LAT

Step by step

A quick guide to create your first IAR Visual State project

This guide briefly describes how to create your very first IAR Visual State project.

For more detailed information, see the IAR Visual State User Guide found under User
guides in the IAR Information Center.

Step by step

This guide will take you through the following steps:
e Creating your project files in Editor
e Using Editor to draw a few states and transitions
e Generating code
e Testing your design (simulate and verify)
o Simulating the design
o Verifying the design
e Documenting your code
e Adding variants to your design

~ IAR Visual State Editor - [Current Project: ProjectSBS]

File Edit View |nsert Format Tools Project Window Help

BEE &SR Rl 0 e oA ®E s o [cmoness]| B -
B kO | |0 38| 55 & |38 4% |l ||| [<<complete model>> ¥] (B 4 1D
Workspace Browser & X pegion - [State Diagram] (5] Tab -
= WorkspaceSBS: 1 Project(s) ﬂ
= @ ProjectSBS [ProjectSBS.vsp] / RED_TURN_ON()

= % System5SBS
= @ * TopLevelStateMachines...

= T3 Region1 RED
O RED 3
O YELLOW Button2() / Butten1() /
O GREEN RED_TURN_OM() YELLOW_TURN_ON{)
< initiall h §
£1 Custom commands [ELLOW]
#- 1 Reports <Car>
1 Custom commands Button2)/ Button1()/
YELLOW_TURN_ON(, GREEN_TURN_ON()
b

GREEN

-

]

[0 ol{

Output

10:38:13 4 Counted state(s)

10:38:13 7 Transition and State Reaction(s)

10:38:13 Loading the stereotype file 'C:\IAR \wsSBS\ProjectSES.stereotypes’...
10:38:13 Done! -

General Find Undo I Coder I Verificator I Documenter J Custom command

«corOpesd e oolnAld0D & &

N/A N/A SMAP OFF

VS-StepByStep-06

Introduction

This step-by-step guide will give you an example on how to create your very first Visual State
state machine. For this exercise we will create a traffic light.

Creating your project files in the Editor

I Open IAR Visual State Editor found in the start menu in IAR Visual State x.x. Editor is a
graphical integrated development tool from where you deal with the overall handling of the
projects and can access and activate the other components in Visual State.

2 Three windows will be seen: The Workspace browser window where you will find your projects
later, the IAR Information Center (HTML) window from where you can reach example
applications and guides and the Output window where information about your loaded workspace
will be displayed

3 On the top menu open File>New>New Workspace.

~ AR Visual State Editor

File Edit View Insert Format Tools Project Window Help
Mew * |8 Mew Workspace.. Ctrl+N
Open b Mew Project...
Close Ctrl+F4

e s IAR Information ¢
Save As.. Here you will find all
Insert Project... utorials, example p
Page Setup... support infcrmatiﬂn,

[&, Print Preview...

4 F= O el 1

5 A window called New Workspace will let you name and create the workspace and files
associated.

You will get three choices:

- Standard Workspace which creates a workspace with one project and one system with
one top level state machine. You will be able to name your project but the associated files
will be named with default names.

- Blank Workspace which creates a blank workspace with no associated files. This is
mostly used when you have an existing project and want to add it to a workspace.

- The Workspace Wizard which will guide you through a complete setup where you can
decide the number of top-level state machines of your system and also what to name the
files.

In this exercise we will use the Workspace Wizard as we want to name the files separately.

VS-StepByStep-06 2

6 Choose Workspace Wizard and change the File name to WorkspaceSBS.vnw. Change the
location to a new folder somewhere on your computer called vsSBS . Click OK.

w MNew Workspace

tandard ke
andard workspace Filename IWurkspaceSElS.unw
Tj Blank workspace

E Create Workspace a... Location IC:‘\IAF‘.‘I,\;SSBS Browse... |

Create workspace...

Workspace generated:
File: 'C:\IAR YWwsSBS W orkspaceSBS, viw'

Run Project Wizard:
Create project
Create systems
Create top level state machines

QK Cancel aé

7 A window called Project setup will let you name the project. Change the name to ProjectSBS.
Leave the location folder as is and click Next.

w Project setup

- @ ProjectSBS
% reje Mame IPrujectSElS
Eilename IPru:quu:tSBS.vsp
Location IC:HAR\,usSES Browse. .. |
Mumber of systems |1 =
Finish < Back Mext = Abort é

VS-StepByStep-06

8 A window called Systems setup is appearing. This will let you decide if you want to have more
than one system in your project. In this case we will use one. Mark System1 and rename it to
SystemSBS. Click Next.

w Systems setup

= % p;ﬂJEdSES Marne ISystemSElS
- B SystemSBS
Mumber of top level state machines |1 ﬁ
Finish < Back Mext = Abort é

9 A window called Top level state machines setup will appear. Here you can change the name and
location of top level state machines. This is the topmost state machine in a state hierarchy. The
names should be as below. Click Finish.

» Toplevel state machines setup

= %5 ProjectSBS
= G SystemSBS

..... (O] TopLevelStateMac... Filename IT:::pLE\-'EIStatEMachinESBS.vsr

Location IC:‘;IAF'.\,VSSBS Browse... |

Name |ToplevelStateMachineSBS

Finish < Back Mext = Abort £

10 The wizard creates the files and the Output window shows information about the creation and
loading of files.

VS-StepByStep-06

Using Editor to create a few states and transitions

You should now have a view like this:

~ AR Visual State Editor - [Current Project: ProjectSBS]

File Edit View Insert Format Tools Project Window Help
|[esRgn | tne oc|(n|assm
Waorkspace Browser g x

- WorkspaceSBS: 1 Project(s)

e 75 7|l & 7| Rcemme =1 | [Feamess 1] »

Output =

12:52:45 1 Counted state(s)

12:52:45 0 Transition and State Reaction(s)

12:52:45 Loading the stereotype file 'C:\IAR\wsSBS\ProjectSBS. stereotypes’...
12:52:45 Dane!

Ll Dlx

General | Find | Undo | Coder | Verificator | Documenter | Custom command |

I N/A [M7A || SMAP OFF

|

It is time to draw your design.

VS-StepByStep-06 5

1 Expand the tree in the Workspace Browser and then double-click on Regionl there and Regionl
will open in a new State Diagram window. This is where you will start to draw. You may need to
drag the Standard toolbar so it is fully shown and arrange it e.g. like shown below. The items on

the toolbar can also be found on the Insert menu.

w |AR Visual State Editor - [Current Project: ProjectSES]

VS-StepByStep-06

Eile Edit View |nsert Format Toocls Project Wind
|a=s@ 8 sem 2x e
orkspace Browser g X pe | Insert Format Tools Project Window H
: N \ . f—
(Workspace5B5: 1 Project(s) B8 System Chrl+1
= % ProjectSBS [ProjectSBS.vsp]
— =8 % SystemSBS) Simple State Ctrl+2
= B = ToplevelStateMachineSE...] Composite State Ctrl+Shift+2
O @ Regionl () Submachine State
() = [Custom commands
; “~ 1 Reports = Transition Ctrl+3
o B Custom commands < Curved Transition Ctrl+Alt+3
= & Orthogonal Transition Ctrl+5Shift+3
o p Self Transition Ctrl+4
o O3 Initial State Ctrl+5
@ i History State Ctrl+Alt+3
Foed f# Deep History State Ctrl+Shift+3
& @ Final State Ctrl+6
@ @ Join Ctrl+7
&,) Fork Ctrl+Alt+7
LL # lunction Ctrl+Shift+7
Bl Outout ’ k) Connector Ctrl+8
Q P i1 EntryPoint
12:52:45 1 Counted state(s) s
& 12:52:45 0 Transition and State Reaction(s) & ExitPoint
< 12:52:45 Loading the stereotype file 'C:\IAR \WwsSBS\Proje:
|| 12:52:45 Done! <» Choice
.
¢ | General | Find | Undo | Coder | verificator |_ Mote Ctrl+9

2 The first thing we want to draw is three states symbolising the traffic lights. States are the resting
place between events. In this example the system will stay in red, green or yellow light until
something happens - like a pedestrian pushing a button or a timer is going off.

Choose the Simple State in the toolbar and click on the drawing area once for each state (red,
yellow, green). Rename the states to RED, YELLOW and GREEN by choosing the Select (arrow)
in toolbar and click on the name in the state to edit the name and confirm with ENTER.

Regionl - [State Diagram] D L

e

RED

YELLOW

GREENM

i

3 All systems need a starting point and for this we have to add an Initial State. You can use the tool
in the toolbar or from the Insert menu and add the initial state next to the RED state.

‘

Regionl - [State Diagram] D L

O

RED

VS-StepByStep-06 7

4

It is now time to add the transitions. Select one of the transition types from the Standard toolbar
according to your taste. Draw a transition by clicking once on the source state and once on the
target state. Create transitions from RED to YELLOW, from YELLOW to GREEN and vice
versa. Also draw a transition from the initial state to the RED state. Your design should now look

something like this:

Region1 - [State Diagram] D Tab v

F

4] | f

You can think of the “/” as an “if/then” where if all conditions on the left side are true, the actions
to the right of the “/” will be taken. The areas of “/”” can, and should be moved to easily see to
which transition they belong. Remember to change to the arrow on the toolbar if you still have the
transition tool marked or right click the mouse to choose the select tool. If you mark a transition

arrow the corresponding “/” area will be marked.

VS-StepByStep-06

5 Double click on the transition area “/” from RED to YELLOW state to open up the Edit
Transition window. Start by selecting Trigger in the left view, then select Event in the right

+ Edit Transition

|Eond1jon,r’.ﬁcﬁon: (I .|

= = RED:/ -> YELLOW

- Trigger
Guard Expression
|E| Positive State Condition

|E| Megative State Condition

view, and then click on the Create New symbol (marked with red circle below).

IEnter text to filter list,

|Ela'ner1t:

El Special trigger

=
S A trigger-less

@ Event Group

Action Expression E Signal

E Signal acticn
| |
Comments:
Alias: I
Requirements: <Mo vsreqif file>
Constraint: |<<Cnmplete model == LI
Local Transition: [

QK I Cancel |

VS-StepByStep-06

6 The Edit Event window is opened. Create an event called Buttonl and click OK. Repeat in the
Edit Transition window and create the event Button2.

+ Edit event
Mame: IEiuttcnl
Constraint: I = <Complete model = = |
Create: IDeﬁnitinn |
Comments:
I Mo vsreqif file>
—Parameters:
|Eornrnands: ii:' x 1+ +
Marne Type
QK Cancel

7 Now it is time to assign an event to the transition. Make sure that Trigger is marked in the
Condition/Action list, and then double click on the Buttonl in the Element list. This will add
Buttonl as a trigger. Click OK.

VS-StepByStep-06

+ Edit Transition

|Eond1jon;'.ﬂ.cﬁon: o ! o+ IEnter text to filter list,
= =2 RED: Button1() / -> YELLOW -] |5mt: O o X !
: Tigger :
A Button ﬁl EI" Special trigger
- [3] Guard Expression “o A trigger-less
|E| Positive State Condition
- [#] MNegative State Condition : Button1()
f — : Button()
Action Expression ﬂ @ Event Group
I = - | E Signal
Comments:
Alizs: I
Requirements: <Mo vsreqif file>
Constraint: |<<Cnmplete model = = LI

Local Transition: [

oK I Cancel |

VS-StepByStep-06 11

8 Go back to the State Diagram window where you have been drawing your design. Double click
on the transition from state YELLOW to GREEN and add the Button1 event to that transition as
well. Repeat for the transitions from GREEN to YELLOW and YELLOW to RED, but add the
Button2 event. Your design should now look something like this:

Regionl - [State Diagram] m L

Y

!
RED
Button2() / Button() /
Button2() / Buttoni() /

GREEM

g | i

9 Itistime to define actions. Click on the transition from RED to YELLOW again to open up the
Edit Transition. This time mark the Action Expression in the Condition/Action list and the
Action Function in the Element list and click on the New symbol to open up the Edit Action
window. Create the action YELLOW_TURN_ON and click OK.

~ Edit Transition

|Enter text to filter list.

|Elernent: @ EF 'X !
— —

‘- |_ Action Function

Condition/Action: ﬁj‘ X !
E| Trigger

+
: 2 Buttonl
Guard Expression |
E Positive State Condition
-

Action Expression

| o

Comments:

Alias: I

R <MNa vsreqif file> |

-

Constraint: | <<Complete model>> |

Local Transition: [

VS-StepByStep-06

++ Edit action function

MName: |YELLOW_TURN_ON
Constraint: | < <Complete model > > |
Comments:
Requirements: <Mo vsreqif file»
Type: |vs_voID |
™ Timer action function
—Parameters:
Commands: @ x 1+ +
Marne Type
—File:
Browse... Edit... |
OK Cancel |

10 Repeat and create the actions RED_TURN_ON and GREEN_TURN_ON as well.
11 Itis now time to add the actions to the transitions. Click on the transition arrow to open up the

Edit Transition window, in the Condition/Action list, mark the Action expression, and then in the
Element list double click on the action you want to add to that specific transition. In this case we

want the YELLOW_TURN_ON to be in the transitions leading to the YELLOW state. The
RED_TURN_ON on the transition to the RED state, and the GREEN_TURN_ON on the

transition to the GREEN state.

VS-StepByStep-06

13

13
14

Regionl - [State Diagram] E] Tab =

Button() /

Button2() /
YELLOW_TURMN_ON()

RED_TURN_ON()

Button1() /

Button2y() /
GREEM_TURM_ON()

YELLOW _TURN_ON(’

< | ﬁ

12 The final step here is to add the initial state transition. Double click on the transition line to
open up the Edit Transition window again. Add the action RED_TURN_ON to the transition.

/ RED_TURN_ON()

RED

Note: Double clicking the transition is one way to start to edit your transitions. If you want to add
several events or actions at once, you can open the View->Transition Elements and add the new
events and actions from there as well.

It is now time to save this project (File->Save).
Congratulations, you have now designed your first state machine with IAR Visual State.

Generating code

It is now time to generate the code. At this point you should see your WorkspaceSBS in the
Workspace Browser window to the left in Editor.

From the Editor, press F9, or Project>Code Generate from the menu, or on the toolbar.

A window with all the information on your project and its settings will appear. At the bottom of
this window you should have a report of no warnings or errors when generating the code for the
model.

The code generated will need to be integrated into your code. Information on how to do this is
available in the IAR Visual State user guide.

VS-StepByStep-06 14

Note: If you would like to change settings before code generating, like change from table based to
readable code, you can do that in Project>Options>Code generation.

Testing your design (simulating and verifying)

Now it is time to test your design. The Simulator component is used to simulate and analyze your
design and the Verificator component is used to check the logic consistency so you don’t have
dead ends, unreachable transitions and conflicting behavior of transitions.

Simulating

1 Open the Simulator component by pressing F8 or click on the Simulator symbol O on the
toolbar. You should now have a window like this:

w AR Visual State Simulator

Sirmulator Edit View Debug Reallink Window

JJ@ “J % ”qt;i |*=I b |g§ “J 92 == -/u: e Q ?: | .» ‘“I-{-GCDmpletemodeb} LI

Events ||) Actions [(3]
MNarme W | Location | Explanation | Acticn | System |
> A SE_RESET() Global
A Button2() SystemSBS
A Buttonl() SystemSBS
variables [0
MName | Value |Type |Domain
Systems || 4]
B- % ToplLevelStateMachineSB5 (SystemSBS)
=[] Regiont dl | i3
- 2 RED Signal Queues [(3]
O YELLOW
) GREEM % Signal Queues
> initial1 - B SystemnSBS (Empty)
Output [Q
13:56: 27 Loaded the project 'ProjectSBS'.

General | RealLink | Trace |

2 To start your simulation, double click on SE_RESET in the Event window. This will place your
system in its initial state.

3 Step through your system by double-clicking on events in the Simulator Events window and see if
it behaves as you expect. In the Systems window you can see the resulting state combination. In
the Actions window you can see which actions were generated by the event.

VS-StepByStep-06 15

4 There is also a graphical view. On the Simulator menu, select Debug>Graphical Animation to
step through your system graphically. Resize or reposition the Simulator window in order to see
the Graphical Animation window. Double click on the Regionl in the System View to open the
contents of the region in a separate window.

@ AR Visual State Simulator — O H
JJ@ JJ% ”qth |"ﬂ e x] ”g‘u 92 =5 -/u: e Q ?: | .» ‘“I-{-CCDmplete model == LI
Events ||) Actions [(3]
MNarme W | Location | Explanation | Acticn | System |
> A SE_RESET() Global g YELLO... SystemSBS

> A Button2() System
> A Button1() System

~ |AR Visual State Graphical Animation

Animation | Edit View Tools Window

Oiw | aalae

Systems ||

B =53 ToplevelStateM
: i Regionl
) RED
= VELLOW
2 GREEM
O initial1

output [

13:56: 27 Loaded the project

General RealLink TN

Project Browser ||

@ ToplevelStateMachineSES. Region1 [

= % ProjectSBS
= B8 SystemSBS
= @ ToplLevelStateMachineSBS
=77 Region1
) RED

- O YELLOW
3 GREEN
 initiall

/ RED_TURN_ON()

Button2() /
RED_TURMN_ON()

Button2() /
YELLOW _TURMN_ON(

RED

Butten1() /
YELLOW_TURN_ON()

YELLOW

Butten1() /
GREEN_TURN_OM()

GREEN

5 When you double click events in the Events window, the resulting state combination will be
shown with red borders in your state machine. Blue borders are used for states that were last

active.

6 Exit the Simulator once you are done.

VS-StepByStep-06

16

- —

LA~

Verifying
Now let us verify that the system does not have dead ends or other unexpected behavior.

1 After you have closed the Simulator and are back in the Editor, select Project>Verify System on
the menu. As seen on the result, we have no conflicts or dead ends or other problems that the
Verificator can detect.

w SystemSBS - Verificator

Verification of System 'SystemSBS' in "Compasitional' mode completed.

= = ‘SystemSBS Verify
-- + Check for unused elements
¥ & Check for ambiguity Find Trace |
" Check for conflicting transitions
= v Check for activation of elements étLl

- & Checkfor dead ends Oplions....
-+ Check for unsupported design elements
<& Checkfor domain errors

Skip |

Verification result log for all steps:

Results Report |

Documenting

To create a documentation of your project open Project>Document. This will create a document
with all possible information about your system.

Adding variants to your design

A new feature is the variants. Variants are used when you want to create different variants from
the same model. In this case, what if we want to use this model to work on both a pedestrian light
and a street light?

VS-StepByStep-06 17

I We start out with the previous design in the Editor and on the menu bar you find a small toolbar
for variants. If you click on the & you will be able to add the name of a new variant.

~ |AR Visual State Editor - [Current Project: ProjectSBS]

Eile Edit View [nsert Format Tools Project Window Help
EEIENNEE T IS IRa @@ »l[o> = %>
EEREIEEEEE R el A% @)
’E Workspace Browser g x Region1 - [State Diagram] ﬂ Tab =
E E| WorkspaceSBS: 1 Project(s) -
G = & ProjectSBS [ProjectSBS.vsp]
— B8 SystemSBS /RED_TURN_ON()
- E@ TopLevelStateMachineSE. .
] #- ([} RegionT
) - B1 Custom commands RED
— . -1 Reports
AN “ 1 Custom commands B
utton2() / Button1() /
< RED_TURN_ON() YELLOW _TURN_ONI)
= k §
& YELLDWJ
O
) EluttonZ[} i/ Elutton‘l(} !
@ YELLOW _TURN_ON[GREEN_TURN_ON()
g GREEN
@
G _|LI
® Kl | >
Bl | Qutput =
3 |[14:05:17 4 Counted state(s) ;|
14:05:17 5 Transition and State Reaction(s)

& 14:05:17 Saving stereotypes in C: AR \wsSBS\ProjectSBS. stereotypes
< 14:05:17 Dane! -
T General | Find | Undo | Coder | Verificator | Documenter | Custom command |

| N/A | NA | snapoFF g

2 Create two new variants — Pedestrian and Car.

~ Edit Variants

Commands: LT I Mame: ICar|
Pedestrian Comments:
Car
Requirements: | Mo vsreqif file> |
Ok I Cancel |

VS-StepByStep-06 18

3 We want the pedestrian light to only show red and green, while the car/street light to go between
red, yellow and green. There are several ways of solving this and shown is one of them. By
double clicking on the state called YELLOW the Edit state opens up. In here | now choose the
Constraint to be “Car” as I only want that state entered for the street light. Click OK.

o IAR Visual State Editor - [Current Project: ProjectSBS] - O *

Tools Project Window Help

|a=8 (&R

I N/A R ETE

4 The YELLOW state will now display the restriction <Car>. Transitions to and from this state will
be under the same restriction.

VS-StepByStep-06 19

B B | laa @aa v |2 -
JJ@ (= | | o« 35 79 & |1 4 oo |]"[I |J_||<<Com|:|leternodel:>> @ v 1D
— |\Workspace Browser % X Regioni - [State Diagram] £ Tab -
’E “ 7] WorkspaceSES: 1 Proj -
g8 ~ Edit State - [YELLOW
— ON()
Ol Osete | Aewy | Dmems | Pe |
@ Mame: IYELLOW —ﬁ RED ‘
@ Constraint: |<<Com|:||ete model = ﬂ Y
= Alias <<Comilete model == | Buttoni() /
< Eree Pedestrian YELLOW_TURN_ONI)
= . N
Q E
O
B Button1() /

GREEMN_TURM_OM()

L]
®
a R <MNo vsreqif file> |
[] | »
B | External LRL: I 2 x
> oK | Cancel | il
@ T05: 17 SEving Stereatypes in C: VE TajE STErEotypes
¢ || 14:05:17 Donet zl
T General | Find | Undo | Coder | Verificator | Documenter | Custom command |

|
A

Region1 - [State Diagram] [_Tab T

/ RED_TURN_ON()

RED

ButtonZ() / Button1() /
RED_TURN_ON() YELLOW_TURM_ON()

YELLOW

ﬂ

BUT.T.DFIE[} i Button [} !
YELLOW_TURN_ON(’ GREEN_TURN_ON()

GREEN
4 | oo

5 Time to take care of the Pedestrian crossing. We have to add the transitions between the RED
and GREEN state. We add trigger “Button1” and Action Expression “GREEN TURN_ ON”
from RED to GREEN state, and trigger “Button2” and Action Expression
“RED_TURN_ON” from GREEN to RED state. On both of these transitions the Constraint

“Pedestrian” is applied.
@ I4R Visual State Editor - [Current Project: ProjectSBS] - O *

[[<atone>>][R @ & %

@ Ql® e QR »

I v Edit Transition

Tab M
Condition/Action: DX !+ ¥ IEnter text to filter list. :I
= = RED: Button1() / GREEN_TURN_O... ~ |Eerr|ent: gk X !
B- Trigger -
- A Buttonl - | = Action Function
Guard Expression [GREEN_TURN_ON(: VS_VOID
- E Positive State Condition i: RED_TURN_ONQ : V5_VOID Button1() /
) ; " 3% VELLOW_TURN_ON(: V5_VOID uttan
Megative State Conditi - - - —
|§| egative State Condition YELLOW TURN_ON({)
E| Action Expression Pedestridn> Button1() /
" 3* GREEN_TURN_ON(Q LI [GREEN_TPRN_ON()
' ~
Button1() /
Comments: GREEN_TURN_OM()
Alias: I
= <Ne vsreqif file> | -
] | Ll_l
a8 x
Constraint: [Pedestrian | =]
Local Transition: [
oK I Cancel | j
| N/A | Na - [snaporF

VS-StepByStep-06 20

6 The complete design should now look like this:
Region1 - [State Diagram] @

Tab ~

/ RED_TURN_ON()

Button2() /
RED TURN_OM()

Butten1(} /
YELLOW_TURN_ON()

=Pedestriaf= Button2() /
RED_TURM_ON()

YELLOW
=Car=

Button1{) /

Button2() /
GREEM_TURN_OHN()

YELLOW _TURN_ON(’

=<Pedestrijn= Button1() /

VS-StepByStep-06

21

Save the project and open up Simulator. You can now choose which one of the two variants that

you want to validate.

~ AR Visual State Simulator

Simulater Edit View Debug Reallink Window

EFEIEEERIEHEETEET

<<Complete model=> ~

<< Complete model> =
Events [E] Pedestrian 0
MNarmne W | Location | Explanation | |
> A SE_RESET() Global
A Button2() SystemSBS
A Button1() SystemSBS
Variables D 0
MNarme v |Va|ue |Type Domain
% Systems |:| 0
B- % ToplevelStateMachine5SB5 (SystemSBS)
= [Regionl] i
- O RED Signal Queues [(4]
O YELLOW
= GREEM % Signal Queues
O3 initiall @8 SystemSBS (Empty)
output [(4]
14:24:33 Loaded the project ProjectSES'
General | Realink | Trace |
Ready
22

VS-StepByStep-06

8 The parts that are not active will not be shown in the Graphical animation window

isual State Graphical Animation

@ 14R Visual State Simulator
Animation Edit View Tools Window

Simulator Edit View Debug Reallink Window
IEE L [5 | % e [20]] %2 % |2 2 8 22 | @ (o= =
fLiE 2] =Y
Events Acti
v B © o Project Browser [@ ToplevelStateMachinesss.Region1 [
Name [Location [Explanation Action [system ERywowe TRED_TURN OND
> A SERESET) Global L3 VELLO.. SystemSB 4 system..
> 2 Button1(l SystemSBS =0 Top
> 2 Button2} SystemSBS 5T .
Lo
) o
Variables [Button2() / Button () /
~ = |RED_TURN_ON{) YELLOW_TURN_ON()
Name [value o
YELLOW]]
4] <Car>
Button2() / Button1() /
GREEN_TURN_ON()

B8 systems [
E =38 ToplevelStateMachineSES (SystemSBS) 4
) gl ELLOW_TURN_ON(.
) ReD Signal Queves [
= VELLOW
) GREEN EE] Signel Queues GREEN
< inttiall B8 SystemSES (Empty)

output [

10:42:29 Loaded the project ProjectSBs’,

10:43:25 Loaded the project ProjectSsS' for the variant Pedestrian’.
10:49:41 Loaded the project ProjectSeS' for the variant 'Car'.

General | Reallink | Trace

AR Visual State Simulator
e AR Visual State Graphical Animation
Simulator _Edit View Debug Resllink Window) — Edit View Tools Wind
nimation it View Tools indow
UEE[] s [s % e 3] % % |2 2. 2 2 | @l Pescsien ﬂ\ug@\ua e e
Events [(4]
Project Browser D@ ToplevelStateMachineSBS.Region1 ||
Name [Location [Explanation | [action [system ER Y T RED_TURILON)
> A SERESET) Global “ 3 RED_TU... SystemsSBY 5 68 Systern..
> A Button1(SystemSBS = Top. &
7 Button2() SystemSBS .
o
variables [2] (C)’
Name [value
<Pedestriafi> Button2() / <Pedestridn> Button1() /
RED_TURN_OM
€8 systens £ o TUR_CMO RN_ON()
= =38 ToplevelStateMachineSES (SystemSBS) .
E {1 Regionl |
=+ RED Signal Queves [
O GREEN
& intiall % Signal Queues
“ G SystemSBS (Empty)
Output [
10:42:29 Loaded the project 'ProjectSBs',
10:43:25 Loaded the project ProjectseS' for the variant Pedestrian’.

General Reallink | Trace

When generating code for the different variants you specify in the Editor toolbar which variant

you want the code generated for.

sual State Editor - [Current Project: Proj
File Edit View [nsert Format Jools Project Window Help
laclaaa »

J_||<<None>> ‘”JJ P e £

[H SRl oA
53 % 4 (Y v O

O+ -+

HEEHm“m—-’E'ﬁﬂ_ +
% X pegoni - [State Disgram] Report [£]

,%|Workspace Browser

23

VS-StepByStep-06

Disclaimer

Information given in this document is intended as a help for the user. IAR shall not be held liable
for any losses or problems arising from using the information given in this document.

Trademarks etc.

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect, C-SPY, C-RUN, C-STAT,
IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR Academy, IAR, and the logotype of IAR Systems
are trademarks or registered trademarks owned by IAR Systems AB.

All other trademarks or registered trademarks mentioned in this document are the properties of their respective
owners.
© Copyright 2023 1AR Systems AB.

Part number: VS-StepByStep-06
Fifth edition: March 2023

VS-StepByStep-06 24

