Standard C 150
numeric conversion functions,
implementation-defined behavior 331
numeric (STL header file). 293
-O (compileroption). . ..o 219
-0 (compileroption) i 220
objectattributes.l 241
object filename, specifying (-0) 220
object module name, specifying (--module_name). 213
object_attribute (pragma directive) 182, 261
--omit_types (compileroption) 219
once (pragma directive) 325, 339
--only_stdout (compileroption) 220
__open (library function), 105
operators
See also @ (operator)
for cast
inExtended EC++........... 154
missing from Embedded C++................. 154
for segmentcontrol 149
ininline assembler............ 119
precision for 32-bitfloat 231
precision for 64-bitfloat 232
sizeof, implementation-defined behavior........... 330
variants forcast o L ool 158
_Pragma (preprocessor) oL 145
__ALIGNOF__, for alignment control. 148
?, language extensions for 159

optimization
clustering, disabling. 213
code motion, disabling. 214
common sub-expression elimination, disabling 214
configuration il 39
disabling i 173
function inlining, disabling (--no_inline)........... 215
hints. 177
loop unrolling, disabling 218
scheduling, disabling 216
specifying (-O). 219
techniques i 173
type-based alias analysis, disabling (--tbaa)......... 217
using inline assemblercode 120
using pragma directive. 261
optimization levels 172
optimize (pragma directive) 261
OPLiON PArametersovvvete e 191
options, compiler. See compiler options
Oram, Andyt 28
ostream (library headerfile) 293
output
from preprocessor 221
specifying for linker. 37
--output (compiler option). 220
overhead, reducing 173-174
pack (pragma directive) 234,262
packed Structure types.ot 234
parameters
function il 126
hidden i 126
non-scalar, avoiding. oL 178
(ST 1] 1<) P 126-127
rules for specifying a file or directory 192
specifying ... 193
Stack. ... 126-127

Index __4

typographic convention 30
part number, of thisguide 2
PermManent registers.o v et e n e 125
perror (library function),
implementation-defined behavior in C89 342
__pic_to_absolute (intrinsic function). 65
placement

codeanddata.............., 299

innamed segments. 169
plain char, implementation-defined behavior 319
POINEET EYPES « « v o e v e et e et e e e e e e 232

MIXING - o ve et e e e 150
pointers

CaSHING o v ettt 233

data 232

function 232

global. 46

implementation-defined behavior. 322

implementation-defined behavior in C89........... 336
polymorphism, in Embedded C++ 153
porting, code containing pragma directives. 252
position-independentcode, .. 64
position-independent code model 54

functioncalls L. 133
pow (library routine). 110-111

alternative implementationof. 290
powf (library routine) 111-112
powl (library routine) 111-112
pragma dir€Ctives oottt 41

SUMMATY « o\ e et ettt et e e e et e eee e e 251

for absolute located data 168

list of all recognized., 324

list of all recognized (C89). 339

PACK . .o 234,262

type_attribute, using. L. 49

R0) 58-59
_Pragma (preprocessor operator) 145
predefined symbols

OVEIVIEW . ..ottt 41

SUMMATY . o v v et ettt et e e e et e ee e eaenen 282

361

362

--predef_macro (compiler option). 220

--preinclude (compiler option) 221
--preprocess (compiler option) 221
preprocessor
operator (_Pragma) 145
OULPUL. &« o et ettt ettt e e e e e 221
overview of L 281

preprocessor directives

comments attheendof 151
implementation-defined behavior. 323
implementation-defined behavior in C89........... 338
HPragma. . ..ot e 251
preprocessor extensions
compatibility 212
_ VA ARGS__ ... 145
H#WArNing MeSSaAZE « .« . v oo v v e e 287
preprocessor symbols L 282
defining i 200
preserved regiStersviiin i 125
_ PRETTY_FUNCTION__ (predefined symbol). 285
primitives, for special functions 55
print formatter, selecting. 88
printf (library function). 87
choosing formatter. 87
configuration symbols 103
implementation-defined behavior. 328
implementation-defined behavior in C89........... 342
__printf_args (pragma directive). 263
printing characters, implementation-defined behavior . . .331
processor configuration. il 38
processor operations
ACCESSING . o\ v vttt e 117
low-level i 146, 271
processor, writing to (__set_processor_register). 279
programentry label. o Lt 96
program termination, implementation-defined behavior . . 318
programming hints oL 177
__program_start (label). oL 96

program, see also application

IAR C/C++ Compiler
Reference Guide for V850

projects

basic settings for i 37

settingup foralibrary 94
prototypes, enforcing 223
ptrdiff_t (integer type).o ov i 233
PUBLIC (assembler directive) 222
publication date, of this guide. 2
--public_equ (compiler option) 221
public_equ (pragma directive) 325,339
putenv (library function), absent from DLIB 108
putw,instdioh.......... L il 295
qualifiers

constandvolatile. 235

implementation-defined behavior. 323

implementation-defined behavior in C89........... 337
queue (STL headerfile) 294
-r (compiler option). 201
raise (library function), configuring support for 109
TAISE.C . vttt e e e e e 109
RAM

non-zero initialized variables., 73

SAVING MEMOTY. . ¢ v ettt e et e et e e 178
range errors, inlinker L L oL oL L 79
RCODE (segment)c.oueuinninenenenen... 312
__read (library function). 105

CUSTOMIZING .« v ettt e e e 101
read formatter, selecting 89
reading guidelines. 25
reading, recommended 28
realloc (library function). 52

implementation-defined behavior in C89........... 342

See also heap

recursive functions

avoidingot 178
storing dataonstack L., 51
reentrancy (DLIB). i 290
reference information, typographic convention. 30
TEZIStEr CONSLANLS .« . o vttt ettt e ens 176
register keyword, implementation-defined behavior 322
TeZISer PATAMELerS . . . o\ vt et e e e eee 126-127
registered trademarks 2
registers
assigning to parameterso.enn.. 127
brel base
RAd. . 46, 126, 137
R2S. . 46, 126, 137
callee-save, storedonstack 51
implementation-defined behavior in C89........... 337
in assembler-level routines. 124
loading permanently 176
locking. . ..o 176
preserved 125
processor, writing to (__set_processor_register) 279
scratch 125
--reg_const (compileroption) 222
__reg_ep (runtime model attribute). 114
__reg_lock2 (runtime model attribute) 115
__reg_lock6 (runtime model attribute) 115
__reg_lock10 (runtime model attribute) 115
__reg_r25 (runtime model attribute) 115
reinterpret_cast (Cast Operator) 154
--relaxed_fp (compileroption) 222
remark (diagnostic message).t 189
classifying forcompiler................. 203
enablingincompiler 223
--remarks (compiler option) 223
remove (library function) 105
implementation-defined behavior. 328
implementation-defined behavior in C89 (DLIB)34l
remquo, magnitude of. L L L Ll 326

Index __4

rename (library function) 105
implementation-defined behavior. 328
implementation-defined behavior in C89 (DLIB)341

__ReportAssert (library function). 112

required (pragma directive). 264

--require_prototypes (compiler option). 223

return addresses 128

return values, from functions 128

Ritchie, Dennis M. 28

__root (extended keyword) L L 247

routines, time-critical 117, 146, 271

RTE (assembler instruction) 249

rtmodel (assembler directive) 113

rtmodel (pragma directive) 264

rtti support, missing from STL 154

__rt_version (runtime model attribute) 115

runtime environment
DLIB ..ottt e 81
settingoptions for 40
settingup (DLIB). oo 82

runtime libraries (DLIB)
introduction oo 289
customizing system startupcode 99
customizing without rebuilding, 86
filename Syntaxt 86
overriding modulesin 93
using prebuilt. oL 83
runtime library
setting up from command line 40
settingupfromIDE L 40

runtime model attributes.o L. 112
DU et et e 114
_data_model.......... ool 114
_fpudouble........ 114
_fpusingle 114
B (< o PP 114
_reg lock2. ... 115
_reg lockb. 115
_reg locklO.o i 115

363

364

R4 (brel base register)., 46, 137
CcONSIAErationsuuieeent e 126
R18, constant value loadedinto 176
R19, constant value loadedinto 176
R25 (brel base register).c.ouo... 46, 137
CcoNSIAerationsoitiient e 126
__saddr (extended keyword) oLl 248
Saddr memoryo it 47
accessing using assembler 139
saddr (MemOry tyPe). « .« oo vttt 47
_ SADDR_ACTIVE__ (predefined symbol) 285
SADDR_BASE (segment)c.covuo.... 312
SADDR7_I(segment)...... 312
SADDR7_ID (segment)cocovuinen .. 313
SADDR7_N(segment).covuuinenenen .. 313
SADDR7_Z(segment)ccvuiinenenen .. 313
SADDRS I (segment)......... 314
SADDRS_ID (segment)c.covuinen .. 314
SADDRS_N(segment)...........coveuiinenenon .. 314
SADDRS8_Z (segment)c.uuuiiunennennen . 315
scanf (library function)
choosing formatter (DLIB) 88
configuration symbols 103
implementation-defined behavior. 329
implementation-defined behavior in C89 (DLIB)342
__scanf_args (pragma directive) 265
scheduling (compiler transformation) 176
disabling i 216
SCHOL (assembler instruction). 279
SCHOR (assembler instruction). 279
SCHIL (assembler instruction). 278
SCHIR (assembler instruction). 278
scratch registersouuiitiinnn. 125

IAR C/C++ Compiler
Reference Guide for V850

__search_ones_left (intrinsic function). 278
__search_ones_right (intrinsic function). 278
__search_zeros_left (intrinsic function) 279
__search_zeros_right (intrinsic function) 279
section (pragma directive). 265
SEZMENt GrOUP NAMC . « « « v v e eve e e e ee e 71
segment map, in linkermapfile 79
segment memory types, in XLINK................... 68
segment (pragma directive)., 265
SEEMENLS. . . v v ettt 299
CLTCODE.ot 78
CLTVEC .. i e 78
CODE ...ttt 77
COOE . .ttt 77
data ... 71
declaring (#pragma segment). 266
definitionof 67
ICODE. e 78
initializeddata L 73
INtroduction i 67
locateddata 76
NAMING . « .ottt et ettt e e 72
packing in memoryiiiiiien... 70
placinginsequence, 70
StAtiC MEMOTY ..o vv vttt 71
SUMMATY © e\ v tet ettt et e e e aenen 299
SYSCALLCODE. ...t 78
SYSCALLVEC 78
too long for addressrange 79
toolong,inlinker. L 79
TRAPVEC. 78
__segment_begin (extended operator). 149
__segment_end (extended operator) 149
__segment_size (extended operator)................. 149
semaphores
Cexample i 59
CHtexample 61
OPETAtiONS ON . « .ot vv et et e et e e e 246
set (STL headerfile)............................. 294

setjmp.h (library header file). 292
setlocale (library function) 107
settings, basic for project configuration 37
__set_interrupt_state (intrinsic function) 279
__set_processor_register (intrinsic function) 57,279
SET1 (assembler instruction) 134
severity level, of diagnostic messages................ 189

specifying 190
SFR

accessing special function registers 181

declaring extern special function registers 169
shared object.o 188
short address memory, accessing using assembler 139
short addressing

testing if in use (__SADDR_ACTIVE_) 285
short (datatype)covovven i 228
signal (library function)

configuring support for 109

implementation-defined behavior. 326

implementation-defined behavior in C89........... 340
signals, implementation-defined behavior. 318

at SYStemM Startup . ..ottt 318
signal.c 109
signal.h (library headerfile) 292
signed char (datatype) 228-229

specifying ... 198
signed int (data type).ov i 228
signed long long (datatype) 228
signed long (datatype), 228
signed short (datatype).ccoinininon .. 228
--silent (compiler option) 224
silent operation

specifyingincompiler 224
sin (library function). L L 290
sin (library routine). ol 110-111
sinf (library routine) 111-112
sinl (library routine) 111-112
64-bits (floating-point format) 231
sizeof, using in preprocessor extensions 212

Index

SIiZe_t (INtEZET LYPE) « v v v et et e e 233
skeleton code, creating for assembler language interface . 121
skeleton.s85 (assembler source output). 122
SLD instruction, causing hardware problems 204
SLD (assembler instruction) 134
slist (STL header file) 294
small with saddr (datamodel). 201
small (datamodel) 201
source files, list all referred. 209
space characters, implementation-defined behavior 327
special function registers (SFR) 181
special function typesl 55
OVEIVIBW o it vttt ettt e et e e e 41
sprintf (library function) 87
choosing formatter. 87
SQRTF (FPU instruction) 274-275
sscanf (library function)
choosing formatter (DLIB) 88
SST (assembler instruction) 134
sstream (library headerfile) 293
ST (assembler instruction) 134, 138
SEACK oot 50, 74
advantages and problems using 51
changing default sizeof 74
cleaning after functionreturn. 128
contentsof L 51
layout. 127
SAVINE SPACE. &« o v vt et ettt e e 178
SIZE. . ot 75
stack parameters il 126-127
stackpointert 51
stack pointer register, considerations. 126
stack segment
CSTACK ..o 306
placinginmemory........ 75
stack (STL headerfile) 294
Standard C
implementation-defined behavior. 317
library compliance with 289

—e

365

366

specifying strictusage 224
standard error

redirecting in compiler. 220
standardinput. 101
standardoutput 101

specifyingincompiler 220
standard template library (STL)

INCH . 293

inExtended EC++........................ 154, 158

missing from Embedded C++ 154
startup code

placementof i 77

See also CSTART
startup system. See system startup
statements, implementation-defined behavior in C89338
static clustering (compiler transformation) 175
static data, in configuration file. 74
static Memory SeZMENtsveuenenenenennnn. 71
staticoverlay. 131
static variables L i 43

initialization. L L i 73

taking the addressof 178
StAtic_asSert() . .. vv e 148
static_cast (Cast Operator)c.c.oeuenen .. 154
status flags for floating-point 295
std namespace, missing from EC++
and Extended EC++ 158
stdarg.h (library header file) 292
stdbool.h (library headerfile) 228,292

STDC__ (predefined symbol).................... 285
STDC CX_LIMITED_RANGE (pragma directive) 266
STDC FENV_ACCESS (pragma directive) 267
STDC FP_CONTRACT (pragma directive) 267

STDC_VERSION__ (predefined symbol) 285
stddef.h (library header file) 229,292
StAeIT. . oot e 105, 220
StAin ... 105

implementation-defined behavior in C89 (DLIB)341
stdint.h (library header file). 292,294
stdio.h (library headerfile) 292

IAR C/C++ Compiler
Reference Guide for V850

stdio.h, additional C functionality................... 295
stdlib.h (library header file). 292
StAOUL ..ot 105, 220
implementation-defined behavior. 327
implementation-defined behavior in C89 (DLIB)341
Steele, Guy L.. 28
STL. et 158
strcasecmp, instringh o oL oL i L 296
strdup, instring.h L oL o 296
streambuf (library header file). 293
streams
implementation-defined behavior. 318
supported in Embedded C++ 154
strerror (library function), implementation-defined
behavior 332
strerror (library function),
implementation-defined behavior in C89 (DLIB). 343
--strict (compiler option). oL 224
string (library headerfile). 293
strings, supported in Embedded C++ 154
string.h (library headerfile) 292
string.h, additional C functionality 296
strncasecmp, instringh.o L oL oL Lol 296
strnlen, instringh. L L Lo 296
Stroustrup, Bjarne. L L 29
strstream (library header file) 293
strtod (library function), configuring support for 110
structure types
alignment............. 233-234
layoutof. 234
packed 234
structures
accessing using a pointerouvuenennn.. 135
aligning 263
ANONYIMOUS. « ¢ vt v et et e et e eeee e 148, 165
implementation-defined behavior. 323
implementation-defined behavior in C89........... 337
packing and unpacking 165
placing in memory type 49
subnormal numbers. 231-232

support, technical L. 190
Sutter, Herb. 29
symbol names, using in preprocessor extensions 212
symbols
ANONYMOUS, CIEatiNg vv v vt en e 145
includinginoutput.o, 264
listing in linker mapfile............... 79
overview of predefined. 41
preprocessor, defining 200
SYNCE (assembler instruction) 280
__synchronize_exceptions (intrinsic function) 280
__synchronize_memory (intrinsic function) 280
__synchronize_pipeline (intrinsic function) 280
SYNCM (assembler instruction). 280
SYNCP (assembler instruction) 280
syntax
command lineoptions 191
extended keywords. 48, 240-242
invoking compilero 185
__syscall (extended keyword). 248
syscall functions
inClanguage. ..ot 58
placementin memory. 78
syscall table i 248
syscall vector table, SYSCALLVEC segment. 315
syscall (function type).oovvnn i 58
SYSCALLCODE (segment).................... 78,315
SYSCALLVEC (segment) 78,315

system function, implementation-defined behavior. . 319, 329
system startup

CUSTOMUZING . . .ot vttt e 99

DLIB ... 96
system termination

C-SPY interfaceto............. 99

DLIB ... 98
system (library function)

configuring support for 108

implementation-defined behavior in C89 (DLIB)343
system_include (pragma directive) 325,339

Index __4

--system_include_dir (compiler option) 224
tan (library function). L. 290
tan (library routine). oL 110-111
tanf (library routine) 111-112
tanl (library routine) 111-112
_ task (extended keyword) L Lol 249
technical support, IAR Systems 190
template support

inExtended EC++........................ 154, 157

missing from Embedded C++ 153
Terminal I/O window

making available (DLIB) 91

notsupported when, 94
terminal I/O, debugger runtime interface for. 90
terminal output, speedingup. 91
termination of system. See system termination
termination status, implementation-defined behavior 329
terminology. 29
tgmath.h (library header file) 292
32-bits (floating-point format) 231
this (POINtET)ottt 123
__TIME__ (predefined symbol) 286
time zone (library function)
implementation-defined behavior in C89 343
time zone (library function), implementation-defined
behavior i 329
time-critical routines. 117, 146, 271
HME.C ..ot 109
time.h (library headerfile) 292

additional C functionality. 296
time32 (library function), configuring support for 109
time64 (library function), configuring support for 109
tiny with saddr (datamodel)....................... 201
tiny (datamodel). i 200
tips, Programming.ovuenenen v enenen... 177
toolsicon,inthisguide.......... 30

367

368

trademarks 2

transformations, compiler. 170
translation, implementation-defined behavior. 317
translation, implementation-defined behavior in C89 333
_ trap (extended keyword) 57, 249
trapfunctions i 57
trap vector table, TRAPVEC segment. 316
trap vectors

placementinmemory. 78
trap vectors, specifying with pragma directive 269
TRAP (assembler instruction). 249
TRAPVEC (segment).covuiuinne... 78,316
TST1 (assembler instruction) 134
typeattributes 239

specifying 268
type definitions, used for specifying memory storage . 49, 241
type information, omitting 219
type qualifiers

constand volatile. 235

implementation-defined behavior. 323

implementation-defined behavior in C89........... 337
typedefs

excluding from diagnostics 217

repeated 150

using in preprocessor extensions 212
type_attribute (pragma directive) 49, 268
type-based alias analysis (compiler transformation) 174

disabling i 217
type-safe memory management 153
typographic conventions L. 30
UBROF

format of linkable objectfiles 187

specifying, example of 37
ucharh (library header file). 292
uintptr_t (Integer type) ovvvvt vt 233
underflow errors, implementation-defined behavior 326

IAR C/C++ Compiler
Reference Guide for V850

underflow range errors,

implementation-defined behavior in C89 340
_ungetchar,instdioh L L 295
unions
ANONYIMOUS. « ¢ vt ve e e e et e eee e 148, 165
implementation-defined behavior. 323
implementation-defined behavior in C89........... 337
universal character names, implementation-defined
behavior 324
unroll (pragma directive) 268
unsigned char (datatype) 228-229
changing tosignedchar........................ 198
unsigned int (data type). 228
unsigned long long (datatype) 228
unsigned long (datatype)oiiiiin... 228
unsigned short (datatype). 228
__upper_mul64 (intrinsic function) 280
--use_c++_inline (compiler option) 225
utility (STL headerfile) 294
variable declarations, C++ 46
variable type information, omitting in object output. 219
variables
AULO .« vttt e 50-51
defined inside a function 50
global
ACCESSING. « v v vt e e e 135
initializationofo L o oLl 73
placementinmemory 43
hints for choosing 177
local. See auto variables
non-initialized oL oL oL 182
omitting typeinfo L L. 219
placing at absolute addresses 169
placing in named segments 169
static
placementinmemory 43

taking the addressof 178

static and global, initializing 73

7CODE_DISTANCE i, 97
variadic Macros.t 149
vector (pragma directive) 56-59, 269
vector (STL header file) 294
version

compiler subversionnumber 286

of compiler. i 286
version number

ofthisguide. i 2
--vla (compileroption), 226
VOId, POINEETS TO .« vttt et e 150
volatile

and const, declaring objects 237

declaring objectsc. i 235

protecting simultaneously accesses variables. 180

rules for access.t 236
V850

MNEMOTY ACCESS. « « « v vt v et et e e e e e eenes 38

memory layout. 43

supported devices. 36
#warning message (preprocessor extension). 287
WAITINES « ¢ v v ettt et ettt 189

classifyingincompiler. 204

disablingincompiler 218

exitcodeincompiler.......... 226
warnings icon, inthisguide 30
warnings (pragma directive) 325, 340
--warnings_affect_exit_code (compiler option)188, 226
--warnings_are_errors (compiler option) 226
wchar_t (data type), adding support forinC........... 229
wchar.h (library header file) 292,295
wetype.h (library header file) 292
web sites, recommended. o oLl 29

white-space characters, implementation-defined behavior 317

Index __4

__write (library function), 105

CUSTOMIZING .« v ettt e 101
__write_array,instdioh.......... .. . o oL 295
__write_buffered (DLIB library function). 91
XLINK errors

TANZE CTTOT « . o o vt ettt e et ettt e e e e e s 79

segmenttoolong L. 79
XLINK segment memory typesc.c.oeuu.. 68
XTEPOTLASSEIT.C. v v vt vt et e ettt e e e e e e 112

Symbols

_Exit (library function) 98
_exit (library function) 98
__absolute_to_pic (intrinsic function). 65,272
__ALIGNOF__ (0perator)oueueuenen.. 148
__asm (language extension) 119
__assignment_by_bitwise_copy_allowed, symbol used
inlibrary L 296
__BASE_FILE__ (predefined symbol)............... 282
__brel (extended keyword) 243
__brel23 (extended keyword) L L 244
__BUILD_NUMBER___ (predefined symbol) 282
__callt (extended keyword). 58-59, 244
__close (library function) 105
__code_distance (intrinsic function) 65, 273
__code_model (runtime model attribute) 114
__CODE_MODEL__ (predefined symbol). 282
__code, symbolusedinlibrary 296
__compare_and_exchange_for_interlock

(intrinsic function) 273
__constrange(), symbol used in library. 297
__construction_by_bitwise_copy_allowed, symbol used
inlibrary...... ... 297
__CORE__ (predefined symbol). 282

369

__cplusplus (predefined symbol) 282 __iar_logl10_small (library routine) 110

__cpu (runtime model attribute) 114 __iar_logl0_smallf (library routine)................. 111
__CPU__ (predefined symbol) 283 __iar_logl0_smalll (library routine) 111
__data_model (runtime model attribute). 114 __iar_Pow (library routine). 111
__DATA_MODEL__ (predefined symbol)............ 283 __iar_Powf (libraryroutine) 112
__DATE__ (predefined symbol).................... 283 __iar_Powl (libraryroutine) 112
__disable_interrupt (intrinsic function). 274 __iar_Pow_accurate (library routine) 111
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 105 __iar_pow_accurate (library routine) 111
__embedded_cplusplus (predefined symbol) 283 __iar_Pow_accuratef (library routine) 112
__enable_interrupt (intrinsic function) 274 __iar_pow_accuratef (library routine). 112
__exit (library function), 98 __iar_Pow_accuratel (library routine). 112
__FILE__ (predefined symbol)..................... 283 __iar_pow_accuratel (library routine). 112
__flat (extended keyword) 244 __iar_pow_small (library routine). 110
__fpu_double (runtime model attribute) 114 __iar_pow_smallf (library routine). 111
__fpu_single (runtime model attribute). 114 __iar_pow_smalll (library routine) 111
__fpu_sqrt_double (intrinsic function) 274 __iar_program_start (label). 96
__fpu_sqrt_float (intrinsic function) 275 __iar_Sin (library routine) 110-111
__FPU__ (predefined symbol) 284 __iar_Sinf (library routine) 111-112
__FUNCTION__ (predefined symbol) 152,284 __iar_Sinl (library routine) 111-112
__func__ (predefined symbol) 152,284 __iar_Sin_accurate (library routine) 111
_gets,instdio.h. oL 295 __iar_sin_accurate (library routine) 111
__get_interrupt_state (intrinsic function) 275 __iar_Sin_accuratef (library routine) 112
__get_processor_register (intrinsic function) 56, 276 __iar_sin_accuratef (library routine). 112
__halt (intrinsic function) 277 __iar_Sin_accuratel (library routine) 112
__has_constructor, symbol used in library 297 __iar_sin_accuratel (library routine)................. 112
__has_destructor, symbol used in library 297 __iar_Sin_small (library routine) 110
__huge (extended keyword) 245 __iar_sin_small (library routine). 110
__iar_cos_accurate (library routine) 111 __iar_Sin_smallf (library routine). 111
__iar_cos_accuratef (library routine) 112 __iar_sin_smallf (library routine) 111
__iar_cos_accuratel (library routine) 112 __iar_Sin_smalll (library routine). 111
__iar_cos_small (library routine) 110 __iar_sin_smalll (library routine) 111
__iar_cos_smallf (library routine). 111 _ TAR_SYSTEMS_ICC__ (predefined symbol) 284
__iar_cos_smalll (library routine). 111 __iar_tan_accurate (library routine) 111
__iar_exp_small (library routine) 110 __iar_tan_accuratef (library routine). 112
__iar_exp_smallf (library routine) 111 __iar_tan_accuratel (library routine). 112
__iar_exp_smalll (library routine) 111 __iar_tan_small (library routine) 110
__iar_log_small (library routine) 110 __iar_tan_smallf (library routine). 111
__iar_log_smallf (library routine). 111 __iar_tan_smalll (library routine) 111
__iar_log_smalll (library routine). 111 __ICCV850__ (predefined symbol) 284

IAR C/C++ Compiler
370 Reference Guide for V850

__interrupt (extended keyword) 56, 245

using in pragma directives 269
__intrinsic (extended keyword). 246
__LINE__ (predefined symbol) 285
__LITTLE_ENDIAN__ (predefined symbol).......... 285
_dow_level dnit............ 96
__low_level_init, customizing 99
__Iseek (library function)o ... 105
__memory_of

symbolusedinlibrary 297
__monitor (extended keyword) 246
__near (extended keyword). 246
__noreturn (extended keyword) 247
__no_bit_access (extended keyword) 247
__no_init (extended keyword) 182, 247
__no_operation (intrinsic function). 277
__open (library function) 105
__pic_to_absolute (intrinsic function). 65,277
_ PRETTY_FUNCTION__ (predefined symbol). 285
__printf_args (pragma directive). 263
__program_start (label). 96
__read (library function). 105

CUSTOMUZING . o . vttt et 101
__reg_ep (runtime model attribute). 114
__reg_lock2 (runtime model attribute) 115
__reg_lock6 (runtime model attribute) 115
__reg_lock10 (runtime model attribute) 115
__reg_r25 (runtime model attribute) 115
__ReportAssert (library function). 112
__root (extended keyword) oLl 247
__rt_version (runtime model attribute) 115
__saddr (extended keyword) oLl 248
_ SADDR_ACTIVE__ (predefined symbol) 285
__saturated_add (intrinsic function) 277
__saturated_sub (intrinsic function) 278
__scanf_args (pragma directive) 265
__search_ones_left (intrinsic function). 278
__search_ones_right (intrinsic function). 278
__search_zeros_left (intrinsic function) 279

Index __4

__search_zeros_right (intrinsic function) 279
__segment_begin (extended operator 149
__segment_end (extended operators) 149
__segment_size (extended operators) 149
__set_interrupt_state (intrinsic function) 279
__set_processor_register (intrinsic function) 57,279
__STDC_VERSION__ (predefined symbol) 285
__STDC__ (predefined symbol). 285
__synchronize_exceptions (intrinsic function) 280
__synchronize_memory (intrinsic function) 280
__synchronize_pipeline (intrinsic function) 280
__syscall (extended keyword). 248
_ task (extended keyword) L 249
__TIME__ (predefined symbol) 286
_ trap (extended keyword) 57, 249
__ungetchar,instdioh L il 295
__upper_mul64 (intrinsic function) 280
__VA_ARGS__ (preprocessor extension). 145
__write (library function), 105

CUSTOMIZING .« vt vttt e e 101
__write_array,instdioh........ o L 295
__write_buffered (DLIB library function). 91
-D (compileroption).o i 200
-e (compileroption) 206
-f (compileroption). i 208
-I (compileroption). i 209
-l (compileroption). L i 209

for creating skeletoncode 122
-O (compileroption). 219
-0 (compileroption) i 220
-r (compileroption). i 201
--aggressive_inlining (compiler option) 197
--aggressive_unrolling (compiler option) 197
--allow_misaligned_data_access (compiler option) 198
--char_is_signed (compiler option). 198
--char_is_unsigned (compiler option) 199
--code_model (compiler option) 199
--c89 (compileroption). i 198
--data_model (compileroption) 200

371

372

--debug (compileroption) L., 201

--dependencies (compiler option) 201
--diagnostics_tables (compiler option) 204
--diag_error (compiler option) 202
--diag_remark (compiler option). 203
--diag_suppress (compiler option) 203
--diag_warning (compiler option). 204
--disable_sld_suppression (compiler option). 204
--discard_unused_publics (compiler option). 205
--dlib_config (compiler option). 205
--ec++ (compileroption). o oL, 206
--eec++ (compileroption). 206
--enable_multibytes (compiler option) 207
--error_limit (compiler option) 207
--fpu (compileroption), 208
--guard_calls (compiler option). 208
--header_context (compiler option). 209
--library_module (compiler option) 210
--lock_regs (compiler option) 176, 211
--lock_regs_compatibility (compiler option). 177, 211
--macro_positions_in_diagnostics (compiler option)212
--mfc (compileroption). o .. 212
--migration_preprocessor_extensions (compiler option). . 212
--misrac_verbose (compiler option) 195
--misrac1998 (compiler option) 195
--misrac2004 (compiler option) 195
--module_name (compiler option) 213
--no_clustering (compiler option) 213
--no_code_motion (compiler option) 214
--no_cross_call (compiler option). 214
--no_cse (compileroption) 214
--no_data_model_attribute (compiler option) 215
--no_inline (compiler option) 215
--no_path_in_file_macros (compiler option). 215
--no_scheduling (compiler option) 216
--no_size_constraints (compiler option) 216
--no_static_destruction (compiler option) 216
--no_system_include (compiler option) 217
--no_typedefs_in_diagnostics (compiler option). 217

IAR C/C++ Compiler
Reference Guide for V850

--no_unroll (compiler option)
--no_warnings (compiler option)
--no_wrap_diagnostics (compiler option)
--omit_types (compiler option)
--only_stdout (compiler option)
--output (compiler option).
--predef_macro (compiler option).
--preinclude (compiler option)
--preprocess (compiler option)
--reg_const (compiler option) 176,
--relaxed_fp (compiler option)
--remarks (compiler option)
--require_prototypes (compiler option).
--silent (compiler option)
--strict (compiler option). oL
--system_include_dir (compiler option)
--use_c++_inline (compiler option)
--vla (compileroption)

--warnings_affect_exit_code (compiler option)188,
--warnings_are_errors (compiler option)
?7BREL_BASE (assemblerlabel) 46,
?BREL_CBASE (assembler label) 46,
?CODE_DISTANCE (assembler variable) 97,

?SADDR_BASE (assembler label).
?Springboard_R29 (run-time library routine)
@ (operator)
placing at absolute address.
placinginsegments
#include files, specifying 186,
#warning message (preprocessor extension)
%Z replacement string,
implementation-defined behavior

Numerics

32-bits (floating-point format)
64-bits (floating-point format)

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Further reading
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the compiler
	Getting started
	IAR language overview
	Supported V850 devices
	Building applications—an overview
	Compiling
	Linking

	Basic project configuration
	Core
	Data model
	Code model
	Optimization for speed and size
	Runtime environment
	Setting up for the runtime environment in the IDE
	Setting up for the runtime environment from the command line
	Setting library and runtime environment options

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Data storage
	Introduction
	Different ways to store data

	Data models
	Specifying a data model

	Memory types
	Near
	Brel (base-relative)
	Limitation on const declared objects in C++

	Brel23 (base-relative23)
	Huge
	Saddr (Short addressing)
	Using data memory attributes
	Syntax
	Type definitions

	Structures and memory types
	More examples

	C++ and memory types
	Auto variables—on the stack
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models
	The normal code model
	The large code model
	The position-independent code model

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Interrupt service routines
	Interrupt vectors and the interrupt vector table
	Defining an interrupt function—an example
	System registers in interrupt functions

	Trap functions
	Callt functions
	Syscall functions
	Monitor functions
	Example of implementing a semaphore in C
	Example of implementing a semaphore in C++

	C++ and special function types

	Inlining functions
	C versus C++ semantics
	Features controlling function inlining

	Position-independent code
	The distance moved
	Calling functions outside the application
	Example

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker configuration file
	The contents of the linker configuration file
	Using the -Z command for sequential placement
	Using the -P command for packed placement

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker configuration file

	The stack
	Stack size allocation in the IDE
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The heap
	Heap size allocation in the IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Located data
	User-defined segments

	Code segments
	Startup code
	Normal code
	Interrupt vectors and functions
	Trap vectors
	Callt functions
	Syscall functions

	C++ dynamic initialization
	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Setting up the runtime environment

	Using a prebuilt library
	Choosing a library
	Library filename syntax

	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing a printf formatter
	Manually specifying the print formatter in the IDE
	Manually specifying the printf formatter from the command line

	Choosing a scanf formatter
	Manually specifying the scanf formatter in the IDE
	Manually specifying the scanf formatter from the command line

	Application debug support
	Including C-SPY debugging support
	The debug library functionality
	The C-SPY Terminal I/O window
	Speeding up terminal output

	Low-level functions in the debug library

	Adapting the library for target hardware
	Library low-level interface

	Overriding library modules
	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s85

	Library configurations
	Choosing a runtime configuration

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write
	Example of using _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	The getenv function
	The system function

	Signal and raise
	Time
	Strtod
	Math functions
	Smaller versions
	More accurate versions

	Assert
	Checking module consistency
	Runtime model attributes
	Example

	Using runtime model attributes
	Predefined runtime attributes
	Example

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Restrictions for special function types
	Examples
	Example 1
	Example 2
	Example 3

	Function directives

	Calling functions
	Assembler instructions used for calling functions
	Normal code model
	Large code model
	Position-independent code model

	Memory access methods
	Near memory access methods
	Examples

	Base-relative access method
	Examples

	Base-relative23 access method
	Examples

	Huge access method
	Examples

	Short addressing access method
	No bit access

	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Dedicated segment operators

	Relaxations to Standard C

	Using C++
	Overview
	Embedded C++
	Extended Embedded C++

	Enabling support for C++
	EC++ feature descriptions
	Using IAR attributes with Classes
	Example

	Function types
	Example

	Using static class objects in interrupts
	Using New handlers
	New handlers in Embedded C++

	Templates
	Debug support in C-SPY

	EEC++ feature description
	Templates
	Variants of cast operators
	Mutable
	Namespace
	The STD namespace

	C++ language extensions

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions
	Example

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering
	Cross call
	Instruction scheduling

	Register locking and register constants
	Register locking
	Register constants
	Compatibility issues

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Extending the code span
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Protecting the eeprom write mechanism

	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of compiler options
	--aggressive_inlining
	Syntax
	Description
	See also

	--aggressive_unrolling
	Syntax
	Description
	See also

	--allow_misaligned_data_access
	Syntax
	Description
	See also

	--c89
	Syntax
	Description
	See also

	--char_is_signed
	Syntax
	Description

	--char_is_unsigned
	Syntax
	Description

	--code_model
	Syntax
	Parameters
	Description
	See also

	--cpu
	Syntax
	Parameters
	Description

	-D
	Syntax
	Parameters
	Description

	--data_model, -m
	Syntax
	Parameters
	Description
	See also

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description

	--diag_remark
	Syntax
	Parameters
	Description

	--diag_suppress
	Syntax
	Parameters
	Description

	--diag_warning
	Syntax
	Parameters
	Description

	--diagnostics_tables
	Syntax
	Parameters
	Description

	--disable_sld_suppression
	Syntax
	Description

	--discard_unused_publics
	Syntax
	Description
	See also

	--dlib_config
	Syntax
	Parameters
	Description

	-e
	Syntax
	Description
	See also

	--ec++
	Syntax
	Description

	--eec++
	Syntax
	Description
	See also

	--enable_multibytes
	Syntax
	Description

	--error_limit
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Description

	--fpu
	Syntax
	Parameters
	Description

	--guard_calls
	Syntax
	Description

	--header_context
	Syntax
	Description

	-I
	Syntax
	Parameters
	Description
	See also

	-l
	Syntax
	Parameters
	Description

	--library_module
	Syntax
	Description

	--lock_regs
	Syntax
	Parameters
	Description
	See also

	--lock_regs_compatibility
	Syntax
	Description
	See also

	--macro_positions_in_diagnostics
	Syntax
	Description

	--mfc
	Syntax
	Description
	Example
	See also

	--migration_preprocessor_extensions
	Syntax
	Description

	--module_name
	Syntax
	Parameters
	Description

	--no_clustering
	Syntax
	Description
	See also

	--no_code_motion
	Syntax
	Description
	See also

	--no_cross_call
	Syntax
	Description
	See also

	--no_cse
	Syntax
	Description
	See also

	--no_data_model_rt_attribute
	Syntax
	Description

	--no_inline
	Syntax
	Description
	See also

	--no_path_in_file_macros
	Syntax
	Description
	See also

	--no_scheduling
	Syntax
	Description
	See also

	--no_size_constraints
	Syntax
	Description
	See also

	--no_static_destruction
	Syntax
	Description

	--no_system_include
	Syntax
	Description
	See also

	--no_tbaa
	Syntax
	Description
	See also

	--no_typedefs_in_diagnostics
	Syntax
	Description
	Example

	--no_unroll
	Syntax
	Description
	See also

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	-O
	Syntax
	Parameters
	Description
	See also

	--omit_types
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--predef_macros
	Syntax
	Parameters
	Description

	--preinclude
	Syntax
	Parameters
	Description

	--preprocess
	Syntax
	Parameters
	Description

	--public_equ
	Syntax
	Parameters
	Description

	--reg_const
	Syntax
	Description
	Example
	See also

	--relaxed_fp
	Syntax
	Description
	Example

	--remarks
	Syntax
	Description
	See also

	--require_prototypes
	Syntax
	Description

	--silent
	Syntax
	Description

	--strict
	Syntax
	Description
	See also

	--system_include_dir
	Syntax
	Parameters
	Description
	See also

	--use_c++_inline
	Syntax
	Description
	See also

	-v
	Syntax
	Parameters
	Description

	--vla
	Syntax
	Description
	See also

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Data representation
	Alignment
	Alignment on the V850 microcontroller

	Basic data types
	Integer types
	Bool
	The long long type
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	Floating-point environment
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Example

	Packed structure types
	Example

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on functions

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _brel
	Syntax
	Description
	Storage information
	Example
	See also

	_ _brel23
	Syntax
	Description
	Storage information
	Example
	See also

	_ _callt
	Syntax
	Description
	Storage information
	Example
	See also

	_ _flat
	Syntax
	Description
	Example
	See also

	_ _huge
	Syntax
	Description
	Storage information
	Example
	See also

	_ _interrupt
	Syntax
	Description
	Example
	See also

	_ _intrinsic
	Description

	_ _monitor
	Syntax
	Description
	Example
	See also

	_ _near
	Syntax
	Description
	Storage information
	Example
	See also

	_ _no_bit_access
	Syntax
	Description
	Example

	_ _no_init
	Syntax
	Description
	Example

	_ _noreturn
	Syntax
	Description
	Example

	_ _root
	Syntax
	Description
	Example
	See also

	_ _saddr
	Syntax
	Description
	Storage information
	Example
	See also

	_ _syscall
	Syntax
	Description
	Storage information
	Example
	See also

	_ _task
	Syntax
	Description
	Example

	_ _trap
	Syntax
	Description
	Example
	See also

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	Syntax
	Parameters
	Description
	Example
	See also

	constseg
	Syntax
	Parameters
	Description
	Example

	data_alignment
	Syntax
	Parameters
	Description

	dataseg
	Syntax
	Parameters
	Description
	Example

	diag_default
	Syntax
	Parameters
	Description
	See also

	diag_error
	Syntax
	Parameters
	Description
	See also

	diag_remark
	Syntax
	Parameters
	Description
	See also

	diag_suppress
	Syntax
	Parameters
	Description
	See also

	diag_warning
	Syntax
	Parameters
	Description
	See also

	error
	Syntax
	Parameters
	Description
	Example

	include_alias
	Syntax
	Parameters
	Description
	Example
	See also

	inline
	Syntax
	Parameters
	Description
	See also

	language
	Syntax
	Parameters
	Description
	Example
	See also

	location
	Syntax
	Parameters
	Description
	Example
	See also

	message
	Syntax
	Parameters
	Description
	Example

	no_epilogue
	Syntax
	Description
	Example

	object_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	optimize
	Syntax
	Parameters
	Description
	Example
	See also

	pack
	Syntax
	Parameters
	Description
	See also

	_ _printf_args
	Syntax
	Description
	Example

	required
	Syntax
	Parameters
	Description
	Example

	rtmodel
	Syntax
	Parameters
	Description
	Example
	See also

	_ _scanf_args
	Syntax
	Description
	Example

	segment
	Syntax
	Parameters
	Description
	Example
	See also

	STDC CX_LIMITED_RANGE
	Syntax
	Parameters
	Description

	STDC FENV_ACCESS
	Syntax
	Parameters
	Description

	STDC FP_CONTRACT
	Syntax
	Parameters
	Description
	Example

	type_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	unroll
	Syntax
	Parameters
	Description
	Example
	See also

	vector
	Syntax
	Parameters
	Description
	Example

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _absolute_to_pic
	Syntax
	Description
	Example
	See also

	_ _code_distance
	Syntax
	Description
	See also

	_ _compare_and_exchange_for_interlock
	Syntax
	Description
	Example

	_ _disable_interrupt
	Syntax
	Description

	_ _enable_interrupt
	Syntax
	Description

	_ _fpu_sqrt_double
	Syntax
	Description
	Example

	_ _fpu_sqrt_float
	Syntax
	Description
	Example

	_ _get_interrupt_state
	Syntax
	Description
	Example

	_ _get_processor_register
	Syntax
	Description

	_ _halt
	Syntax
	Description

	_ _no_operation
	Syntax
	Description

	_ _pic_to_absolute
	Syntax
	Description
	See also

	_ _saturated_add
	Syntax
	Description

	_ _saturated_sub
	Syntax
	Description

	_ _search_ones_left
	Syntax
	Description
	Example

	_ _search_ones_right
	Syntax
	Description
	Example

	_ _search_zeros_left
	Syntax
	Description
	Example

	_ _search_zeros_right
	Syntax
	Description
	Example

	_ _set_interrupt_state
	Syntax
	Description

	_ _set_processor_register
	Syntax
	Description

	_ _synchronize_exceptions
	Syntax
	Description

	_ _synchronize_memory
	Syntax
	Description

	_ _synchronize_pipeline
	Syntax
	Description

	_ _upper_mul64
	Syntax
	Description

	The preprocessor
	Overview of the preprocessor
	Description of predefined preprocessor symbols
	_ _BASE_FILE_ _
	Description
	See also

	_ _BUILD_NUMBER_ _
	Description

	_ _CODE_MODEL_ _
	Description

	_ _CORE_ _
	Description

	_ _cplusplus_ _
	Description

	_ _CPU_ _
	Description

	_ _DATA_MODEL_ _
	Description

	_ _DATE_ _
	Description

	__embedded_cplusplus
	Description

	_ _FILE_ _
	Description
	See also

	_ _FPU_ _
	Description

	_ _func_ _
	Description
	See also

	_ _FUNCTION_ _
	Description
	See also

	_ _IAR_SYSTEMS_ICC_ _
	Description

	_ _ICCV850_ _
	Description

	_ _LINE_ _
	Description

	_ _LITTLE_ENDIAN_ _
	Description

	_ _PRETTY_FUNCTION_ _
	Description
	See also

	_ _SADDR_ACTIVE_ _
	Description

	_ _STDC_ _
	Description

	_ _STDC_VERSION_ _
	Description

	_ _SUBVERSION_ _
	Description

	_ _TIME_ _
	Description

	_ _VER_ _
	Description

	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	Description
	See also

	#warning message
	Syntax
	Description

	Library functions
	Library overview
	Header files
	Library object files
	Alternative more accurate library functions
	Reentrancy
	The longjmp function

	IAR DLIB Library
	C header files
	C++ header files
	The C++ library header files
	The C++ standard template library (STL) header files
	Using Standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	fenv.h
	stdio.h
	string.h
	time.h

	Symbols used internally by the library

	Segment reference
	Summary of segments
	Descriptions of segments
	BREL_BASE
	Description
	Segment memory type
	Memory placement

	BREL_CBASE
	Description
	Segment memory type
	Memory placement

	BREL_C
	Description
	Segment memory type
	Memory placement
	Access type

	BREL_I
	Description
	Segment memory type
	Memory placement
	Access type

	BREL_ID
	Description
	Segment memory type
	Memory placement
	Access type

	BREL_N
	Description
	Segment memory type
	Memory placement
	Access type

	BREL_Z
	Description
	Segment memory type
	Memory placement
	Access type

	BREL23_C
	Description
	Segment memory type
	Memory placement
	Access type

	BREL23_I
	Description
	Segment memory type
	Memory placement
	Access type

	BREL23_ID
	Description
	Segment memory type
	Memory placement
	Access type

	BREL23_N
	Description
	Segment memory type
	Memory placement
	Access type

	BREL23_Z
	Description
	Segment memory type
	Memory placement
	Access type

	CHECKSUM
	Description
	Segment memory type
	Memory placement
	Access type

	CLTCODE
	Description
	Segment memory type
	Memory placement
	Access type

	CLTVEC
	Description
	Segment memory type
	Memory placement
	Access type

	CODE
	Description
	Segment memory type
	Memory placement
	Access type

	CSTACK
	Description
	Segment memory type
	Memory placement
	Access type
	See also

	CSTART
	Description
	Segment memory type
	Memory placement
	Access type

	DIFUNCT
	Description
	Segment memory type
	Memory placement
	Access type

	GLOBAL_AC
	Description

	GLOBAL_AN
	Description

	HEAP
	Description
	Segment memory type
	Memory placement
	Access type
	See also

	HUGE_C
	Description
	Segment memory type
	Memory placement
	Access type

	HUGE_I
	Description
	Segment memory type
	Memory placement
	Access type

	HUGE_ID
	Description
	Segment memory type
	Memory placement
	Access type

	HUGE_N
	Description
	Segment memory type
	Memory placement
	Access type

	HUGE_Z
	Description
	Segment memory type
	Memory placement
	Access type

	ICODE
	Description
	Segment memory type
	Memory placement
	Access type

	INTVEC
	Description
	Segment memory type
	Memory placement
	Access type

	NEAR_C
	Description
	Segment memory type
	Memory placement
	Access type

	NEAR_I
	Description
	Segment memory type
	Memory placement
	Access type

	NEAR_ID
	Description
	Segment memory type
	Memory placement
	Access type

	NEAR_N
	Description
	Segment memory type
	Memory placement
	Access type

	NEAR_Z
	Description
	Segment memory type
	Memory placement
	Access type

	RCODE
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR_BASE
	Description
	Segment memory type
	Memory placement

	SADDR7_I
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR7_ID
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR7_N
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR7_Z
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR8_I
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR8_ID
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR8_N
	Description
	Segment memory type
	Memory placement
	Access type

	SADDR8_Z
	Description
	Segment memory type
	Memory placement
	Access type

	SYSCALLCODE
	Description
	Segment memory type
	Memory placement
	Access type

	SYSCALLVEC
	Description
	Segment memory type
	Memory placement
	Access type

	TRAPVEC
	Description
	Segment memory type
	Memory placement
	Access type

	Implementation-defined behavior for Standard C
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	Diagnostics (3.10, 5.1.1.3)
	White-space characters (5.1.1.2)

	J.3.2 Environment
	The character set (5.1.1.2)
	Main (5.1.2.1)
	The effect of program termination (5.1.2.1)
	Alternative ways to define main (5.1.2.2.1)
	The argv argument to main (5.1.2.2.1)
	Streams as interactive devices (5.1.2.3)
	Signals, their semantics, and the default handling (7.14)
	Signal values for computational exceptions (7.14.1.1)
	Signals at system startup (7.14.1.1)
	Environment names (7.20.4.5)
	The system function (7.20.4.6)

	J.3.3 Identifiers
	Multibyte characters in identifiers (6.4.2)
	Significant characters in identifiers (5.2.4.1, 6.1.2)

	J.3.4 Characters
	Number of bits in a byte (3.6)
	Execution character set member values (5.2.1)
	Alphabetic escape sequences (5.2.2)
	Characters outside of the basic executive character set (6.2.5)
	Plain char (6.2.5, 6.3.1.1)
	Source and execution character sets (6.4.4.4, 5.1.1.2)
	Integer character constants with more than one character (6.4.4.4)
	Wide character constants with more than one character (6.4.4.4)
	Locale used for wide character constants (6.4.4.4)
	Locale used for wide string literals (6.4.5)
	Source characters as executive characters (6.4.5)

	J.3.5 Integers
	Extended integer types (6.2.5)
	Range of integer values (6.2.6.2)
	The rank of extended integer types (6.3.1.1)
	Signals when converting to a signed integer type (6.3.1.3)
	Signed bitwise operations (6.5)

	J.3.6 Floating point
	Accuracy of floating-point operations (5.2.4.2.2)
	Rounding behaviors (5.2.4.2.2)
	Evaluation methods (5.2.4.2.2)
	Converting integer values to floating-point values (6.3.1.4)
	Converting floating-point values to floating-point values (6.3.1.5)
	Denoting the value of floating-point constants (6.4.4.2)
	Contraction of floating-point values (6.5)
	Default state of FENV_ACCESS (7.6.1)
	Additional floating-point mechanisms (7.6, 7.12)
	Default state of FP_CONTRACT (7.12.2)

	J.3.7 Arrays and pointers
	Conversion from/to pointers (6.3.2.3)
	ptrdiff_t (6.5.6)

	J.3.8 Hints
	Honoring the register keyword (6.7.1)
	Inlining functions (6.7.4)

	J.3.9 Structures, unions, enumerations, and bitfields
	Sign of 'plain' bitfields (6.7.2, 6.7.2.1)
	Possible types for bitfields (6.7.2.1)
	Bitfields straddling a storage-unit boundary (6.7.2.1)
	Allocation order of bitfields within a unit (6.7.2.1)
	Alignment of non-bitfield structure members (6.7.2.1)
	Integer type used for representing enumeration types (6.7.2.2)

	J.3.10 Qualifiers
	Access to volatile objects (6.7.3)

	J.3.11 Preprocessing directives
	Mapping of header names (6.4.7)
	Character constants in constant expressions (6.10.1)
	The value of a single-character constant (6.10.1)
	Including bracketed filenames (6.10.2)
	Including quoted filenames (6.10.2)
	Preprocessing tokens in #include directives (6.10.2)
	Nesting limits for #include directives (6.10.2)
	Universal character names (6.10.3.2)
	Recognized pragma directives (6.10.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.10.8)

	J.3.12 Library functions
	Additional library facilities (5.1.2.1)
	Diagnostic printed by the assert function (7.2.1.1)
	Representation of the floating-point status flags (7.6.2.2)
	Feraiseexcept raising floating-point exception (7.6.2.3)
	Strings passed to the setlocale function (7.11.1.1)
	Types defined for float_t and double_t (7.12)
	Domain errors (7.12.1)
	Return values on domain errors (7.12.1)
	Underflow errors (7.12.1)
	fmod return value (7.12.10.1)
	The magnitude of remquo (7.12.10.3)
	signal() (7.14.1.1)
	NULL macro (7.17)
	Terminating newline character (7.19.2)
	Space characters before a newline character (7.19.2)
	Null characters appended to data written to binary streams (7.19.2)
	File position in append mode (7.19.3)
	Truncation of files (7.19.3)
	File buffering (7.19.3)
	A zero-length file (7.19.3)
	Legal file names (7.19.3)
	Number of times a file can be opened (7.19.3)
	Multibyte characters in a file (7.19.3)
	remove() (7.19.4.1)
	rename() (7.19.4.2)
	Removal of open temporary files (7.19.4.3)
	Mode changing (7.19.5.4)
	Style for printing infinity or NaN (7.19.6.1, 7.24.2.1)
	%p in printf() (7.19.6.1, 7.24.2.1)
	Reading ranges in scanf (7.19.6.2, 7.24.2.1)
	%p in scanf (7.19.6.2, 7.24.2.2)
	File position errors (7.19.9.1, 7.19.9.3, 7.19.9.4)
	An n-char-sequence after nan (7.20.1.3, 7.24.4.1.1)
	errno value at underflow (7.20.1.3, 7.24.4.1.1)
	Zero-sized heap objects (7.20.3)
	Behavior of abort and exit (7.20.4.1, 7.20.4.4)
	Termination status (7.20.4.1, 7.20.4.3, 7.20.4.4)
	The system function return value (7.20.4.6)
	The time zone (7.23.1)
	Range and precision of time (7.23)
	clock() (7.23.2.1)
	%Z replacement string (7.23.3.5, 7.24.5.1)
	Math functions rounding mode (F.9)

	J.3.13 Architecture
	Values and expressions assigned to some macros (5.2.4.2, 7.18.2, 7.18.3)
	The number, order, and encoding of bytes (6.2.6.1)
	The value of the result of the sizeof operator (6.5.3.4)

	J.4 Locale
	Members of the source and execution character set (5.2.1)
	The meaning of the additional character set (5.2.1.2)
	Shift states for encoding multibyte characters (5.2.1.2)
	Direction of successive printing characters (5.2.2)
	The decimal point character (7.1.1)
	Printing characters (7.4, 7.25.2)
	Control characters (7.4, 7.25.2)
	Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.5.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10, 7.25.2.1.11)
	The native environment (7.1.1.1)
	Subject sequences for numeric conversion functions (7.20.1, 7.24.4.1)
	The collation of the execution character set (7.21.4.3, 7.24.4.4.2)
	Message returned by strerror (7.21.6.2)

	Implementation-defined behavior for C89
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

